
Inroduction

Statistical analysis of flow data using Python and Redis

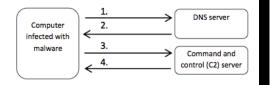
FLOCON 2013 Kevin Noble Terraplex@gmail.com

Overview

- 1. ? Beacon description
- 2. 🕕 Beacons as used by attackers
- ▼ 3. Considerations for beacon classification
 - ▼ a. periodicity in time series analysis
 - i. Considerations to evaluate periodicity
- ▼ 4. Visualize beacons
 - a. Factors of classification useful to detect beacons
- ▼ 5. Beacon Bits, an analytical tool set and workflow to detect beacons
 - a. 😰 Demo
 - b. Extracting data from flows
 - c. Storing timing data
 - d. Statistical analysis and evaluation of beacon properties
- 6. Result
- 7. ? Code / Discussion / Q&A

0 🖸

W http://www.mcafee.com/us/resources/white-papers/wp-global-energy-cyberattacks-night-dragon.pdf


Network Communications

Network communications are relatively easy to detect because the malware uses a unique host beacon and server response protocol. Each communication packet between the compromised host and the C&C server is signed with a plain text signature of "hW\$." (or "\x68\x57\x24\x13") at the byte offset 0x42 within the TCP packet.

The backdoor begins its beacon at approximately five-second intervals with an initial packet that may be detected with the pattern: "\x01\x50[\x00-\xf]+\x68\x57\x24\x13."

http://www.commandfive.com/papers/C5_APT_C2InTheFifthDomain.pdf

The malware used in the attack was programmed to communicate with several 'callback' domains. The malware located its C2 server(s) by resolving these domains into IP addresses using the ubiquitous Domain Name System (DNS) ³ protocol. These communications are depicted in Figure 1.

- Using the Domain Name System (DNS) protocol, the computer asks a DNS server for directions to the callback domain.
- The DNS server advises that the callback domain is located at IP address x.x.x.x.
- The malware communicates with the C2 server located at IP address x.x.x.x to obtain C2 instructions and/or to send a response.
- 4. The C2 server provides additional C2 instructions to the malware.

After sending the basic beacon, the compromised computers waited for a response from the server, then closed the connection when they had not received a response from the server within five seconds.

Both of the compromised computers reattempted the communications approximately every eight seconds. On some days the high frequency of the beacon activity resulted in over 10000 connection attempts per victim in a 24 hour period.

Beacons

- ▼ 1. Beacons manifest as repetitious communication attempts in the form of packets
 - a. Most beacons are not malicious
 - b. Malicious beacons are sourced from infected host where the malware repeatedly attempts remote connectivity
 - c. Beacon events are discernible
- ▼ 2. Detection
 - a. The more frequent a beacon, the easier to detect
 - b. Beacons that are consistent in time series are easier to detect
 - c. Beacons events lend themselves to time series analysis

Beacon Time Series

	Timing is a signature
PROTOCOL	TYPICAL BEACON INTERVAL* (SECONDS)
LURK	26
X-Shell C601	36
Update?	1 to 13, 12±3, 16, 104±3 or 200 ±15
Murcy	11
Oscar	12±2, 13, 15, 16, (55 or 155±5), (7.5, 8.5 or 15) , (45, 55, 106)
BB	8
DB	4 to 92
Qdigit	60
	icate that the interval changed between victims.

Brackets indicate that a variety of intervals were observed from a single computer.

TABLE 7: INTERVAL BETWEEN COMMUNICATIONS

bttp://www.commandfive.com/papers/C5_APT_C2InTheFifthDomain.pdf

Present all the characteristics and properties for known beacons

Avoid payload analysis (except perhaps size)

