
1

© 2006 Carnegie Mellon University

Secure Coding in C++: Integers
Robert C. Seacord
SD Best Practices 2006

© 2006 Carnegie Mellon University 2

About this Presentation
Presentation assumes basic C++ programming
skills but does not assume in-depth knowledge
of software security

Ideas generalize but examples are specific to
Microsoft Visual Studio
Linux/GCC
32-bit Intel Architecture (IA-32)

Material in this presentation was borrowed
from the Addison-Wesley book
Secure Coding in C and C++

2

© 2006 Carnegie Mellon University 3

Integer Security

Integers represent a growing and
underestimated source of vulnerabilities in
C++ programs.

Integer range checking has not been
systematically applied in the development of
most C++ software.
security flaws involving integers exist
a portion of these are likely to be vulnerabilities

© 2006 Carnegie Mellon University 4

Unexpected Integer Values

Unexpected values are a common source of
software vulnerabilities (even when this behavior
is correct).

An unexpected value is a
value other than the one
you would expect to get
using a pencil and paper

3

© 2006 Carnegie Mellon University 5

Integer Agenda
Integers

Vulnerabilities

Mitigation Strategies

Notable Vulnerabilities

Summary

© 2006 Carnegie Mellon University 6

Integer Section Agenda

Representation

Types

Conversions

Error conditions

Operations

4

© 2006 Carnegie Mellon University 7

Two’s Complement
The two’s complement form of a negative integer is created by

adding one to the one’s complement representation.

Two’s complement representation has a single (positive) value for
zero.

The sign is represented by the most significant bit.

The notation for positive integers is identical to their signed-
magnitude representations.

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 0

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 1+ 1 =

© 2006 Carnegie Mellon University 8

Representation

Types

Conversions

Error conditions

Operations

Integer Section Agenda

5

© 2006 Carnegie Mellon University 9

Signed and Unsigned Types
Integers in C++ are either signed or unsigned.

For each signed type there is an equivalent
unsigned type.

© 2006 Carnegie Mellon University 10

Signed Integers
Signed integers are used to represent positive
and negative values.

On a computer using two’s complement
arithmetic, a signed integer ranges from -2n-1

through 2n-1-1.

6

© 2006 Carnegie Mellon University 11

Signed Integer Representation

© 2006 Carnegie Mellon University 12

Unsigned Integers
Unsigned integer values range from zero to a

maximum that depends on the size of the
type

This maximum value can be calculated as
2n-1, where n is the number of bits used to
represent the unsigned type.

7

© 2006 Carnegie Mellon University 13

Unsigned Integer Representation

two’s complement

© 2006 Carnegie Mellon University 14

Standard Integer Types
Standard integers include the following types,

in non-decreasing length order:
signed char
short int
int
long int
long long int

NOTE: The long long int type is not defined in
ISO/IEC 14882:2003 but is defined in the 2006-04-21
working draft and many implementations

8

© 2006 Carnegie Mellon University 15

Other Integer Types
The following types are used for special

purposes
ptrdiff_t is the signed integer type of the
result of subtracting two pointers
size_t is the unsigned result of the sizeof
operator
wchar_t is an integer type whose range of
values can represent distinct codes for all
members of the largest extended character set
specified among the supported locales.

© 2006 Carnegie Mellon University 16

Integer Ranges
Minimum and maximum values for an integer
type depend on

the type’s representation
signedness
the number of allocated bits

The standard sets minimum requirements for
these ranges.

9

© 2006 Carnegie Mellon University 17

Example Integer Ranges
signed char

0 127-128

0 255

unsigned char

0 32767

short

- 32768

0 65535

unsigned short

signed char

00 127127-128-128

00 255255

unsigned char

00 3276732767

short

- 32768- 32768

00 65535 65535

unsigned short

© 2006 Carnegie Mellon University 18

Integer Section Agenda

Representation

Types

Conversions

Error conditions

Operations

10

© 2006 Carnegie Mellon University 19

Integer Conversions
Type conversions occur explicitly in C++ as the result

of a cast or implicitly as required by an operation.

Conversions can lead to lost or misinterpreted data.

Implicit conversions are a consequence of the C++
ability to perform operations on mixed types.

