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Goals and Motivations

I The ever-expanding threat of cyberattack presents IT
administrators and CIOs with the daunting challenge of
safeguarding their institutions’ cyber infrastructure from
breaches that could lead to catastrophic economic loss
[Brenner2011], [Clarke2010], [EOPOTUS].

I Security resources remain finite, and deliberations on their
wise allocation are aided by expressing risks and
risk-reductions in dollar-denominated units.

I Even if we can’t accurately predict overall economic loss,
perhaps we can compare the relative economic benefit of
alternative scenarios for resource allocation.

I So, we’d like a methodology for constructing risk models, at
the organizational level, that give insight into relative, if not
absolute, economic costs of cyber attack.



Proof of concept: Risk models in finance

I In finance, trading desks maintain Value at Risk (VaR) models
for measuring portfolio loss exposure.

I A VaR model answers the question “what is the amount of
money $X , such that the odds of losing more than $X , over
time window T , fall below some threshold of probability P?”
We call this the “P-percent VaR.”

I The most vanilla case (c.f. [Hull2000]) involves a portfolio of
two stocks A and B. If we know (in $) the daily volatility σA
and σB of the stock prices, and the correlation coefficient ρ
describing how they move relative to each other, (typically
derived from historical data), then the P-percent VaR2 is the
value of X such that:
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Can we do something similar for cyber?
Goal: perform similar calculations to obtain a distribution of
possible $ losses over time, but now due to cyberattack:

Figure 1: Loss distribution as computed by CyberV@R: red line ≈ $X for
P=5%. Note unlike finance example, distribution is not normal.



Yes: if we map from finance to cyber

In our cyber application of the finance approach, we will make the
following translations:

I Financial portfolio → networked computing infrastructure
(Netflow may be a data source for this) and the assets housed
there.

I Market fluctuations → threats to which the network is
exposed (historical Netflow may provide this).

I Trading strategies → alternative security mitigations we may
enable to reduce threats (Netflow may establish historical
efficacy).

I Integration over normal distribution N (µ, σ)→ Monte Carlo
sampling over a two-slice dynamic Bayesian network 3 of
attack trees (c.f. [Kol2009], [Pol2012]) representing
interaction of threats, network nodes, and mitigations.

3
a DAG Bi encoding a joint probability distribution, with a rule for transforming Bi → Bi+1



Constructing the model (in pictures):

Figure 2: Model is a union of attack trees - nodes correspond to threats,
security mitigations, IT infrastructure, assets of value (e.g. product designs).
Each node carries a probability distribution describing its odds of being in a
given state.



Constructing the model (in words):
I CyberV@R’s dynamic Bayesian networks are constructed as a

union of attack trees.
I Each node of each tree corresponds to a threat stage, a

security mitigation, an IT element (dubbed an access node),
or an asset (target of threat).

I Each node is assigned a probability distribution, conditioned
on the states of its parent nodes, describing odds of the node
being in a given state.4

I In a trial, the attack trees are evolved through time (via
Monte Carlo sampling) to get an overall loss (value of assets
reached).

I Multiple trials are conducted to produce a distribution on
losses.

I The distributions are parameterized, with parameters derived
empirically. Hence there is no direct training cost associated
to Bayesian network construction.

4
Threat nodes have Poisson distribution giving odds of n occurrences at any time step; mitigation nodes are

Bernoulli, giving odds of thwarting any given threat stage occurrence. Access and asset nodes are two-state at each
time step (reached/not reached; devalued/not devalued, respectively).



Simplest CyberV@R model (2 PCs; 1 threat)

Figure 3: Time evolution of a simple CyberV@R Bayesian Network



CyberV@R in the Labs

I We’ve constructed a CyberV@R model representing
CyberPoint’s internal network infrastructure at the level of
routers, servers, and workstation groups (≈ a dozen access
nodes).

I We modeled a single threat based on Symantec’s description
of the Trojan.Taidoor virus (c.f. [Sym2012]).

I The model computation is implemented using CyberPoint’s
libPGM (see http://packages.python.org/libpgm).

I We ran the model over 100 trials, each covering a 24-month
time step, in the presence and absence of hypothetical
workstation software that would remove the virus if found.

I Presence of the AV software led typically to ≈ 35% reduction
in 5% VaR.

I Computation time less than a minute.



Attack Flow for Single Threat

Figure 4: Attack flow of Trojan.Taidoor



Corresponding Attack Tree

Figure 5: Partial attack tree for one time-step of evolution



Reduction in CyberV@R
We see from the graphs that the $ amount of the 5% VaR,
expressed as a percentage of total projected value of intellectual
property, is reduced by ≈ 37 percentage points, when
virus-removing software is introduced on each workstation node
(giving the virus less opportunity to spread).

Figure 6: Computed reduction in VaR when AV added to workstations



Scaling CyberV@R

I We’re exploring use of Netflow and related tools to automate
construction of the IT infrastructure input to the dynamic
Bayesian networks.

I Historical Netflow data might be sampled and categorized
with aid of visualization tools, to uncover empirical incident
rates for threat types. See for example [Yin2005]. This could
be automated as well.

I For organizations with 100,000s of nodes, CyberV@R
computation can be deconstructed as a series of iterated
MapReduce jobs. Each iteration covers one time step. The
map jobs each work independently on one subnet’s worth of
information. A single reduce instance combines the jobs into a
new Bayesian network.

I Reducer can replace sufficiently infected subnets from the
computation chain with a single threat node added to each
remaining peer subnet. A large network reduces to a few “last
standing” subnets after several iterations.



Thanks and Questions

I I thank you for your time and attention.

I I also thank the FloCon 2013 organizers for the opportunity to
present.

I Your questions and comments will be appreciated!

