
Inroduction

- 1 -

Statistical analysis of flow data using Python and Redis

FLOCON 2013
Kevin Noble

Terraplex@gmail.com

DRAFT

Overview

- 2 -

Beacon description
Overview

Beacons as used by attackers
Considerations for beacon classification

periodicity in time series analysis

Visualize beacons

Beacon Bits, an analytical tool set and workflow to
detect beacons

Extracting data from flows
Storing timing data
Statistical analysis and evaluation of beacon
properties

Result
Code / Discussion / Q&A

Considerations to evaluate periodicity

Factors of classification useful to detect beacons

Demo

1.
2.
3.

a.
i.

4.
a.

5.

a.
b.
c.
d.

6.
7.

Beacon timing is discussed in research

- 3 -

http://www.mcafee.com/us/resources/white-papers/wp-global-energy-cyberattacks-night-dragon.pdf

http://www.mcafee.com/us/resources/white-papers/wp-global-energy-cyberattacks-night-dragon.pdf

Making the case for detection

- 4 -

http://www.commandfive.com/papers/C5_APT_C2InTheFifthDomain.pdf

http://www.commandfive.com/papers/C5_APT_C2InTheFifthDomain.pdf

What is a beacon

- 5 -

Malicious beacons are sourced from infected host where the malware repeatedly attempts remote
connectivity

Beacons

The more frequent a beacon, the easier to detect
Beacons that are consistent in time series are easier to detect
Beacons events lend themselves to time series analysis

Beacons manifest as repetitious communication attempts in the form of packets
Most beacons are not malicious

Detection
Beacon events are discernible

1.
a.
b.

c.
2.

a.
b.
c.

Beacon Time Series

- 6 -

http://www.commandfive.com/papers/C5_APT_C2InTheFifthDomain.pdf

Timing is a signature

http://www.commandfive.com/papers/C5_APT_C2InTheFifthDomain.pdf

flow properties sample beacon

- 7 -

beacon/testset$ ra -nnr beacon_test_extract.arg - host 222.22.68.245
 StartTime Flgs Proto SrcAddr Sport Dir DstAddr Dport TotPkts TotBytes State
 13:00:58.783986 e s 6 192.168.1.1.3719 -> 222.22.68.245.443 2 124 REQ
 13:31:52.667327 e s 6 192.168.1.1.3208 -> 222.22.68.245.443 2 124 REQ
 14:01:53.659479 e s 6 192.168.1.1.2665 -> 222.22.68.245.443 2 124 REQ
 14:32:00.062273 e s 6 192.168.1.1.2152 -> 222.22.68.245.443 2 124 REQ
 15:02:55.611042 e s 6 192.168.1.1.1962 -> 222.22.68.245.443 2 124 REQ
 15:33:52.663009 e s 6 192.168.1.1.1524 -> 222.22.68.245.443 2 124 REQ
 16:03:52.602414 e s 6 192.168.1.1.4867 -> 222.22.68.245.443 2 124 REQ
 16:33:57.090316 e s 6 192.168.1.1.4248 -> 222.22.68.245.443 2 124 REQ
 17:04:52.558100 e s 6 192.168.1.1.3710 -> 222.22.68.245.443 2 124 REQ
 17:34:59.598407 e s 6 192.168.1.1.3100 -> 222.22.68.245.443 2 124 REQ
 18:05:56.669750 e s 6 192.168.1.1.2532 -> 222.22.68.245.443 2 124 REQ
 18:36:53.968150 e s 6 192.168.1.1.1981 -> 222.22.68.245.443 2 124 REQ
 19:06:56.229070 e s 6 192.168.1.1.1423 -> 222.22.68.245.443 2 124 REQ
 19:37:53.975195 e s 6 192.168.1.1.4863 -> 222.22.68.245.443 2 124 REQ
 20:08:53.685264 e s 6 192.168.1.1.4379 -> 222.22.68.245.443 2 124 REQ
 20:38:54.173905 e s 6 192.168.1.1.3755 -> 222.22.68.245.443 2 124 REQ
 21:10:09.140943 e s 6 192.168.1.1.3327 -> 222.22.68.245.443 2 124 REQ
 21:40:52.834383 e s 6 192.168.1.1.2808 -> 222.22.68.245.443 2 124 REQ
 22:10:57.850103 e s 6 192.168.1.1.2231 -> 222.22.68.245.443 2 124 REQ
 22:41:55.148182 e s 6 192.168.1.1.1718 -> 222.22.68.245.443 2 124 REQ
 23:12:58.582524 e s 6 192.168.1.1.1244 -> 222.22.68.245.443 2 124 REQ
 23:43:52.478378 e s 6 192.168.1.1.4999 -> 222.22.68.245.443 2 124 REQ
 00:13:53.716041 e s 6 192.168.1.1.4481 -> 222.22.68.245.443 2 124 REQ
 00:44:56.475492 e s 6 192.168.1.1.4014 -> 222.22.68.245.443 2 124 REQ

Present all the characteristics and properties for known beacons

Avoid payload analysis (except perhaps size)

Sample Beacon as viewed in flow for network and timing properties

GOAL: Surface malicious beacons for inspection by examining Network traffic

parsing flows

- 8 -

Flow based tools have a limited facility to detect beacons alone.