The following rules influence how conversions are
performed:
integer promotions
integer conversion rank
usual arithmetic conversions

© 2006 Carnegie Mellon University 20

Integer Promotions
Integer types smaller than int are promoted

when an operation is performed on them.

If all values of the original type can be
represented as an int
the value of the smaller type is converted to int
otherwise, it is converted to unsigned int

11

© 2006 Carnegie Mellon University 21

Integer Promotion Purpose
Integer promotions require the promotion of

each variable (c1 and c2) to int size.

char c1, c2;

c1 = c1 + c2;

The two ints are added and the sum
truncated to fit into the char type.

Integer promotions avoid arithmetic errors from
the overflow of intermediate values.

© 2006 Carnegie Mellon University 22

Integer Promotion Example
1. char cresult, c1, c2, c3;

2. c1 = 100;

3. c2 = 90;

4. c3 = -120;

5. cresult = c1 + c2 + c3;

The value of c1 is added
to the value of c2.

The sum of c1 and c2 exceeds the
maximum size of signed char.

However, c1, c2, and c3 are each
converted to integers and the overall
expression is successfully evaluated.

The sum is truncated and
stored in cresult without a
loss of data.

12

© 2006 Carnegie Mellon University 23

Integer Promotions Consequences

Adding two small integer types always results
in a value of type signed int or unsigned
int and the actual operation takes place in
this type

Applying the bitwise negation operator ~ to an
unsigned char (on IA-32) results in a negative
value of type signed int because the value
is zero-extended to 32 bits.

© 2006 Carnegie Mellon University 24

Integer Conversion Rank
Every integer type has an integer conversion
rank that determines how conversions are
performed.

13

© 2006 Carnegie Mellon University 25

Usual Arithmetic Conversions
Set of rules that provides a mechanism to yield
a common type when

Both operands of a binary operator are
balanced to a common type
The second and third arguments of the
conditional operator (? :) are balanced to
a common type

Balancing conversions involve two operands of
different types

One or both operands may be converted

© 2006 Carnegie Mellon University 26

Unsigned Integer Conversions 1
Conversions of smaller unsigned integer types to

larger unsigned integer types is
always safe
typically accomplished by zero-extending the value

When a larger unsigned integer is converted to a
smaller unsigned integer type, the
larger value is truncated
low-order bits are preserved

14

© 2006 Carnegie Mellon University 27

Unsigned Integer Conversions 2
When unsigned integer types are converted to

the corresponding signed integer type
the bit pattern is preserved so no data is lost
the high-order bit becomes the sign bit

If the sign bit is set, both the sign and
magnitude of the value change.

© 2006 Carnegie Mellon University 28

Preserve low-order wordshortlong
Preserve bit pattern; high-order bit becomes sign bitlonglong
Preserve low-order byteunsigned charlong

Preserve low-order bytecharlong
Preserve low-order byteunsigned charshort

Preserve low-order wordunsigned
short

long

Zero-extendlongshort
Preserve bit pattern; high-order bit becomes sign bitshortshort
Preserve low-order bytecharshort
Zero-extendunsigned longchar

Zero-extendunsigned
short

char
Zero-extendlongchar
Zero-extendshortchar
Preserve bit pattern; high-order bit becomes sign bitcharchar

MethodToFrom
unsigned

Misinterpreted dataLost dataKey:

15

© 2006 Carnegie Mellon University 29

Signed Integer Conversions 1
When a signed integer is converted to an

unsigned integer of equal or greater size and
the value of the signed integer is not
negative
the value is unchanged
the signed integer is sign-extended

A signed integer is converted to a shorter
signed integer by truncating the high-order
bits.

© 2006 Carnegie Mellon University 30

Signed Integer Conversions 2
When signed integer types are converted to

the corresponding unsigned integer type
bit pattern is preserved—no lost data
high-order bit loses its function as a sign bit

If the value of the signed integer is not
negative, the value is unchanged.

If the value is negative, the resulting unsigned
value is evaluated as a large, unsigned
integer.