beacon/testset\$ ra -nn								
StartTime Flgs	Proto	SrcAdd	r Sport	Dir	DstAddr Dport T	otPkts 1	FotBytes	State
13:00:58.783986 e s	6	192.168.1	1.3719	->	222.22.68.245.443	2	124	REQ
13:31:52.667327 e s	6	192.168.1		->	222.22.68.245.443	2	124	REQ
		192.168.1						REQ
	6			->	222.22.68.245.443	2	124	
14:32:00.062273 es	6	192.168.1	.1.2152	->	222.22.68.245.443	2	124	REQ
15:02:55.611042 es	6	192.168.1	.1.1962	->	222.22.68.245.443	2	124	REQ
15:33:52.663009 e s	6	192.168.1	.1.1524	->	222.22.68.245.443	2	124	REQ
16:03:52.602414 es	6	192.168.1	1.4867	->	222.22.68.245.443	2	124	REQ
16:33:57.090316	210.56 veritas-vis1 >	5.59.164	Comment	> here found for	eq = 0 Win = 65535 Len = 0 MSS = 1460 SACK_PERM	. 2	124	REQ
17:04:52.558100 ¹⁸²⁵⁸	vsixml > https	ISYN			Win = 65535 Len = 0 MSS = 1460 SACK_PERM Win = 65535 Len = 0 MSS = 1460 SACK_PERM = 1	2	124	REQ
17:34:59.598407	vsixml > https vsixml > https	Fi(443)			Win=65535 Len=0 MSS=1460 SACK_PERM=1 Win=65535 Len=0 MSS=1460 SACK_PERM=1			REQ
18280	rebol > https [YNI)			in=65535 Len=0 MSS=1460 SACK_PERM=1	2	124	
18:05:56.669750 18283 18285	rebol > https [in=65535 Len=0 MSS=1460 SACK_PERM=1 in=65535 Len=0 MSS=1460 SACK_PERM=1	2	124	REQ
18:36:53.968150	realsecure > ht	195 443)			=0 Win=65535 Len=0 MSS=1460 SACK_PERM=	¹ 2	124	REQ
19:06:56.229070 18311	realsecure > ht	5((443)			=0 Win=65535 Len=0 MSS=1460 SACK_PERM= =0 Win=65535 Len=0 MSS=1460 SACK_PERM=		124	REQ
10004	remoteware-un	> htt (443)			I] Seq = 0 Win = 65535 Len = 0 MSS = 1460 SACK_PI	DM - 1		
19:37:53.975195 18327 18327 18333 18333	remoteware-un remoteware-un	(445)			I] Seq = 0 Win = 65535 Len = 0 MSS = 1460 SACK_PI I] Seq = 0 Win = 65535 Len = 0 MSS = 1460 SACK_PI		124	REQ
20:08:53.685264	hbci > https [S	Fi(443)			n = 65535 Len = 0 MSS = 1460 SACK_PERM = 1	2	124	REQ
20:38:54.173905	hbci > https [S hbci > https [S	(443) ·			n = 65535 Len = 0 MSS = 1460 SACK_PERM = 1 n = 65535 Len = 0 MSS = 1460 SACK_PERM = 1	2	124	REQ
21:10:09.140943 e s	(3000)	192.168.1		->	222.22.68.245.443	2	124	REQ
21:40:52.834383 e s	6	192.168.1	1.2808	->	222.22.68.245.443	2	124	REQ
22:10:57.850103 e s	6	192.168.1		->	222.22.68.245.443	2	124	REQ
22:41:55.148182 es	6	192.168.1		->	222.22.68.245.443	2	124	REQ
23:12:58.582524 e s	6	192.168.1	.1.1244	->	222.22.68.245.443	2	124	REQ
<u>22.12.50 172272 00</u>	6	102 168 1	1 1000	-	<u> </u>	2	194	REO

GOAL: Surface malicious beacons for inspection by examining Network traffic

Q Q

parsing flows

Inspecting traffic flows for beacons

Flow based tools have a limited facility to detect beacons alone.

Flow tools are ideal for the collection and verification of beacons.

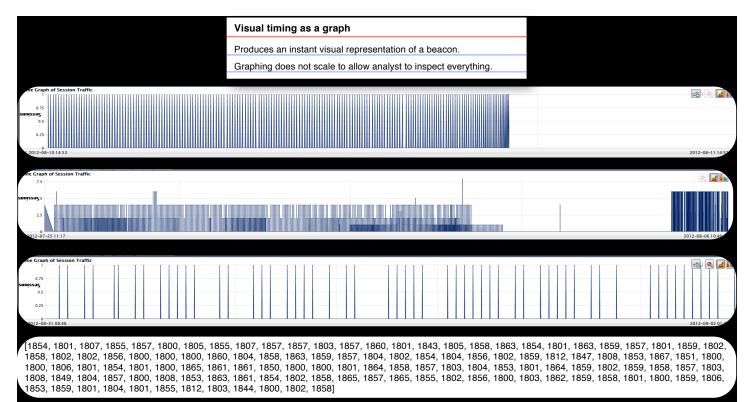
Flow based tools do provide counts and summaries and quantizing (bins) in some cases.

Quantize time to seconds (sub-seconds complicate the details) appears to be useful.