Flow tools are ideal for the collection and verification of beacons.

Flow based tools do provide counts and summaries and quantizing (bins) in some cases.

Quantize time to seconds (sub-seconds complicate the details) appears to be useful.

Timing is the key to detection followed by verification by inspecting the host.

Inspecting traffic flows for beacons

Flows IP Source IP Destination Destination Port Mean time between packets

Beacon p0rn

- 9 -

Produces an instant visual representation of a beacon.

Graphing does not scale to allow analyst to inspect everything.

Visual timing as a graph

[1854, 1801, 1807, 1855, 1857, 1800, 1805, 1855, 1807, 1857, 1857, 1803, 1857, 1860, 1801, 1843, 1805, 1858, 1863, 1854, 1801, 1863, 1859, 1857, 1801, 1859, 1802,
1858, 1802, 1802, 1856, 1800, 1800, 1800, 1860, 1804, 1858, 1863, 1859, 1857, 1804, 1802, 1854, 1804, 1856, 1802, 1859, 1812, 1847, 1808, 1853, 1867, 1851, 1800,
1800, 1806, 1801, 1854, 1801, 1800, 1865, 1861, 1861, 1850, 1800, 1800, 1801, 1864, 1858, 1857, 1803, 1804, 1853, 1801, 1864, 1859, 1802, 1859, 1858, 1857, 1803,
1808, 1849, 1804, 1857, 1800, 1808, 1853, 1863, 1861, 1854, 1802, 1858, 1865, 1857, 1865, 1855, 1802, 1856, 1800, 1803, 1862, 1859, 1858, 1801, 1800, 1859, 1806,
1853, 1859, 1801, 1804, 1801, 1855, 1812, 1803, 1844, 1800, 1802, 1858]

Graphing every session does not scale

Beacon detection

- 10 -

Beacons Beacon Analyzer Redis DB storage Flows Target network

Beacon Bits
Parse from FLOW

IP Source
IP Dest
Port Dest
Time (from Source)

DataStore
Native Python
Redis

Analysis
Python

BEACONS

1.
a.
b.
c.
d.

2.
a.
b.

3.
a.

4.

Untitled

- 11 -

IP source 1.1.1.1
IP dest 210.215.10.254 "NEXONASIAPACIFIC"
dst port 443
pair_count 8432
mean 121
Standard Deviation: 0.026849474628 169643.0
compensated_variance: 2542
online_variance: 20548
online_variance_n: 20546
web_std_dev (0.002493930934161027, 0.22931978029843433)
seconds 1020272 minutes 17004 hours 283

days 11
src_count 10809
dst_count 8432
traffic with source and dest:
'SET:1.1.1.1:210.215.10.254:443:2012810'
'SET:1.1.1.1:210.215.10.254:443:2012811'
'SET:1.1.1.1:210.215.10.254:443:2012812'
'SET:1.1.1.1:210.215.10.254:443:2012813'
'SET:1.1.1.1:210.215.10.254:443:2012814'
'SET:1.1.1.1:210.215.10.254:443:2012815'
'SET:1.1.1.1:210.215.10.254:443:2012816'
'SET:1.1.1.1:210.215.10.254:443:2012817'
'SET:1.1.1.1:210.215.10.254:443:2012818'
'SET:1.1.1.1:210.215.10.254:443:2012819'
'SET:1.1.1.1:210.215.10.254:443:2012820'
'SET:1.1.1.1:210.215.10.254:443:2012821'
'SET:1.1.1.1:210.215.10.254:443:2012822'
'SET:1.1.1.1:210.215.10.254:443:multi']
[21, 223, 21, 223, 21, 222, 21, 223, 21, 223, 21, 223, 21, 222, 21, ….]