16

© 2006 Carnegie Mellon University 31

Preserve bit pattern; high-order bit loses function as sign
bit

unsigned shortshort

Preserve low-order wordshortlong
Preserve low-order byteunsigned charlong
Preserve low-order wordunsigned shortlong

Preserve low-order bytecharlong
Sign-extend to long; convert long to unsigned longunsigned longshort

Preserve pattern; high-order bit loses function as sign bitunsigned longlong

Preserve low-order byteunsigned charshort
Sign-extendlongshort
Preserve low-order bytecharshort

Sign-extend to long; convert long to unsigned longunsigned longchar
Sign-extend to short; convert short to unsigned shortunsigned shortchar

Preserve pattern; high-order bit loses function as sign bitunsigned charchar

Sign-extendlongchar
Sign-extendshortchar

MethodToFrom

Misinterpreted dataLost dataKey:

© 2006 Carnegie Mellon University 32

Conversion Summary
Necessary to avoid conversions that result in

Loss of value: conversion to a type where the
magnitude of the value cannot be represented
Loss of sign: conversion from a signed type to
an unsigned type resulting in loss of sign

The only integer type conversion guaranteed
safe for all data values and all conforming
implementations is to a wider type of the same
signedness

17

© 2006 Carnegie Mellon University 33

Integer Section Agenda
Representation

Types

Conversions

Error conditions

Operations

© 2006 Carnegie Mellon University 34

Integer Error Conditions
Integer operations can resolve to unexpected
values as a result of an

overflow
sign error
truncation

18

© 2006 Carnegie Mellon University 35

Overflow
An integer overflow occurs when an integer is

increased beyond its maximum value or
decreased beyond its minimum value.

Overflows can be signed or unsigned.

A signed overflow
occurs when a value is
carried over to the sign
bit.

An unsigned overflow
occurs when the underlying
representation can no longer
represent a value.

© 2006 Carnegie Mellon University 36

Overflow Examples 1
1. int i;

2. unsigned int j;

3. i = INT_MAX; // 2,147,483,647

4. i++;

5. printf("i = %d\n", i);

6. j = UINT_MAX; // 4,294,967,295;

7. j++;

8. printf("j = %u\n", j);

i=-2,147,483,648

j = 0

19

© 2006 Carnegie Mellon University 37

Overflow Examples 2
9. i = INT_MIN; // -2,147,483,648;

10. i--;

11. printf("i = %d\n", i);

12. j = 0;

13. j--;

14. printf("j = %u\n", j);

i = 2,147,483,647

j = 4,294,967,295

© 2006 Carnegie Mellon University 38

Truncation Errors
Truncation errors occur when

an integer is converted to a smaller integer
type and
the value of the original integer is outside the
range of the smaller type

Low-order bits of the original value are
preserved and the high-order bits are lost.

20

© 2006 Carnegie Mellon University 39

Truncation Error Example
1. char cresult, c1, c2;

2. c1 = 100;

3. c2 = 90;

4. cresult = c1 + c2;

Integers smaller than int
are promoted to int or
unsigned int before being
operated on

Adding c1 and c2 exceeds the max
size of signed char (+127)

Truncation occurs when the
value is assigned to a type
that is too small to represent
the resulting value

© 2006 Carnegie Mellon University 40

Sign Errors
Can occur when

converting an unsigned integer to a signed
integer
converting a signed integer to an unsigned
integer

21

© 2006 Carnegie Mellon University 41

Converting to Signed Integer
Converting an unsigned integer to a signed

integer of
equal size - preserve bit pattern; high-order bit
becomes sign bit
greater size - the value is zero-extended then
converted
lesser size - preserve low-order bits

If the high-order bit of the unsigned integer is
not set - the value is unchanged
set - results in a negative value

© 2006 Carnegie Mellon University 42

Converting to Unsigned Integer
Converting a signed integer to an unsigned

integer of
equal size - bit pattern of the original integer is
preserved
greater size - the value is sign-extended then
converted
lesser size - preserve low-order bits

If the value of the signed integer is
not negative - the value is unchanged
negative - a (typically large) positive value

22

© 2006 Carnegie Mellon University 43

Sign Error Example
1. int i = -3;

2. unsigned short u;

3. u = i;

4. printf("u = %hu\n", u);

There are sufficient bits to represent the value so
no truncation occurs. The two’s complement
representation is interpreted as a large signed
value, however, so u = 65533.

Implicit conversion to smaller
unsigned integer

© 2006 Carnegie Mellon University 44

Representation

Types

Conversions

Error conditions

Operations

Integer Section Agenda

23

© 2006 Carnegie Mellon University 45

Integer Operations
Integer operations can result in errors and
unexpected values.