I Follow the links at www.cyberpointllc.com for the full
CyberV@R technical report.



More Details

ADDITIONAL DETAIL SLIDES FOLLOW.



Proof of concept: Risk models in finance

I The canonical value at risk model (c.f. [Hull2000]) involves a
portfolio of stocks; say for exampe U.S. $10,000 in shares of
company A and U.S. $20,000 in shares of company B.

I Say, based on historical data, the daily volatility σA of A’s
stock price is 5%, and the daily volatility σB of B’s price is
10%. Assume also that fluctuations in stock price over a time
horizon of T days are modeled as N (0, σ2T )5. So the T -day
standard deviation for the A holding is given by:

σA = 10, 000× 0.05×
√
T

and similarly the standard deviation for B is given by:

σB = 20, 000× 0.10×
√
T .

5a normal distribution with mean 0 and variance σ2T



Risk models in finance (continued)

I Say ρ gives the correlation of stock price movements in A and
B. Then the T -day distribution for the change in value ∆p of
our portfolio is given by N (0, σAB = σ2

A + σ2
B + 2ρσAσB).

I Using this information, one can find X s.t.
P(∆p < X ) = 0.02, that is:

X s.t. 1− 1

σAB
√

2π

∫ x=∞

x=X
e−x

2/2σABdx = 0.02.

I We say that X is our 2% VaR (that is, any losses greater in
magnitude than |X | fall in the 2% tail of likelihood) . For
T = 10 and ρ = 0.75, X ≈ −$6382.00.

I In our CyberV@R model, we will want to perform similar
calculations over distributions of possible losses of intellectual
property (or incurring of liabilities) over time, due to various
forms of cyberattack on our organization’s computing
infrastructure.



CyberV@R: specification of the model
A CyberV@R model is:

I A particular JSON encoding of a two time-slice dynamic
Bayesian network in which each node is one of four types
(threat stage, mitigation, access, and asset).

I The Bayesian network describes a union of time-evolving
attack trees, one per threat type of interest.

I The edges of the network observe a set of constraints
designed to model the flows of multi-stage attacks throughout
the IT infrastructure.

I Each node is labelled with a conditional probability
distribution; VaR is computed by Monte Carlo sampling over
the joint distribution.

I All conditional probability distributions are parameterized,
with parameters derived from empirical estimates passed as
input to the model. Within the model itself, there is no
learning cost associated to discovering / fitting the prior
distributions.



CyberV@R: threat stage nodes
I A threat stage node represents a particular stage of a

particular threat, and is identified by a node id and a time
index.

I The associated conditional probability distribution is Poisson:
P(n attempts at executing stage at t) = λnt

n! e
−λt (this

represents the odds of there being n attempts to execute the
stage, between time t and t + 1).

I A threat stage node optionally connects (upstream) to an
access node (defined later), and connects downstream to an
access node, having the same time index.

I In practice, mitigation nodes might be active threat types as
listed by an AV provider, known to exploit certain CVEs (as
listed in the National Vulnerabilities Database).

I If an organization has access to historical Netflow data, these
might be mined and categorized with aid of visualization
tools, to uncover empirical incident rates for threat types. See
for example [Yin2005].



CyberV@R: mitigation nodes

I A mitigation node represents a security mitigation (IPS, AV
software, patch set, etc.). It is identified by a node id and a
time index.

I The corresponding probability distribution will be a Bernoulli
variable (independent of time) giving the odds of the
mitigation thwarting any given attempt by a threat stage of
type τ ; e.g. P(attempt blocked) = M where 0 ≤ M ≤ 1.

I Mitigation nodes have outgoing edges to access nodes only
(see below).

I As above, statistical analysis of Netflow data might be used to
gauge effectiveness empirically by examining historical data in
the presence and absence of comparable mitigations.



CyberV@R: access nodes

I An access node represents an element of the IT infrastructure
(a router, hub, server, or workstation, or cluster thereof). It is
identified by a node id and a time index.

I At time t, an access node is reached by a threat stage with
odds given by:

P(access) =
n=max∑
n=1

λnt
n!

e−λt [1− (1− (1−Mj1) · · · (1−MjN ))n] ,

i.e. at time t there are N mitigations in place, up to “max”
threat stage execution attempts occur, and at least one gets
by all the mitigations.

I An access node has as parents a single threat stage node, and
zero or more mitigation nodes. It connects to a follow-on
threat stage node, or an asset node (the object of the attack).
Netflow data can be mined to discover these nodes.



CyberV@R: asset nodes

I An asset node represents an aspect of the organization
(intellectual property, operational continuity, absence of legal
liability) that is at risk due to cyberattack.

I At time t it carries a dollar-denominated value Vl(t), where l
is the node id. It has access nodes for parents, and no
children.

I The conditional distribution is simple: if a parent access node
is reached at time t, then a fixed amount δVl is taken from
the asset node value. Otherwise the asset node value remains
as it was.

I The arrangement of threat stage,mitigation, access, and asset
nodes over all threat types, at an initial time point, constitutes
the starting state of the Bayesian network. One evolves the
network through time by sampling each node according to its
distribution (always sampling parents before children).



Computing value at risk via Monte Carlo

In outline form, the VaR computation then reduces to Monte Carlo
sampling over the network:
Procedure:estimate P-% CyberV@R
Input: JSON-encoded Bayesian Network, # of trials N, # of time
steps T , percentage P
Method:
LossArray = []
Sort Bayesian Network in topological order
FOR n = 0 · · · ,N − 1

trialLosses = 0
FOR t = 0, · · · ,T − 1

FOR each threat type:
Sample each node in order, according to node’s CPD

IF asset node l is reached, trialLosses += δVl .
LossArray.insert[trialLosses]

sort LossArray(ascending)
return LossArray[floor(P*N)]
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