OUTPUT EXAMPLE

Beacon Classification and expression

- 12 -

Continuous and consistent TCP packets at 300 second intervals
TCP packet over a single port 80 every 900 seconds continuously
7 packets, 5 minutes apart, every 3 days using TCP or UDP to one of of 5 host over one of these 3 ports, with the following payload
1 TCP packet, every 30 day to one of 30 possible host

Beacon expression as a combination of conditions

Execution condition Frequency Interval / Mean Packet ProtocolPacket Dest Port Payload Payload Size
Continuous Consistent Static Single Single Single Consistent Static
conditional Transient Dynamic Multiple Multiple Multiple Transient Dynamic
transient none

Malicious Beacons

- 13 -

Unconnected beacons

Malicious Beacons top characteristics used in the
analysis process

Low Varience
Low Standard Deviation
Limited number of host attempting to Connect
At least 3 packets
At least 15 minutes of ‘total’ time in the analysis

Connected beacons
Similar as unconnected
Payload is a factor

Strings / offsets / atomic

1.
a.
b.
c.
d.
e.

2.
a.
b.

i.

Histograms

- 14 -

Flow conversion to mysql
rasqltimeindex -r argus.file -w mysql://user@host/db

Limited usefulness if used exclusively
Histograms

Histograms value factors:
Large sample population
Combined with varience
Combined with static classifications (previous slides)

Dropped from analysis based on performance of other
factors

1.
2.

a.
b.
c.

3.

working with the dataset

- 15 -

Analysis Python
Redis Service

Should be able to move through the millions of keys quickly

Evaluate traffic based on timing properties in a statistical sense

Some assumption include host might be up during working hours

No more then 4 host would be infected

Enumerate over keys

Variance

- 16 -

Variance
http://en.wikipedia.org/wiki/
Algorithms_for_calculating_variance

Algorithms for calculating variance play a major
role in statistical computing. A key problem in the
design of good algorithms for this problem is that
formulas for the variance may involve sums of
squares, which can lead to numerical instability as
well as to arithmetic overflow when dealing with
large values.
Several Algorithms tested, settled on using three:

Compensated Variance
Online variance
Kurtosis

1.

a.

b.
i.
ii.
iii.

http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Numerical_instability
http://en.wikipedia.org/wiki/Arithmetic_overflow

Standard Deviation

- 17 -

Little ‘dispersion’ for each set
Standard Deviation

Minimum population distance from the mean
Using a MODIFIED version of Standard Deviation that
would be considered a WEIGHT

Tolerance increase with frequency (reverting to normal
standard deviation for final release)

1.
2.
3.

a.

SOURCE IP DEST IP DEST PORT DATE STDDEV
100.0.5.230 1.0.20.5 8888 2012913 0.045732737
100.0.5.230 1.0.20.5 8888 2012914 0.044662676
100.0.5.230 1.0.20.5 8888 2012915 0.04343173
100.0.5.230 1.0.20.5 8888 2012916 0.042813404
100.0.5.230 1.0.20.5 8888 multi 0.019851071

Extracting from Flows

- 18 -

TCP SYN

Isolated to traffic sources from the network we seek to defend

Traffic destined to external network (avoid internal to internal packets)

Exclusion of trusted and authorized host and networks (if possible)

Limited totTrack timing properties

Can we tabulate timing for traffic as a means to detect beacons?

Flows command = "/usr/sbin/ra -nnr /path/file.arg

-c, -u -s stime saddr daddr dport proto

Source FILE

Network Interface

Using Python to compile a dataset is a process of conversion from binary parsed to text, formed into sets.

The largest sample set took 54 minutes to consume and held traffic for 16 days.

Python handles the sets fairly well but does not facilitate continuous analysis.

Polling

Analysis considerations

- 19 -

Conditions

Std_dev

Variance < X

Counts

Popularity of Ext host

Duration

Statistical dispersion
Loss of significance
Rules for normal distribution of data
Relationships between standards and mean / Distance from the mean

Python Analysis conditions

Untitled

- 20 -

For each SET
Conditions

Low statistical Dispersion
Less then four internal host connected to External
host
Matching statistical significant values

1.
a.
b.

c.

Significant time / MAGIC TIME

- 21 -

seconds in a day Interval in minutes Count
86400 0.5 2880
86400 1 1440
86400 2 720
86400 4 360
86400 5 288
86400 10 144
86400 15 96
86400 20 72
86400 30 48
86400 45 32
86400 60 24

Beacons generally resolve to set intervals in minutes

Connected sessions also maintain a connected state set in minutes

Most basic Remote Administration Tools

False positive are frequent

Evaluating Interval count alone still produces a useful set

Excluding trusted networks is useful

Divisible by 60 seconds?

