
© 2005 Carnegie Mellon University

CoBaSSA 2005
Best Practices for Secure Coding

Robert C. Seacord

© 2005 Carnegie Mellon University 2

Agenda
Strings

Common String Manipulation Errors

Mitigation Strategies

© 2005 Carnegie Mellon University 3

Strings
Comprise most of the data exchanged
between an end user and a software system

command-line arguments
environment variables
console input

Software vulnerabilities and exploits are
caused by weaknesses in

string representation
string management
string manipulation

© 2005 Carnegie Mellon University 4

Agenda
Strings

Common String Manipulation Errors

Mitigation Strategies

© 2005 Carnegie Mellon University 5

Common String Manipulation Errors

Programming with C-style strings, in C or C++,
is error prone.

Common errors include
Unbounded string copies
Null-termination errors
Truncation
Improper data sanitization

© 2005 Carnegie Mellon University 6

Unbounded String Copies
Occur when data is copied from a unbounded
source to a fixed length character array

1. void main(void) {

2. char Password[80];

3. puts("Enter 8 character password:");

4. gets(Password);

...

5. }

© 2005 Carnegie Mellon University 7

Copying and Concatenation
It is easy to make errors when copying and
concatenating strings because standard functions do
not know the size of the destination buffer
1. int main(int argc, char *argv[]) {

2. char name[2048];

3. strcpy(name, argv[1]);

4. strcat(name, " = ");

5. strcat(name, argv[2]);

...

6. }

© 2005 Carnegie Mellon University 8

C++ Unbounded Copy
Inputting more than 11 characters into following the
C++ program results in an out-of-bounds write:

1. #include <iostream.h>

2. int main() {

3. char buf[12];

4. cin >> buf;

5. cout << "echo: " << buf << endl;

6. }

© 2005 Carnegie Mellon University 9

Null-Termination Errors
Another common problem with C-style strings is a
failure to properly null terminate

int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[32];

strncpy(a, "0123456789abcdef", sizeof(a));

strncpy(b, "0123456789abcdef", sizeof(b));

strncpy(c, a, sizeof(c));

}

Neither a[] nor b[] are
properly terminated

© 2005 Carnegie Mellon University 10

String Truncation
Functions that restrict the number of bytes are
often recommended to mitigate against buffer
overflow vulnerabilities
strncpy() instead of strcpy()
fgets() instead of gets()
snprintf() instead of sprintf()

Strings that exceed the specified limits are
truncated

Truncation results in a loss of data, and in some
cases, to software vulnerabilities.

© 2005 Carnegie Mellon University 11

Write Outside Array Bounds
1. int main(int argc, char *argv[]) {

2. int i = 0;

3. char buff[128];

4. char *arg1 = argv[1];

5. while (arg1[i] != '\0') {

6. buff[i] = arg1[i];

7. i++;

8. }

9. buff[i] = '\0';

10. printf("buff = %s\n", buff);

11. }

Because C-style strings are character
arrays, it is possible to perform an
insecure string operation without
invoking a function

© 2005 Carnegie Mellon University 12

Agenda
Strings

Common String Manipulation Errors

Mitigation Strategies

© 2005 Carnegie Mellon University 13

Mitigation Strategies
ISO/IEC “Security” TR 24731

Managed string library

Safe/Secure C++

© 2005 Carnegie Mellon University 14

ISO/IEC TR 24731 Goals
Mitigate against

Buffer overrun attacks
Default protections associated with program-created
file

Do not produce unterminated strings
Do not unexpectedly truncate strings
Preserve the null terminated string data type
Support compile-time checking
Make failures obvious
Have a uniform pattern for the function parameters
and return type

© 2005 Carnegie Mellon University 15

ISO/IEC TR 24731 Example
int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[24];

strcpy_s(a, sizeof(a), "0123456789abcde");

strcpy_s(b, sizeof(b), "0123456789abcde");

strcpy_s(c, sizeof(c), a);

strcat_s(c, sizeof(c), b);

}

strcpy_s() fails and generates
a runtime constraint error

© 2005 Carnegie Mellon University 16

ISO/IEC TR 24731 Summary
Already available in Microsoft Visual C++ 2005
(being released today, November 7!)

Functions are still capable of overflowing a
buffer if the maximum length of the destination
buffer is incorrectly specified

The ISO/IEC TR 24731 functions
are not “fool proof”
useful in
– preventive maintenance
– legacy system modernization

© 2005 Carnegie Mellon University 17

Managed Strings
Manage strings dynamically

allocate buffers
resize as additional memory is required

Managed string operations guarantee that
strings operations cannot result in a buffer overflow
data is not discarded
strings are properly terminated (strings may or may not
be null terminated internally)

Disadvantages
unlimited can exhaust memory and be used in denial-
of-service attacks
performance overhead
mitigation expensive

© 2005 Carnegie Mellon University 18

Software Production Supply Chain

Component
Producers

Compiler
Producers

Application
Producers

Including but not limited to:
•Plum Hall – Test Suites
•Edison Design - Parsers
•Crescent Bay – Optimizers
•Dinkumware - Libraries

Quality Tools
Producers

Including but not limited to:
•Polyspace
•Coverity
•Fortify
•Secure Software
•PC-Lint

• 100+ vendors

•Millions of programmers

© 2005 Carnegie Mellon University 19

Safe/Secure C++
Commercial offering being developed by Plum
Hall, Inc.