Unexpected integer values can cause
unexpected program behavior
security vulnerabilities

Most integer operations can result in
exceptional conditions.

© 2006 Carnegie Mellon University 46

Integer Addition
Addition can be used to add two arithmetic
operands or a pointer and an integer.

If both operands are of arithmetic type, the
usual arithmetic conversions are performed on
them.

Integer addition can result in an overflow if the
sum cannot be represented in the allocated
bits.

24

© 2006 Carnegie Mellon University 47

Integer Multiplication
Multiplication is prone to overflow errors because
relatively small operands can overflow.

One solution is to allocate storage for the product that
is twice the size of the larger of the two operands.

The max product for an unsigned integer is 2n-1
2n-1 x 2n-1 = 22n – 2n+1 + 1 < 22n

The minimum product for a signed integer is -2n-1

-2n-1 x -2n-1 = 22n-2 < 22n

© 2006 Carnegie Mellon University 48

Multiplication Instructions
The IA-32 instruction set includes a

mul (unsigned multiply) instruction
imul (signed multiply) instruction

25

© 2006 Carnegie Mellon University 49

Unsigned Multiplication
1. if (OperandSize == 8) {

2. AX = AL * SRC;

3. else {

4. if (OperandSize == 16) {

5. DX:AX = AX * SRC;

6. }

7. else { // OperandSize == 32

8. EDX:EAX = EAX * SRC;

9. }

10. }

Product of 8-bit operands
is stored in 16-bit
destination registers

Product of 16-bit operands
is stored in 32-bit
destination registers

Product of 32-bit operands is stored in 64-bit
destination registers

© 2006 Carnegie Mellon University 50

Upcasting
Cast both operands to an integer with at least
2x bits and then multiply.

For unsigned integers
Check high-order bits in the next larger integer.
If any are set, throw an error.

For signed integers, all zeros or all ones in the
high-order bits and the sign bit in the low-order
bit indicate no overflow.

26

© 2006 Carnegie Mellon University 51

Upcast Example
void* AllocBlocks(size_t cBlocks) {

// allocating no blocks is an error
if (cBlocks == 0) return NULL;

// Allocate enough memory
// Upcast the result to a 64-bit integer
// and check against 32-bit UINT_MAX
// to make sure there's no overflow

unsigned long long alloc = cBlocks * 16;
return (alloc < UINT_MAX)

? malloc(cBlocks * 16)
: NULL;

}
Multiplication results in a 32-bit value. The result is
assigned to an unsigned long long but the
calculation may have already overflowed.

© 2006 Carnegie Mellon University 52

Standard Compliance
To be compliant with the standard, multiplying
two 32-bit numbers in this context must yield a
32-bit result.

The language was not modified because the
result would be burdensome on architectures
that do not have widening multiply instructions.

The correct result could be achieved by casting
one of the operands.

27

© 2006 Carnegie Mellon University 53

Corrected Upcast Example
void* AllocBlocks(size_t cBlocks) {

// allocating no blocks is an error
if (cBlocks == 0) return NULL;

// Allocate enough memory
// Upcast the result to a 64-bit integer
// and check against 32-bit UINT_MAX
// to make sure there's no overflow

unsigned long long alloc =
(unsigned long long)cBlocks*16;

return (alloc < UINT_MAX)

? malloc(cBlocks * 16)
: NULL;

}

© 2006 Carnegie Mellon University 54

Integer Division
An integer overflow condition occurs when the
minimum integer value for 32-bit or 64-bit
integers is divided by -1.

In the 32-bit case, –2,147,483,648/-1 should
be equal to 2,147,483,648.

Because 2,147,483,648 cannot be represented
as a signed 32-bit integer, the resulting value
is incorrect.

- 2,147,483,648 /-1 = - 2,147,483,648

28

© 2006 Carnegie Mellon University 55

Error Detection
The Intel division instructions do not set the overflow
flag.

A division error is generated if
the source operand (divisor) is zero
the quotient is too large for the designated register

A divide error results in a fault on interrupt vector 0.

When a fault is reported, the processor restores the
machine state to the state before the beginning of
execution of the faulting instruction.