Θ-

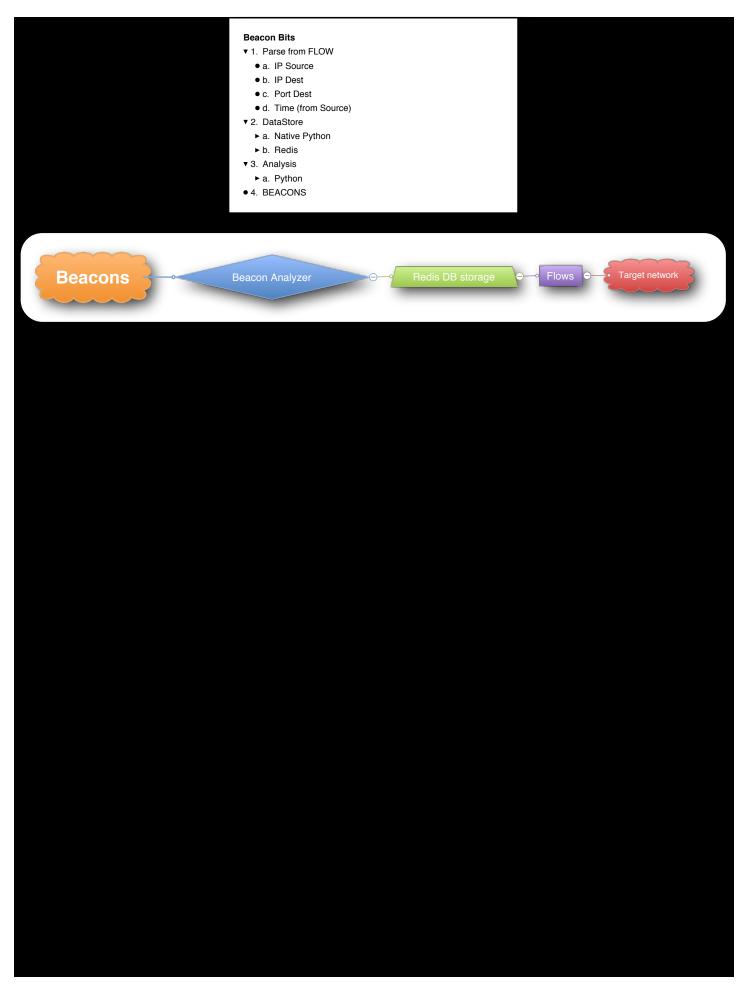
Timing is the key to detection followed by verification by inspecting the host.