Build upon today’s compiler and optimizer

Match concepts to programmer intuition

Careless C/C++ code runs safely but probably
slower

Performance improved by the 80/20 rule,
at compile-time, at link-time, at run-time

© 2005 Carnegie Mellon University 20

Sample Function
void hbAssignCodes(

int *code, unsigned char *length,

int minLen, int maxLen, int alphaSize) {

int n, vec, i;

vec = 0;

for (n = minLen; n <= maxLen; n++) {

for (i = 0; i < alphaSize; i++)

if (length[i] == n) { code[i] = vec; vec++; };

vec <<= 1;

}

}

© 2005 Carnegie Mellon University 21

Step 1: Label Fetch and Store
void hbAssignCodes(

int *code, unsigned char *length,

int minLen, int maxLen, int alphaSize) {

int n, vec, i;

vec = 0;

for (n = minLen; n <= maxLen; n++) {

for (i = 0; i < alphaSize; i++)

if (length[i] == n) { code[i] = vec; vec++; };

vec <<= 1;

}

} i SUB4 length; i SUB4(code)

© 2005 Carnegie Mellon University 22

Step 2: Look For { counted } Loops
void hbAssignCodes(

int *code, unsigned char *length,

int minLen, int maxLen, int alphaSize) {

int n, vec, i;

vec = 0;

for (n = minLen; n <= maxLen; n++) {

for (i = 0; i < alphaSize; i++)

if (length[i] == n) { code[i] = vec; vec++; };

vec <<= 1;

}

}

{ counted-plus } { counted-plus }

© 2005 Carnegie Mellon University 23

Step 3: Look for Limits
void hbAssignCodes(

int *code, unsigned char *length,

int minLen, int maxLen, int alphaSize) {

int n, vec, i;

vec = 0;

for (n = minLen; n <= maxLen; n++) {

for (i = 0; i < alphaSize; i++)

if (length[i] == n) { code[i] = vec; vec++; };

vec <<= 1;

}

}
alphaSize SUB5(length) alphaSize SUB5(length)

© 2005 Carnegie Mellon University 24

Step 4: New Signatures
void hbAssignCodes(

int *code, unsigned char *length,

int minLen, int maxLen, int alphaSize

);

hbAssignCodes(code; length;

minLen; maxLen;

alphaSize SUB4(length),

SUB4(code)

);

© 2005 Carnegie Mellon University 25

Step 5: Evaluate Code in Context
unsigned char len [6][258];

int code [6][258];

alphaSize SUB5(len) so alphaSize SUB5(length)

alphaSize SUB5(len) so alphaSize SUB5(code)

hbAssignCodes(code; length;

minLen; maxLen;

alphaSize SUB4(length),

SUB4(code)

);

© 2005 Carnegie Mellon University 26

Bounds-checking Example
memcpy(targ, src, num)

becomes

memcpy_s(targ, tsize, src, num)

The target size of targ must be determined so
it can be inserted as a new argument.

© 2005 Carnegie Mellon University 27

Summary
ISO/IEC TR 24731 good approach for
remediation

Managed strings good approach for new
development that is not performance critical

Analysis techniques based solely on detection
and mitigation of dangerous functions is targeted
at the wrong level of abstraction

Safe-secure C/C++ promising technology for
eliminating buffer overflows and improving
security of C/C++ programs

© 2005 Carnegie Mellon University 28

For More Information
Visit the CERT® web site

http://www.cert.org/
Contact Presenter

Robert C. Seacord rcs@cert.org
Jason Rafail jrafail@cert.org

Contact CERT Coordination Center
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890

Hotline: 412-268-7090
CERT/CC personnel answer 8:00 a.m. — 5:00 p.m.
and are on call for emergencies during other hours.

Fax: 412-268-6989

E-mail: cert@cert.org

© 2005 Carnegie Mellon University

Back up

© 2005 Carnegie Mellon University 30

Data Type
Managed strings use an opaque data type

struct string_mx;

typedef struct string_mx *string_m;

The representation of this type is
private
implementation specific

© 2005 Carnegie Mellon University 31

Error Handling
Return status code is uniformly provided in the
function return value

Prevents nesting of function calls but
consequently programmers less likely to avoid
status checking

Otherwise, the managed string library uses the
same constraint handling mechanism as
TR 24731

Failure to allocate memory, for example, is
treated as a constraint violation

© 2005 Carnegie Mellon University 32

Create / Retrieve String Example
errno_t retValue;

char *cstr; // c style string

string_m str1 = NULL;

if (retValue = strcreate_m(&str1, "hello, world")) {

fprintf(stderr, "Error %d from strcreate_m.\n", retValue);

}

else { // print string

if (retValue = getstr_m(&cstr, str1)) {

fprintf(stderr, "error %d from getstr_m.\n", retValue);

}

printf("(%s)\n", cstr);

free(cstr); // free duplicate string

}

© 2005 Carnegie Mellon University 33

Data Sanitization
The managed string library provides a
mechanism for dealing with data sanitization
by (optionally) ensuring that all characters in a
string belong to a predefined set of “safe”
characters.

errno_t setcharset(

string_m s,

const string_m safeset

);

© 2005 Carnegie Mellon University 34

Performance Breakthrough,
Combining Static and Dynamic

