

# The Survivable Network Analysis Method:

# Assessing Survivability of Critical Systems

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213-3890

Sponsored by the U.S. Department of Defense © 2000 by Carnegie Mellon University



### Agenda

### System Survivability Concepts

The Survivable Network Analysis (SNA) Method



# System Survivability Concepts

### **Survivability Motivation**

Growing societal dependence on complex, large-scale, networked systems

Serious consequences of system compromises and failures

Traditional security and vulnerability analysis no longer sufficient



# Changing Systems Environment

**System evolution** 

- expanding network boundaries
- additional participants with varying levels of trust
- numerous point solutions: Public Key Infrastructure, Virtual Private Networks, firewalls, ...
- blurring of Intranet and Extranet boundaries
- new technologies -- directory services, XML

#### **System security**

 No amount of security can guarantee a system will not be penetrated



### Impact on Analysis

Lack of complete information

- unknown physical and logical perimeters
- unknown participants, untrusted insiders
- unknown software components -- COTS, Java, etc.

**Broader scope** 

- Mix of central and local administrative control
- Critical components more exposed
- Attacks can impact essential business services

### From Security to Survivability

Survivability focus is on the system mission

- assume imperfect defenses
- analyze mission risks and tradeoffs
- identify decision points with survivability impact
- provide recommendations with business justification
- improve survivability to ensure mission capability

*Survivability* is the ability of a system to fulfill its mission, in a timely manner, in the presence of attacks, failures, or accidents.

### The "Three Rs" of Survivability

### Resistance

capability to deter attacks

### Recognition

 capability to recognize attacks and extent of damage

### Recovery

• capability to provide essential services and assets during attack and recover full services after attack



# The Survivable Network Analysis (SNA) Method

### **SNA** Objectives

Understand survivability risks to a system

- What essential services must survive intrusions?
- What are the effects of intrusions on the mission?

### Identify mitigating strategies

- What process, requirements, or architecture changes can improve survivability?
- Which changes have the highest payoff?

### **SNA Characteristics**

Tailorable to stage of development -- from initial requirements to deployed systems

Adaptable to variety of development processes

Applies to applications as well as infrastructure

## **SNA Architecture Focus**

Architecture is integrating element of large systems

Capture assumptions on boundaries and users

Support architecture evolution as requirements and technologies change

- evolving functional requirements
- trend to loosely coupled systems
- integration across diverse systems
- changes in vendor product architectures

Assist selection and integration of rapidly changing security products

### The SNA Process

Performed on selected system or system component

Conducted by our team (survivability expertise) working with customer team (system expertise)

**Carried out in structured series of working sessions** 

Findings summarized in report and management briefing

### Survivable Network Analysis Method



### **SNA Preliminaries - 1**

**Joint Planning Meeting/System Documentation** 

Identify system to be analyzed and documentation Establish scope of work, teams, and schedules

#### **Off-Site Preparation Task**

Review system documentation Prepare for SNA

#### **Joint Discovery Session**

...

© 2000 by Carnegie Mellon University



### **SNA Preliminaries - 2**

Existing documentation may only partially meet SNA needs

System architecture description may be little more than boxes and arrows

Discovery sessions will continually add new components and functionality to architecture

**Critical to have stakeholder involvement and interest** 

### Step 1 and 2 Activities

#### **Joint Discovery Session**

Software Engineering Institute

**CarnegieMellon** 

SNA Step 1 initiation:
Briefings by developers on business mission and life-cycle process functional requirements operating environment architecture evolution plans
SNA Step 2 initiation:
Determination of essential service and asset selection essential service/asset usage scenarios scenario traces and essential components

#### **Off-site Discovery Integration Task**

SNA Steps 1 and 2 completion:
Analyze system mission, life cycle, requirements, environment, architecture and essential services, assets, and components
SNA Step 3 initiation:
Assess system vulnerabilities
Define representative set of intrusions

Define intrusion usage scenarios

#### **Joint Discovery Session**

....

© 2000 by Carnegie Mellon University

### **Step 1: Mission Definition**

Inputs required from diverse stakeholders

• owners, users, architects, developers, administrators

Identify business mission supported by the system

- example
  - government agency: review, select, fund, and monitor government contracts
- example
  - industry: support integration of design teams across internal corporate organization, industry partners, and contractors

# Step 1: Architecture Definition

System architecture and operating environment

- evaluation team reviews understanding of architecture from documentation and discussion
- review key system boundaries such as where administrative control changes
  - risks may be with external systems or with systems outside immediate control of the organization
- identify explicit and implicit assumptions such as choice of vendors, operating systems
- identify critical dependencies on other systems

### Step 2: Essential Capabilities

#### **Essential services/assets**

• Capabilities that must be available despite intrusions

### **Essential service/asset scenarios**

• Steps in essential service/asset usage

### **Essential components**

- Architecture parts required by essential services/assets
- Determined by tracing scenarios through architecture



### **Essential Service Scenario Trace**



### **Step 2: Essential Services**

Ask user communities to describe their system use

 government agency: file system was essential component but users employed email servers as an alternative file system with extensive storage of attachments