© 2006 Carnegie Mellon University 56

Microsoft Visual Studio
C++ exception handling does not allow recovery from

a hardware exception
a fault such as
– an access violation
– divide by zero

Visual Studio provides structured exception handling
(SEH) facility for dealing with hardware and other
exceptions

Structured exception handling is an operating system
facility that is distinct from C++ exception handling.

29

© 2006 Carnegie Mellon University 57

C++ Exception Handling
1. Sint operator /(unsigned int divisor) {

2. try {

3. return ui / divisor;

4. }

5. catch (...) {

6. throw SintException(

ARITHMETIC_OVERFLOW

);

7. }

8. }

C++ exceptions in Visual C++ are implemented
using structured exceptions, making it possible to
use C++ exception handling on this platform.

© 2006 Carnegie Mellon University 58

Agenda
Integers

Vulnerabilities

Mitigation Strategies

Summary

30

© 2006 Carnegie Mellon University 59

Vulnerabilities
A vulnerability is a set of conditions that allows
violation of an explicit or implicit security policy.

Security flaws can result from hardware-level integer
error conditions or from faulty logic involving integers.

These security flaws can, when combined with other
conditions, contribute to a vulnerability.

© 2006 Carnegie Mellon University 60

Vulnerabilities Section Agenda

Integer overflow

Sign error

Truncation

Non-exceptional

Integer overflow

Sign error

Truncation

Non-exceptional

31

© 2006 Carnegie Mellon University 61

JPEG Example
Based on a real-world vulnerability in the handling of
the comment field in JPEG files.

Comment field includes a two-byte length field
indicating the length of the comment, including the
two-byte length field.

To determine the length of the comment string (for
memory allocation), the function reads the value in the
length field and subtracts two.

The function then allocates the length of the comment
plus one byte for the terminating null byte.

© 2006 Carnegie Mellon University 62

Integer Overflow Example
1. void getComment(unsigned int len, char *src) {

2. unsigned int size;

3. size = len - 2;

4. char *comment = (char *)malloc(size + 1);

5. memcpy(comment, src, size);

6. return;

7. }

8. int main(int argc, char *argv[]) {

9. getComment(1, "Comment ");

10. return 0;

11. }

Size is interpreted as a large
positive value of 0xffffffff

0 byte malloc() succeeds

Possible to cause an overflow by creating
an image with a comment length field of 1

32

© 2006 Carnegie Mellon University 63

Vulnerabilities Section Agenda

Integer overflow

Sign error

Truncation

Non-exceptional

Integer overflow

Sign error

Truncation

Non-exceptional

© 2006 Carnegie Mellon University 64

Sign Error Example 1
1. #define BUFF_SIZE 10

2. int main(int argc, char* argv[]){

3. int len;

4. char buf[BUFF_SIZE];

5. len = atoi(argv[1]);

6. if (len < BUFF_SIZE){

7. memcpy(buf, argv[2], len);

8. }

9. }

Program accepts two
arguments (the length
of data to copy and
the actual data)

len declared as a signed integer

argv[1] can be
a negative value

A negative
value
bypasses
the check

Value is interpreted as an
unsigned value of type size_t

33

© 2006 Carnegie Mellon University 65

Vulnerabilities Section Agenda

Integer overflow

Sign error

Truncation

Non-exceptional

Integer overflow

Sign error

Truncation

Non-exceptional

© 2006 Carnegie Mellon University 66

Vulnerable Implementation
1. bool func(char *name, long cbBuf) {

2. unsigned short bufSize = cbBuf;

3. char *buf = (char *)malloc(bufSize);

4. if (buf) {

5. memcpy(buf, name, cbBuf);

6. if (buf) free(buf);

7. return true;

8. }

9. return false;

10. }

cbBuf is used to initialize
bufSize, which is used
to allocate memory for
buf

cbBuf is declared as a long and
used as the size in the memcpy()
operation

34

© 2006 Carnegie Mellon University 67

Vulnerabilities Section Agenda

Integer overflow

Sign error

Truncation

Non-exceptional

Integer overflow

Sign error

Truncation

Non-exceptional

© 2006 Carnegie Mellon University 68

Non-Exceptional Integer Errors

Integer-related errors can occur without an
exceptional condition (such as an overflow)
occurring.