Untitled

- 22 -

Interval Count
0.5 30
1 60
2 120
4 240
5 300
10 600
15 900
20 1200
30 1800
45 2700
60 3600
40 2400
30 1800
20 1200

0 5 10 15 20 25 30 35 40 45

24 count

32 count

48 count

72 count

96 count

144 count

288 count

260 count

720 count

1440 count

2880 count

3600 count

THe need for a fast DB

- 23 -

Source: https://github.com/yinhm/nosql-tsd-benchmark

REDIS2

- 24 -

Flows REDIS Datase

Tracking SETS with timing information

Tracking Source IP activity by count

Tracking Destination activity by count

Redis manages duplicates

Redis can handle the size

Memory is ideal for the transaction rate and the type of data being managed

Collection

beacon/testset$ ra -nnr beacon_test_extract.arg - host 222.22.68.245
 StartTime Flgs Proto SrcAddr Sport Dir DstAddr Dport TotPkts TotBytes State
 13:00:58.783986 e s 6 192.168.1.1.3719 -> 222.22.68.245.443 2 124 REQ
 13:31:52.667327 e s 6 192.168.1.1.3208 -> 222.22.68.245.443 2 124 REQ
 14:01:53.659479 e s 6 192.168.1.1.2665 -> 222.22.68.245.443 2 124 REQ
 14:32:00.062273 e s 6 192.168.1.1.2152 -> 222.22.68.245.443 2 124 REQ
 15:02:55.611042 e s 6 192.168.1.1.1962 -> 222.22.68.245.443 2 124 REQ

Untitled

- 25 -

For Each IP Source, IP Dest, Dest Port, Date
Simplistic data schema

Unix Time (String)
Counts

Increment counter
Source
Destination

Date and Multiple
Supports differential analytical output

Expiring keys
Necessary for production

White List
Useful for production

Statistical significance might be represented over
multiple days
Statistical significance might be represented on a
single day

Requires care and feeding

1.
a.

2.
a.

i.
ii.

3.
a.
b.

c.

4.
a.

5.
a.
b.

DEMO

- 26 -

start redis server and client
Demonstration

collect timing data form flow file
launch analyzer

show redis db post analyzer
launch graph view

Populate redis database from flow file
1.
2.
3.
4.

a.
5.

Significance

- 27 -

Parsing through 3 days of traffic yields beacons.

The number of beacons depends on the test conditions

The most statistically significant data included malicious beacons

Pulling the most significant results with flows and full packet capture is useful

Host inspection is the best verification of results

Significance

Graphing

- 28 -

Graph Python

Redis

Matplotlib

MATPLOTLIB

- 29 -

Plot Text OUTPUT example

Specific results can be examined in detail
Graph / Plot (text view)

The timing data can be put into an array for a
graphical display

1.
2.

Graphing 1

- 30 -

Dialing the tolerances to each network is important

If you open the tolerance to include traffic just outside the statistical significant will leads to interesting results

Findings

timing of a sample beacon

- 31 -

Considerations

- 32 -

Outlier reject may exclude useful results

Considerations

Continuous collection and periodic analysis needs more
testing

Require periodic flush of the database

Expiration of data (production)

Results should include domain results
Excluding trusted sources saves time

Tune variables to a specific network
Host count
vistors

Scheduled analysis
Output top list

include graphical output

Trusted list requires management

1.
a.
b.

2.
3.
4.

a.
5.

a.
b.

i.
1.

c.

Conclusions

- 33 -

Timing is a signature
Conclusion

Expanding beacon detection to include payload
analysis seems useful
Full packet capture can assist in validating threats

Expand tracking to include DNS
Variable timing is difficult but not impossible to
include in the analysis

Host inspection is the best way to validate threats

Easy to include nslookup and whois results in our
dataset

1.
2.

3.
4.
5.
6.

7.

Tools

- 34 -

Flow collection
Tools

Dev Code

Database

Presentation

http://www.qosient.com/argus/

Python 2.7.1
Library for Redis

https://github.com/andymccurdy/redis-py
Library for Stats

http://www.jstor.org/stable/1266577

IDE editor
Komodo IDE V2

Redis 2.5.11 (00000000/0) 64 bit
Running in stand alone mode
http://redis.io

http://www.zengobi.com/products/curio
CURIO

ARGUS

NUMPY
MATPLOTLIB

Code http://code.google.com/p/beaconbits
1.

a.
b.

i.
2.

a.
i.

1.
ii.

1.
2.
3.

b.
i.

3.
a.

4.
a.

i.

http://www.qosient.com/argus/
https://github.com/andymccurdy/redis-py
http://www.jstor.org/stable/1266577
http://redis.io
http://www.zengobi.com/products/curio
http://code.google.com/p/beaconbits

Future

- 35 -

Release a production capable version (with enough public interest)
Future considerations

Release a stand alone version (no redis required, just reads flows and outputs)
Include the use of exclusion list (trust / clean list)
Time series analysis with autocorrelation

1.
2.
3.
4.

Untitled

- 36 -

Kevin Noble

Verizon Terremark

knoble@terremark.com

Thank You