Identify future changes in function and usage • government agency: electronic submission of grant

proposals and financial reports

Identify small number of essential services

• government agency: grant administration, internal administration, dissemination of public information









### Step 3 and 4 Activities

#### Joint Analysis Session

SNA Step 3 completion: Briefing by SEI on system vulnerabilities selected intrusions and their usage scenarios Validation of intrusions by customer team Determination of scenario traces/compromisable components SNA Step 4 initiation: Determination of softspot components current resistance, recognition, and recovery



#### Off-site Analysis Integration Task

SNA Step 4 completion: Define recommended mitigation strategies for resistance, recognition, and recovery Assess architecture modifications and impacts Document findings in the Survivability Map Prepare customer briefing

#### **Briefing**

© 2000 by Carnegie Mellon University

### **Step 3: Intrusion Capabilities**

**Treat intruders as users** 

Select representative intrusions based on environment and risk

Intrusion scenarios

• steps in attacker usage

**Compromisable components** 

- architecture parts accessible by intrusion scenarios
- determined by tracing scenarios through architecture

### **Intrusion Scenario Trace**





# Step 3: Vulnerabilities

Review initial analysis of probable attacks and impacts with stakeholders and users

- often significant variation in stakeholder view of intruder impact
- script-kiddie attackers generate most attention but may draw focus away from skilled attackers with specific objectives
- generate stakeholder consensus on probable attackers and impacts

# Step 3: Model Attacker Profiles - 1

"Target of opportunity" profile -- general objectives

- readily available tools
- defense: increased resistance, system configurations, file-integrity checks

"Intermediate" profile -- specific objectives

- use of trusted resources, greater patience
- higher impact on essential services
- defense: increased recognition and recovery

"Sophisticated" profile -- very focused objectives

- customized tools, compromise internal staff
- defense: high probability of success; recognition and recovery essential

### Step 3: Model Attacker Profiles - 2

Generate table of probable attackers and impacts

#### For each class of attacker consider

- resources: personnel, skill, finances
- time: patience and persistence
- tools: access to tools, ability to customize
- risk: level of risk aversion
- access: internal, Internet
- objectives: personnel, financial, moral

Example: Government agencies may have attackers who have strong political or moral positions. These attackers are not risk averse and can be very patient.

### **Step 3: Current Strategies**

Identify current survivability strategies

- normal operations for backup
- configuration management
- resistance, recognition, recovery (usually weak)

Get input from users, management, and system administrators

# Step 4: Survivability Analysis

Steps 1-3 provide information for extensive, in-depth analysis to develop recommendations for

- architecture modifications
- requirements changes
- policy revisions
- operational improvements

### Step 4: Softspot Identification

### Softspot components

- architecture components that are both essential and compromisable
- members of essential service scenario traces that must be available despite intrusion effects

### Architecture Softspots



# Step 4: Survivability Analysis

**Evaluate system in terms of response to scenarios** 

Make recommendations for survivability improvements

- requirements: propose response to intrusions
- architecture: evaluate system and operational behavior

Identify decision and tradeoff points

- areas of high risk
- tradeoffs with safety, reliability, performance, usability

# Step 4: Survivability Map

Defines survivability strategies for the three Rs based on intrusion softspots

Relates survivability strategies to the system, its environment, and identified intrusions

**Provides basis for risk analysis, cost-benefit tradeoffs** 



## SNA Survivability Map

| Intrusion<br>Scenario | Softspots | Architecture<br>Strategies for | Resistance | Recognition | Recovery |
|-----------------------|-----------|--------------------------------|------------|-------------|----------|
| Scenario<br>1<br>     |           | Current                        |            |             |          |
|                       |           | Recommended                    |            |             |          |
| Scenario<br>n         |           | Current                        |            |             |          |
|                       |           | Recommended                    |            |             |          |

### Step 4: Recommendations - 1

Case Study A: large distributed organization, large number of legacy systems, currently involved in redesign of most major systems

- establish security architecture -- directory services, support for a mix of central and distributed administration, develop common application interface to security infrastructure, architectural support for managing active content (Javascript, email attachments)
- support architecture evolution -- accommodate product changes, interoperability among security vendors, and changes in vendor architecture

# Step 4: Recommendations - 2

Case Study B: administrative unit inside a large, diverse organization. Very heterogeneous user environment (university-like) including significant research component

- revise security/survivability policies
- improve separation between internal systems and those accessed by general public and employees outside the administrative unit
- add internal firewalls to better manage diverse user community
- extend attacker analysis beyond script-kiddies
- improve system recovery

### **SNA Benefits**

**Clarified requirements** 

Basis to evaluate changes in architecture

Early problem identification

Increased stakeholder communication

Improved system survivability

### Future Work

**Define survivability architecture patterns** 

Develop improved methods for system and intrusion definition

**Create automation support for SNA** 



# Additional Information

SNA Case Study: The Vigilant Healthcare SystemIEEE Software: July/August 1999

### Survivability: Protecting Your Critical Systems

• IEEE Internet Computing: November/December 1999

### Web site: IEEE article and other reports

On www.sei.cmu.edu /organization/programs/nss/surv-net-tech.html