Flows


⊖––(IP D

IP Source

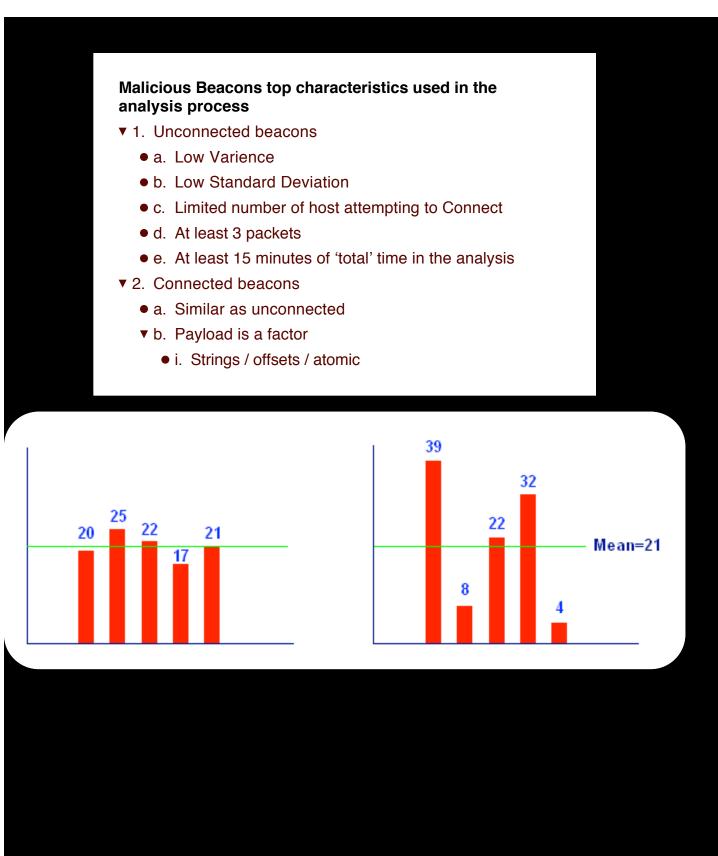
Destination Port Θ -


-• Mean time between packets

Beacon pOrn

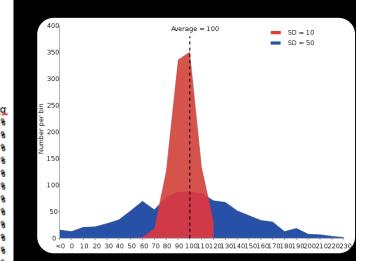
Graphing every session does not scale

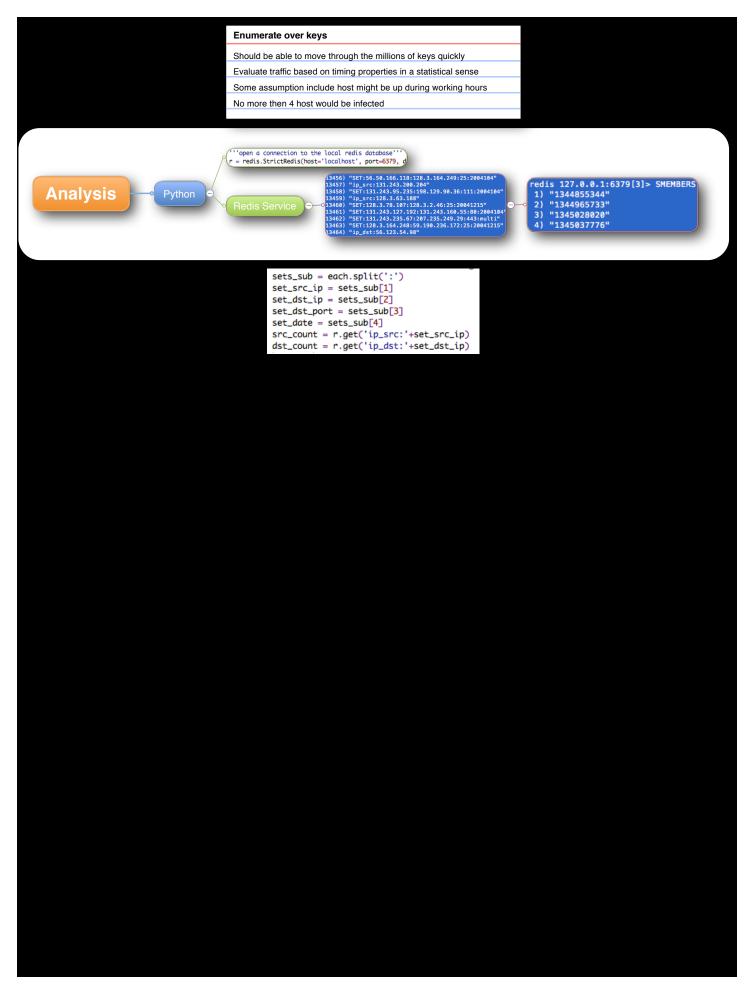
Beacon detection


Untitled

```
IP source
            1.1.1.1
IP dest
            210.215.10.254 "NEXONASIAPACIFIC"
dst port
            443
pair count
            8432
            121
mean
Standard Deviation: 0.026849474628 169643.0
compensated variance: 2542
online variance: 20548
online variance n: 20546
web std dev (0.002493930934161027, 0.22931978029843433)
seconds
            1020272
                        minutes
                                     17004 hours 283
    days
            11
src count
            10809
            8432
dst count
traffic with source and dest:
'SET:1.1.1.1:210.215.10.254:443:2012810'
'SET:1.1.1.1:210.215.10.254:443:2012811'
'SET:1.1.1.1:210.215.10.254:443:2012812'
'SET:1.1.1.1:210.215.10.254:443:2012813'
'SET:1.1.1.1:210.215.10.254:443:2012814'
'SET:1.1.1.1:210.215.10.254:443:2012815'
'SET:1.1.1.1:210.215.10.254:443:2012816'
'SET:1.1.1.1:210.215.10.254:443:2012817'
'SET:1.1.1.1:210.215.10.254:443:2012818'
'SET:1.1.1.1:210.215.10.254:443:2012819'
'SET:1.1.1.1:210.215.10.254:443:2012820'
'SET:1.1.1.1:210.215.10.254:443:2012821'
'SET:1.1.1.1:210.215.10.254:443:2012822'
'SET:1.1.1.1:210.215.10.254:443:multi']
[21, 223, 21, 223, 21, 222, 21, 223, 21, 223, 21, 223, 21, 222, 21, ...]
```


Beacon Classification and expression


Execution condition	Frequency	Interval / Mean			Port	Payload	Payload Size
Continuous conditional	Consistent Transient	Static Dynamic	Single Multiple	Single Multiple	Single Multiple	Consistent Transient	Static Dynamic
transient						none	
Beacon expression	as a combina	tion of conditions					
Continuous and consiste	nt TCP packets a	t 300 second interval	5				
TCP packet over a single 7 packets, 5 minutes ap	art, every 3 days	s using TCP or UDP to	sly o one of of 5 host	over one of the	se 3 ports, with t	he following paylo	ad
1 TCP packet, every 30	day to one of 30	possible host					