35

© 2006 Carnegie Mellon University 69

Negative Indices
1. int *table = NULL;

2. int insert_in_table(int pos, int value){

3. if (!table) {

4. table = (int *)malloc(sizeof(int) * 100);

5. }

6. if (pos > 99) {

7. return -1;

8. }

9. table[pos] = value;

10. return 0;

11. }

Storage for the
array is
allocated on
the heap

pos is not > 99

value is inserted into the
array at the specified position

© 2006 Carnegie Mellon University 70

Agenda
Integers

Vulnerabilities

Mitigation Strategies

Notable Vulnerabilities

Summary

36

© 2006 Carnegie Mellon University 71

Mitigation Section Agenda

Type range checking

Strong typing

Compiler checks

Safe integer operations

Testing and reviews

© 2006 Carnegie Mellon University 72

Type Range Checking
Type range checking can eliminate integer
vulnerabilities.

Languages such as Pascal and Ada allow range
restrictions to be applied to any scalar type to form
subtypes.

Ada allows range restrictions to be declared on derived
types using the range keyword:

type day is new INTEGER range 1..31;

Range restrictions are enforced by the language
runtime.

C++ lacks an equivalent mechanism

37

© 2006 Carnegie Mellon University 73

Type Range Checking Example
1. #define BUFF_SIZE 10

2. int main(int argc, char* argv[]){

3. unsigned int len;

4. char buf[BUFF_SIZE];

5. len = atoi(argv[1]);

6. if ((0<len) && (len<BUFF_SIZE)){

7. memcpy(buf, argv[2], len);

8. }

9. else

10. printf("Too much data\n");

11. }

.

Implicit type check from
the declaration as an
unsigned integer

Explicit check for both upper and lower bounds

© 2006 Carnegie Mellon University 74

Range Checking
External inputs should be evaluated to determine
whether there are identifiable upper and lower
bounds.

These limits should be enforced by the interface.
It’s easier to find and correct input problems than it is
to trace internal errors back to faulty inputs.

Limit input of excessively large or small integers.

Typographic conventions can be used in code to
distinguish constants from variables
distinguish externally influenced variables from locally
used variables with well-defined ranges

38

© 2006 Carnegie Mellon University 75

Mitigation Section Agenda

Type range checking

Types

Compiler checks

Safe integer operations

Testing and reviews

© 2006 Carnegie Mellon University 76

Types
One way to provide better type checking is to
provide better types.

Using an unsigned type can guarantee that a
variable does not contain a negative value.

This solution does not prevent overflow.

Strong typing should be used so that the
compiler can be more effective in identifying
range problems.

39

© 2006 Carnegie Mellon University 77

Problem: Representing Object Size

Really bad:

short total = strlen(argv[1])+ 1;

Better:

size_t total = strlen(argv[1])+ 1;

Better still:

rsize_t total = strlen(argv[1])+ 1;

© 2006 Carnegie Mellon University 78

Problem with size_t
Extremely large object sizes are frequently a
sign that an object’s size was calculated
incorrectly.

As we have seen, negative numbers appear as
very large positive numbers when converted to
an unsigned type like size_t.

40

© 2006 Carnegie Mellon University 79

rsize_t

rsize_t cannot be greater than RSIZE_MAX.

For applications targeting machines with large
address spaces, RSIZE_MAX should be
defined as the smaller of

the size of the largest object supported
(SIZE_MAX >> 1) (even if this limit is
smaller than the size of some legitimate, but
very large, objects)

rsize_t is the same type as size_t so they
are binary compatible

© 2006 Carnegie Mellon University 80

Type range checking

Types

Compiler checks

Safe integer operations

Testing and reviews

Mitigation Section Agenda

41

© 2006 Carnegie Mellon University 81

Visual C++ Compiler Checks
Visual C++ .NET 2003 generates a warning
(C4244) when an integer value is assigned to a
smaller integer type.

At level 1 a warning is issued if __int64 is assigned
to unsigned int.
At level 3 and 4, a “possible loss of data” warning is
issued if an integer is converted to a smaller type.

For example, the following assignment is flagged
at warning level 4:

int main() {
int b = 0, c = 0;

short a = b + c; // C4244
}

© 2006 Carnegie Mellon University 82

Visual C++ Runtime Checks
Visual C++ .NET 2003 includes runtime checks that
catch truncation errors as integers are assigned to
shorter variables that result in lost data.

