

The Survivable Network Analysis Method:

Assessing Survivability of Critical Systems

CERT/Coordination Center Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Sponsored by the U.S. Department of Defense

Mission Survivability

Changing Environment

- System Evolution
 - expanding network boundaries
 - additional participants with varying levels of trust
 - numerous point solutions: Public Key Infrastructure, Virtual Private Networks, Firewalls
 - blurring of Intranet and Extranet boundaries
 - new technologies -- directory services, XML
- The impact of attacks is on organizations, and hence on the applications which support the organization's mission

Impact on Analysis

- Lack of complete information
 - physical and logical perimeters
 - participants, untrusted insiders
 - software components --- COTS Java, etc.
- Mix of central and local administrative control
- Critical components more exposed
- An attack could impact essential business services

Survivability Defined

Survivability is the ability of a system to fulfill its mission, in a timely manner, in the presence of attacks, failures, or accidents.

Key properties

- Mission Focus
 - Identification of risks and trade-offs
 - Alternative means to meet mission
- Assume imperfect defenses

The "Three Rs"

- Resistance
 - Capability to deter attacks
- Recognition
 - Capability to recognize attacks and extent of damage
- Recovery
 - Capability to provide essential services/assets during attack and recover full services after attack

Techniques and Methods

- Traditional Security
 - fortress model: firewalls, protection, security policy
 - insider trust
 - encryption, authentication, passwords
 - resistance and recognition with recovery secondary
- Survivability is enhanced by
 - security techniques where applicable
 - redundancy, diversity, general trust validation, etc
 - automated recovery support

Example

- E-mail
 - E-mail content tunnels through firewalls
 - Always time lag between initial discovery and upgraded virus signatures required for scans
 - Enhanced e-mail functionality
 - Attachments (Word macros)
 - Rich content such as HTML, Javascript
 - Resistance and recognition limited. Recovery strategies essential.
 - Significant impact on services other than e-mail.

The Survivable Network Analysis Method

- Focus
 - early phase of life cycle
 - applications as well as system infrastructure
 - tailorable depending on stage of development.
- Three options for SNA analysis
 - survivability architecture
 - survivability requirements
 - mission lifecycle

Architectural Focus

- Capture assumptions such as boundaries and users
- Support system evolution as requirements and technologies change
 - evolving functional requirements
 - trend to loosely coupled
 - requirements for integration across diverse systems
- Assist with product selection and integration with respect to rapidly changing security product world

General Method

- Identify essential services with normal usage.
- Generate intrusion scenarios which are use cases for intruder
- Evaluate system in terms of response to scenarios
 - Requirements: propose response to intrusions
 - Architecture: evaluate system and operational behavior
- Mission impact
 - applications as well as system components
 - stakeholders input essential

Survivability Architecture

- Make recommendations for survivability improvements
- Identify decision and tradeoff points areas of high risk
- Identify trade-offs with other software quality attributes
 - safety, reliability, performance, usability

The Survivable Network Analysis Method

Determining Survivability Strategies

Survivability Map

Intrusion Scenario	Softspot Effects	Architecture Strategies for	Resistance	Recognition	Recovery
(Scenario 1)		Current			
		Recommended			
(Scenario n)		Current			
		Recommended			

• Roadmap for management evaluation and action

Option: Survivability Requirements

- Identify requirements for mission-critical <u>functionality</u>
 - minimum essential services
 - graceful degradation of services
 - restoration of full services
- Identify explicit requirements for
 - recovery
 - recognition
 - resistance

Option: Mission Lifecycle

- Factor survivability into the development and operational lifecycle
- Capture security and survivability assumptions
 boundaries, users
- Identify survivability decision points

- impact of changes on recovery, intrusion detection, etc.

Benefits of the SNA

- Clarified requirements
- Documented basis for system decisions
- Basis to evaluate changes in architecture
- Early problem identification
- Increased stakeholder communication

Additional Information

- SNA Case Study: The Vigilant Healthcare System
 IEEE Software: July/August 1999
- Survivability: Protection Your Critical Systems

 IEEE Internet Computing: Nov/December 1999
- Web site: IEEE article and other reports www.sei.cmu.edu/organization/programs/nss/surv-net-tech.html