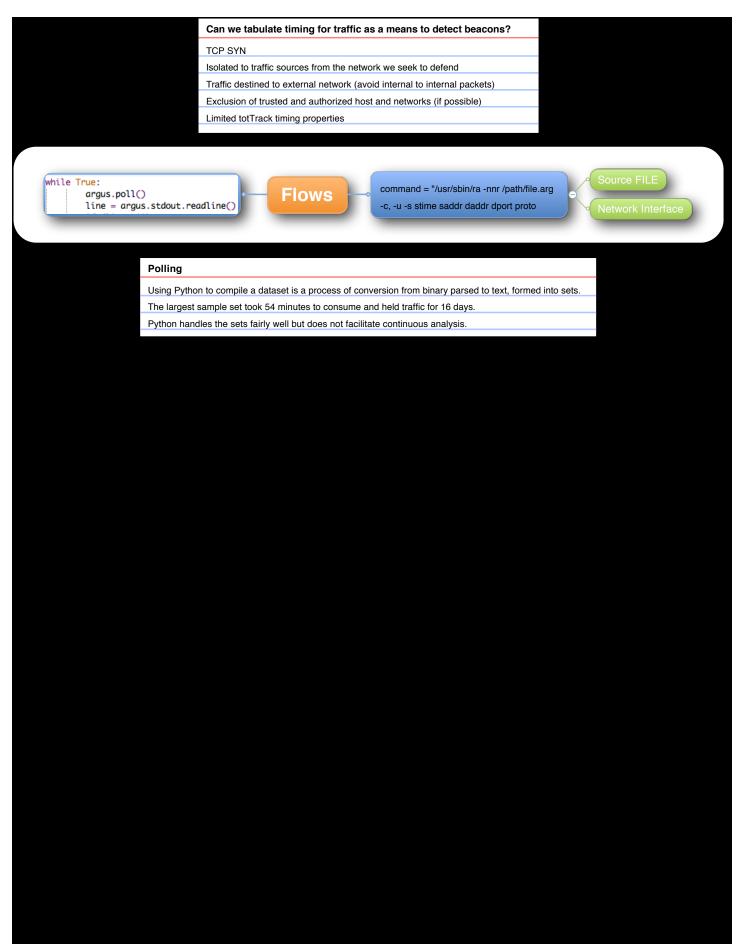

Histograms

- 1. Limited usefulness if used exclusively
- ▼ 2. Histograms value factors:
 - a. Large sample population
 - b. Combined with varience
 - c. Combined with static classifications (previous slides)
- 3. Dropped from analysis based on performance of other factors

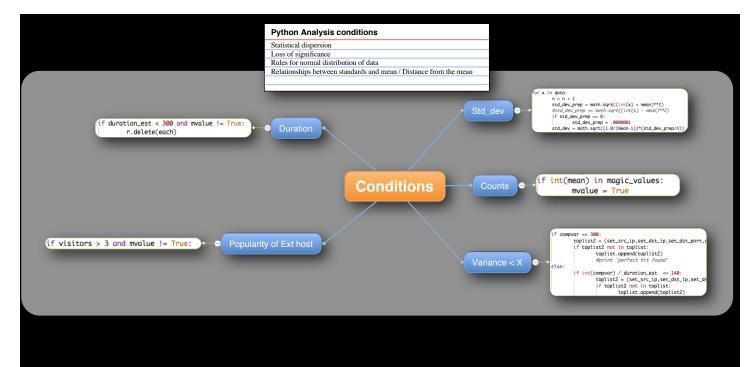
<pre>\$ rahist N = mean = stddey = max = min = 0</pre>	122 2.927606	htest.arg		
median	Flow conversion to	· ·		
95% = 3	rasqltimeindex -r arg	gus.file -w my	sql://user@hos	t/db
mode = 0	.000000			
Class	Interval	Freq	Rel Freq	Cum.Freq
108	2.782000e+00	0	0.0000%	1.6393%
109	2.808000e+00	1	0.8197%	2.4590%
110	2.834000e+00	2	1.6393%	4.0984%
111	2.860000e+00	3	2.4590%	6.5574%
112	2.886000e+00	8	6.5574%	13.1148%
113	2.912000e+00	16	13.1148%	26.2295%
114	2.938000e+00	25	20.4918%	46.7213%
115	2.964000e+00	19	15.5738%	62.2951%
116	2.990000e+00	20	16.3934%	78.6885%
117	3.016000e+00	10	8.1967%	86.8852%
118	3.042000e+00	5	4.0984%	90.9836%
119	3.068000e+00	8	6.5574%	97.5410%
120	3.094000e+00	3	2.4590%	100.0000%

working with the dataset

Variance


- ▼ 1. W <u>http://en.wikipedia.org/wiki/</u> <u>Algorithms_for_calculating_variance</u>
 - a. Algorithms for calculating variance play a major role in <u>statistical</u> computing. A key problem in the design of good <u>algorithms</u> for this problem is that formulas for the <u>variance</u> may involve sums of squares, which can lead to <u>numerical instability</u> as well as to <u>arithmetic overflow</u> when dealing with large values.
 - ▼ b. Several Algorithms tested, settled on using three:
 - i. Compensated Variance
 - ii. Online variance
 - iii. Kurtosis

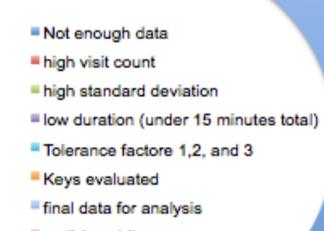
Standard Deviation


- 1. Little 'dispersion' for each set
- 2. Minimum population distance from the mean
- ▼ 3. Using a MODIFIED version of Standard Deviation that would be considered a WEIGHT
 - a. Tolerance increase with frequency (reverting to normal standard deviation for final release)

SOURCE IP	DEST IP	DEST PORT	DATE	STDDEV
100.0.5.230	1.0.20.5	8888	2012913	0.045732737
100.0.5.230	1.0.20.5	8888	2012914	0.044662676
100.0.5.230	1.0.20.5	8888	2012915	0.04343173
100.0.5.230	1.0.20.5	8888	2012916	0.042813404
100.0.5.230	1.0.20.5	8888	multi	0.019851071

Extracting from Flows

Analysis considerations



Untitled

Conditions

Area

- ▼ 1. For each SET
 - a. Low statistical Dispersion
 - b. Less then four internal host connected to External host
 - c. Matching statistical significant values

malicious hits

Divisible by 60 seconds?