The /RTCc compiler flag catches those errors and
creates a report.

Visual C++ includes a runtime_checks pragma that
disables or restores the /RTC settings but does not
include flags for catching other runtime errors such as
overflows.

Runtime error checks are not valid in a release
(optimized) build for performance reasons.

42

© 2006 Carnegie Mellon University 83

GCC Runtime Checks
GCC compilers provide an -ftrapv option

provides limited support for detecting integer
exceptions at runtime
generates traps for signed overflow for
addition, subtraction, and multiplication
generates calls to existing library functions

GCC runtime checks are based on post-
conditions—the operation is performed and the
results are checked for validity

© 2006 Carnegie Mellon University 84

Type range checking

Types

Compiler checks

Safe integer operations

Testing and reviews

Mitigation Section Agenda

43

© 2006 Carnegie Mellon University 85

SafeInt Class
SafeInt is a C++ template class written by
David LeBlanc.

Implements a precondition approach that tests
the values of operands before performing an
operation to determine if an error will occur.

The class is declared as a template, so it can
be used with any integer type.

Every operator has been overridden except for
the subscript operator[].

© 2006 Carnegie Mellon University 86

Precondition Example
Overflow occurs when lhs and rhs are
unsigned int and

lhs + rhs > UINT_MAX

To prevent the addition from overflowing the
operator+ can test that

lhs > UINT_MAX – rhs

Or alternatively :

~lhs < rhs

44

© 2006 Carnegie Mellon University 87

SafeInt Example
1. int main(int argc, char *const *argv) {

2. try{

3. SafeInt<unsigned long> s1(strlen(argv[1]));

4. SafeInt<unsigned long> s2(strlen(argv[2]));

5. char *buff = (char *) malloc(s1 + s2 + 1);

6. strcpy(buff, argv[1]);

7. strcat(buff, argv[2]);

8. }

9. catch(SafeIntException err) {

10. abort();

11. }

12. }

The variables s1 and s2 are
declared as SafeInt types

When the + operator is invoked it uses the
safe version of the operator implemented as
part of the SafeInt class.

© 2006 Carnegie Mellon University 88

When to Use Safe Integers
Use safe integers when integer values can be
manipulated by untrusted sources such as

the size of a structure
the number of structures to allocate

void* CreateStructs(int StructSize, int HowMany) {

SafeInt<unsigned long> s(StructSize);

s *= HowMany;

return malloc(s.Value());

}

Structure size multiplied by # required to
determine size of memory to allocate

The multiplication can overflow the integer
and create a buffer overflow vulnerability

45

© 2006 Carnegie Mellon University 89

When Not to Use Safe Integers
Don’t use safe integers when no overflow is possible.

tight loop
variables are not externally influenced
…

char a[INT_MAX];

for (size_t i = 0; i < INT_MAX; i++)

a[i] = '\0';

…

© 2006 Carnegie Mellon University 90

SafeInt Summary
SafeInt advantages:

Portability - does not depend on assembly
language instructions
Usability
– operators can be used in inline expressions
– uses C++ exception handling

SafeInt issues:
Incorrect behavior - fails to provide correct
integer promotion behavior.
Performance

46

© 2006 Carnegie Mellon University 91

Agenda
Integers

Vulnerabilities

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 92

Summary
The key to preventing integer vulnerabilities is to
understand integer behavior in digital systems.

Concentrate on integers used as indices (or other
pointer arithmetic), lengths, sizes, and loop counters

Use safe integer operations to eliminate exception
conditions
Range check all integer values used as indices.
Use size_t or rsize_t for all sizes and lengths
(including temporary variables)

47

© 2006 Carnegie Mellon University 93

Questions
about
Integers

© 2006 Carnegie Mellon University 94

For More Information
Visit the CERT® web site

http://www.cert.org/secure-coding/
Contact Presenter

Robert C. Seacord rcs@cert.org
Contact CERT Coordination Center

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890

Hotline: 412-268-7090
CERT/CC personnel answer 8:00 a.m.–5:00 p.m.
and are on call for emergencies during other hours.

Fax: 412-268-6989

E-mail: cert@cert.org