Beacons generally resolve to set intervals in minutes

Connected sessions also maintain a connected state set in minutes

Most basic Remote Administration Tools

False positive are frequent

Evaluating Interval count alone still produces a useful set

Excluding trusted networks is useful

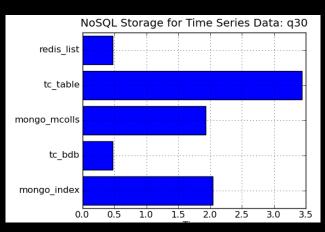
seconds in a day	Interval in minutes	Count
86400	0.5	2880
86400	1	1440
86400	2	720
86400	4	360
86400	5	288
86400	10	144
86400	15	
86400	20	72
86400	30	
86400	45	
86400	60	24

Untitled

Introduction to Redis

Redis is an open source, advanced **key-value store**. It is often referred to as a **data structure server** since keys can contain strings, hashes, lists, sets and sorted sets.

You can run **atomic operations** on these types, like appending to a string; incrementing the value in a hash; pushing to a list; computing set intersection, union and difference; or getting the member with highest ranking in a sorted set.


In order to achieve its outstanding performance, Redis works with an **in-memory dataset**. Depending on your use case, you can persist it either by dumping the dataset to disk every once in a while, or by appending each command to a log.

Redis also supports trivial-to-setup master-slave replication, with very fast non-blocking first synchronization, auto-reconnection on net split and so forth.

Other features include a simple check-and-set mechanism, pub/sub and configuration settings to make Redis behave like a cache.

You can use Redis from most programming languages out there.

Redis is written in **ANSI C** and works in most POSIX systems like Linux, *BSD, OS X without external dependencies. Linux and OSX are the two operating systems where Redis is developed and more tested, and we **recommend using Linux for deploying**. Redis may work in Solarisderived systems like SmartOS, but the support is *best effort*. There is no official support for Windows builds, although you may have **some** options.

Source: https://github.com/yinhm/nosql-tsd-benchmark

REDIS2

	Collection			_		
	Tracking SETS with	timing information				
	Tracking Source IP					
	Tracking Destination					
	Redis manages dup					
	Redis can handle the		ne type of data being managed			
	Memory is ideal for		ie type of data being managed			
		(3456) 13457)	"SET:56.50.166.118:128.3.164.249:25 "ip_src:131.243.200.204"	:2004104"	redis 127.0.0.1:6379[3]>	SMEMBERS
Flows while True: argus.poll()		DIS Datase	"ip_src:131.243.200.204" "SET:31.243.95.255:190.209.00.36:1 "ip_src:120.3.05.105100.209.00.36:1 "SET:120.3.76.107120.3.2.46:25:206" "SET:131.243.127.192:131.243.100.55 "SET:131.243.255.67:207.235.249.29" "SET:120.3.164.248:59.190.236.172:7 "ip_dst:56.123.54.98"	941215" 😑 —	1) "1344855344" • 2) "1344965733"	
line = argus	.stdout.readline()	13461) 13462) 13463)	"SET:131.243.127.192:131.243.160.55 "SET:131.243.235.67:207.235.249.29: "SET:128.3.164.248:59.190.236.172:2	:80:2004104' 443:multi" 25:20041215"	3) "1345028020" 4) "1345037776"	
		(3464)	"ip_dst:56.123.54.98"			
	beacon/testset\$ ra -nnr beacon_	test_extract.arg - host 22	2.22.68.245			
	StartTime Flgs Proto 13:00:58.783986 e s 6	SrcAddr Sport Dir 192.168.1.1.3719 ->	DstAddr Dport TotPkts To 222.22.68.245.443 2	tBytes State 124 REQ		
	13:31:52.667327 es 6	192.168.1.1.3208 ->	222.22.68.245.443 2 222.22.68.245.443 2	124 REQ 124 REQ		
	14:32:00.062273 es 6	192.168.1.1.2152 ->	222.22.68.245.443 2	124 REQ		
	15:02:55.611042 es 6	192.168.1.1.1962 ->	222.22.68.245.443 2	124 REQ		

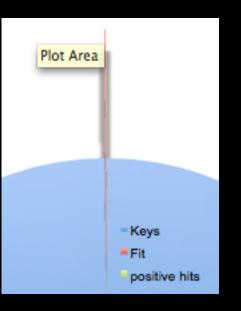
Simplistic data schema

- ▼ 1. For Each IP Source, IP Dest, Dest Port, Date
 - a. Unix Time (String)
- ▼ 2. Counts
 - ▼ a. Increment counter
 - i. Source
 - ii. Destination
- ▼ 3. Date and Multiple
 - a. Supports differential analytical output
 - b. Statistical significance might be represented over multiple days
 - c. Statistical significance might be represented on a single day
- ▼ 4. Expiring keys
 - a. Necessary for production
- ▼ 5. White List
 - a. Useful for production
 - b. Requires care and feeding

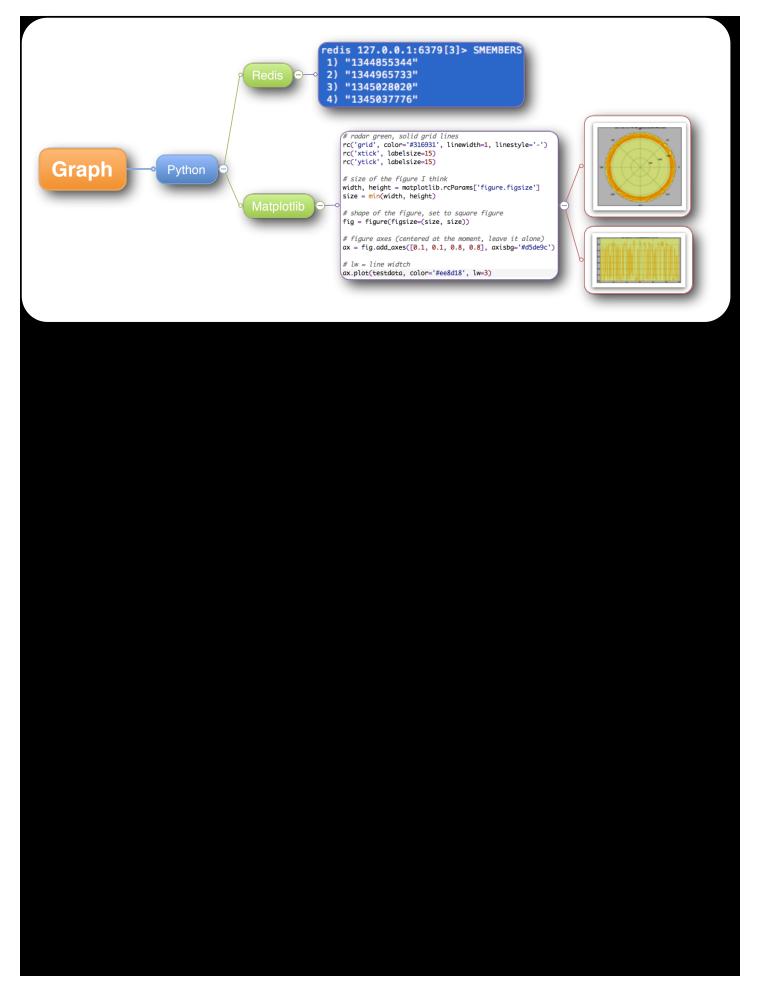
Demonstration

- 1. start redis server and client
- 2. Populate redis database from flow file
- 3. collect timing data form flow file
- ▼ 4. launch analyzer
 - a. show redis db post analyzer
- 5. launch graph view

Significance


Parsing through 3 days of traffic yields beacons.

The number of beacons depends on the test conditions


The most statistically significant data included malicious beacons

Pulling the most significant results with flows and full packet capture is useful

Host inspection is the best verification of results

Graphing

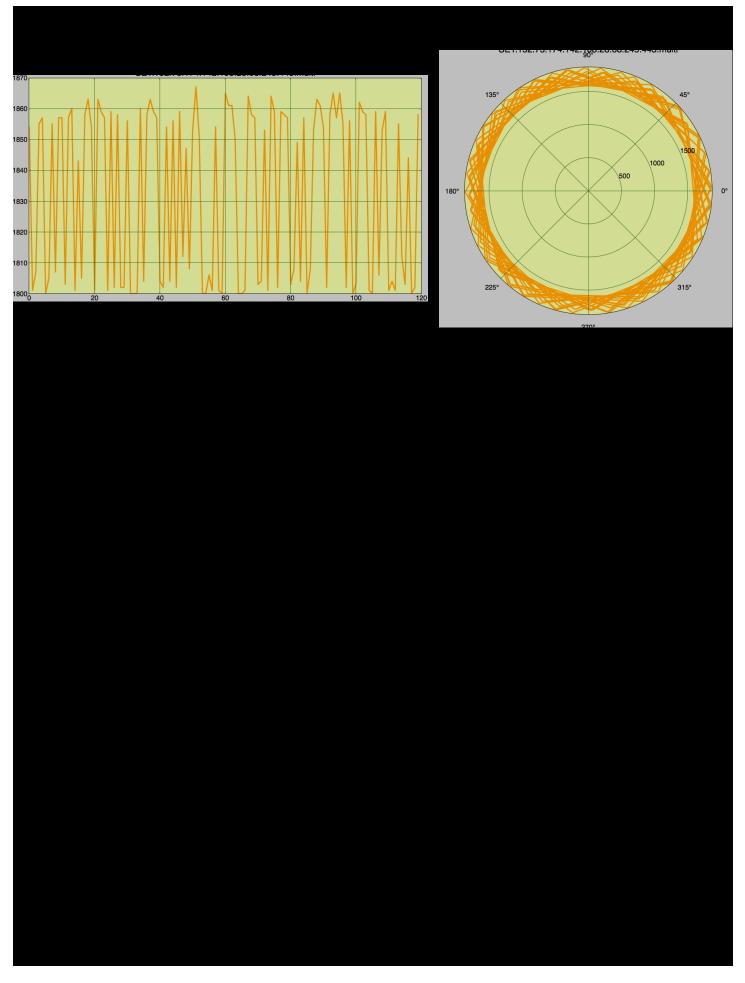
Graph / Plot (text view)

- 1. Specific results can be examined in detail
- The timing data can be put into an array for a graphical display

seconds between query: 21 Standard Deviation: 0.0229724128309 425812.0 100.0.9.95 IP source IP dest 1.0.9.25 "APNIC Debogon Project" dst port 80 pair_count 1896 224 mean 424704 minutes seconds 7078 hours 117 days 4 1899 src count 3792 dst_count traffic with source and dest ['SET:100.0.9.95:1.0.9.25:80:2012912', 'SET:100.0.9.95:1.0.9.25:80:2012913', 'SET:100.0.9.95:1.0.9.25:80:2012914'. 'SET:100.0.9.95:1.0.9.25:80:2012915', 'SET:100.0.9.95:1.0.9.25:80:2012916', 'SET:100.0.9.95:1.0.9.25:80:2012917', 'SET:100.0.9.95:1.0.9.25:80:multi']


compensated_variance: 31178 online_variance: 156444 online_variance_n: 156362 web_std_dev (0.01108764481808884, 0.48254481793081905) nslookup details: Server: 208.67.222.222 Address: 208.67.222.222#53 Finished

Plot Text OUTPUT example


** server can't find 25.9.0.1.in-addr.arpa.: NXDOMAIN

[18, 21, 21, 837, 21, 22, 21, 836, 21, 21, 21, 837, 21, 22, 21, 836, 21, 22, 21, 836, 21, 22, 21, 836, 21, 22, 21, 836, 21, 22, 21, 836, 21, 22, 21, 836, 21, 22, 21, 836, 21, 22, 21, 837, 21, 21, 21, 837, 21, 2

Graphing 1

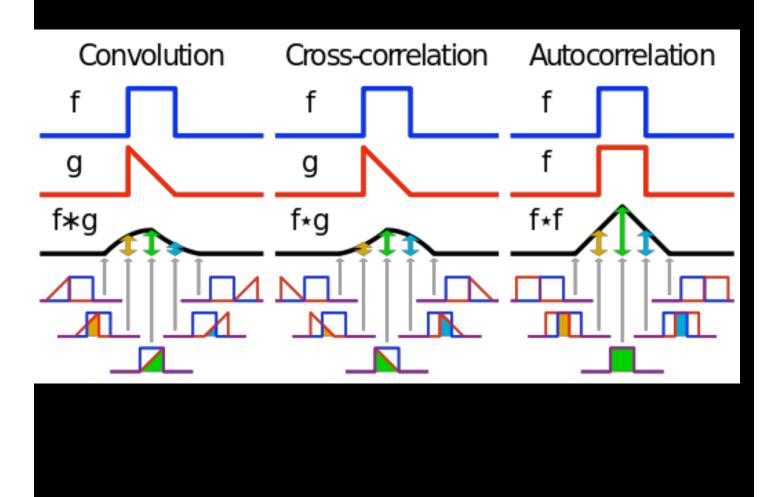
timing of a sample beacon

Considerations

- ▼ 1. Tune variables to a specific network
 - a. Host count
 - b. vistors
- 2. Outlier reject may exclude useful results
- 3. Results should include domain results
- ▼ 4. Excluding trusted sources saves time
 - a. Trusted list requires management
- ▼ 5. Continuous collection and periodic analysis needs more testing
 - a. Expiration of data (production)
 - ▼ b. Scheduled analysis
 - ▼ i. Output top list
 - 1. include graphical output
 - c. Require periodic flush of the database

Conclusion

- 1. Timing is a signature
- 2. Expanding beacon detection to include payload analysis seems useful
- 3. Full packet capture can assist in validating threats
- 4. Host inspection is the best way to validate threats
- 5. Expand tracking to include DNS
- 6. Variable timing is difficult but not impossible to include in the analysis
- 7. Easy to include nslookup and whois results in our dataset


Tools

Tools

- ▼ 1. Flow collection
 - a. Code <u>http://code.google.com/p/beaconbits</u>
 - ▼ b. ARGUS
 - i. http://www.qosient.com/argus/
- ▼ 2. Dev Code
 - ▼ a. Python 2.7.1
 - ▼ i. Library for Redis
 - 1. https://github.com/andymccurdy/redis-py
 - ▼ ii. Library for Stats
 - 1. <u>http://www.jstor.org/stable/1266577</u>
 - 2. NUMPY
 - 3. MATPLOTLIB
 - ▼ b. IDE editor
 - i. Komodo IDE V2
- ▼ 3. Database
 - a. Redis 2.5.11 (0000000/0) 64 bit Running in stand alone mode <u>http://redis.io</u>
- ▼ 4. Presentation
 - ▼a. CURIO
 - i. <u>http://www.zengobi.com/products/curio</u>

Future considerations

- 1. Release a production capable version (with enough public interest)
- 2. Release a stand alone version (no redis required, just reads flows and outputs)
- 3. Include the use of exclusion list (trust / clean list)
- 4. Time series analysis with autocorrelation

Untitled

evin Noble			
erizon Terremark			
noble@terremark.com			