
Presenting Mongoose
A New Approach to Traffic Capture

(patent pending)

presented by
Ron McLeod and Ashraf Abu Sharekh

January 2013

Outline

• Genesis - why we built it, where and when did
the idea begin

• Issues – requirements
• What we built and how it works (mostly)
• Recent and current challenges
• Our biggest challenges and ongoing Work

Genesis - Why?

• Network administrators require situational
awareness to detect:
– Scanning, Intrusion, Exfiltration, Policy Violations and

System Performance Issues
– Most organizations that we have encountered in our

security practice are not monitoring or logging their
network activity beyond bandwidth usage.

– The exceptions in our experience being large
government entities and Universities with significant
IT staff.

– So we started asking Why not? …More on this later.

Genesis - When
• It all came together during a “Walk in the Desert”

and the statement “We would like to monitor the
activity of the network from outside the network.
And (maybe) without the users knowing that it is
happening.”

• For security reasons I can’t say what desert or
who made the statement or who I was walking
with.

• There were other pre-existing sparks but this was
a watershed moment.

Issues - Privacy
Privacy was of significant importance.
• Network owners did not want external monitors to know or
 leak information about network structure.
• IP addresses may be interpreted as personal private information
 in some jurisdictions.
• External monitors must not be able to tie traffic to a machine or

a user. Only internal Network admins should be able to do
 this.
• Users (and administrators) are nervous about payload
 capture, until there is a problem.
• Communication to and from the network must be secure.

Taken together these issues meant that we would have to be
able to modify captured traffic.

Issues - Network Architecture
Independence

• Must work regardless of physical layer
components (wireless, wireline)

• Must not require knowledge of sub-netting and
NAT’ting within the network.

• Must not rely on the presence of firewalls or
services such as active directory.

• Must be able to continue to monitor and control
a device that moves throughout the network and
beyond.

• Must not be blinded by the use of VPN’s

Issues - Visibility

• Must not be noticeable to the end user
through:
– performance (CPU, Memory, bandwidth)
– or as a running application.

Issues - Speed to Deployment
• To understand this issue, we must first describe our typical

incident response experience.
– An organization suspects a data breach or is performing an

audit.
– Q & A with the network administrator:

• Can you draw me a diagram of your network structure so I can
decide where to put the taps?

– No. I didn’t build it.
• Can you tell me which of your routers are capable of producing flow

or which switches have port mirroring?
– What’s flow?

• When do you need this?
– Today.

• Alternatively : in covert deployment speed may be of the
essence.

Issues - Control

• Must be capable of remote interdiction and
modification.
– if a machine is doing a bad thing I need to be able to

stop it immediately regardless of my network
infrastructure, while maintaining the operating state
for forensic analysis.

• Interdiction should not obviously be an
interdiction unless I want it to be.
– i.e. if someone is stealing data from a machine I need

to stop the theft but I don’t want them to run away
before the authorities get there.

Simple – Right?

Two Years later….
Mongoose is a host based traffic collection system that:
 - installs in a few minutes as a downloadable kernel patch and service.
 - captures inbound and outbound traffic at the host.
 - Builds a proprietary representation of each packet and places it in a “dump

file”.
 - dump files containing (initially) 20,000 packets (1.5 meg) are shipped

approximately every 2 minutes to a cloud server farm via a secure SSL
connection.

At the server farm:
 - Dump files are processed to produce a proprietary flow representation

and stored in a client database.
 - Alert and classification systems constantly scan the flow data (ongoing

development)
Through a web interface:
 - Network administrators can log in from anywhere and get a near real time

picture of their network activity.
Through a software “Manager” Console:
 - Network Administrators can exercise remote control over certain aspects

of the client machine.

Manager Functionality
(the parts we can talk about)

• Remotely:
– retrieve machine information (cpu, memory, processor,

operating system etc) for diagnostics or inventory.
– start and stop network access.
– adjust size of payload capture up and down in real time by

any number of bytes to full payload. (Hybrid Capture)
– adjust the number of packets per dump file.
– start and stop various components in the Mongoose

system.
• Other functionality under development – since we are

in the kernel you can let your imagination go wild.

DATA

W
eb

Ap

pl
ic

at
io

ns

Registration
Report Generation &

Visualization

Mobile
Device

Support
Notifications & Alerts

Ex
te

rn
al

Se

rv
ic

es
 Collection

Configuration
Notifications & Alerts

In
te

rn
al

Se

rv
ic

es

Flow Detection
Anomaly Detection

Report Generation
Performance Analyses

Notifications & Alerts
Generation

Notifications & Alerts
Dissemination

Alerts

Flow

Registration &
Configuration

Manager

Command & Control

Monitor
Packet Capture

Anonymization

Command & Control

Transfer

Client

Monitor

Mongoose Architecture

Beta Testing and Experimentation

• Approximately eight months of Beta testing in
up to five live production sites operating
under confidentiality agreements
(geographically distributed).

• 20 - 50 client machines per site reporting to a
single collection and processing site.

• Real implementations now have limited
shared access to a single collection server and
multiple processing nodes, one per customer.

Beta Testing and Experimentation

Excluded traffic
• initially captured everything.
• 90 – 98% of all traffic was local broadcast and link

layer traffic for address resolution, name services
etc.

• much of this was never meant to exit the local
link, but we sent data on all of it out of the edge
router….and quickly impacted the bandwidth.

• We currently exclude much of this traffic but may
give the network admin the ability to sample it
for brief periods.

Beta Testing and Experimentation
Environment

• Testing and Development Environment
– Multiple Servers (VM’s) located in both Quebec

and Alberta.
– All beta clients located in Nova Scotia.

• Commercial environment
– Multiple Servers (VM’s) located in Nova Scotia.

Current and Recent Challenges

• Choosing a platform
– Windows 7 family (Vista, Win 7, Win 8, Server

2008 and so on..)
• Will not work with XP, server 2003 etc..

– Android development in the near future

Current and Recent Challenges
• first challenge: capture and modify traffic.

– We do it in the kernel. We don’t use pcap. The rest is secret sauce.
• second challenge: process and ship the packets in a way that

does not affect computer performance and is not easily visible
to the user.
– processing dump file on the client causes a cpu spike of < 1 sec/file.
– Shipping files causes a much smaller cpu spike that does not exceed

the normal operating range of other running applications.
• i.e. if CPU is operating at 30% – 50% then shipping spike is within this

range.
• Experiments involved changing the processing algorithm,

dump file size and shipping frequency until an acceptable
performance level was achieved.

• Dump file size is configurable through the Manager

Current and Recent Challenges

• Secure communication
– Each Mongoose client contains a unique

certificate for use in SSL communication with the
collection servers.

Current and Recent Challenges

• Constructing Flows
– Originally less than 100 lines of C code.
– 20,000 packet representations are processed in

less than 1 sec.
– Experiments with map/reduce and Hadoop

clusters have not yet proved beneficial over our
current implementation given the current number
of clients (dump files) collected

– This is due largely to the overhead associated with
the Hadoop approach.

Current and Recent Challenges
Some Hadoop Results

• Hadoop with one name node and two data
nodes vs existing processing.

Existing: < 1 sec per dump file
Files Hadoop processing time in secs/file
20 2.45
40 1.28
53 0.96
Using six data nodes we processed 750 dump

files at a rate of 0.11 secs/file (best result).

Current and Recent Challenges
Alerts

• Currently four alert categories
– blacklist of external ips
– sensitive ports
– exception reporting on specific machines
– behavioral classification (neural classifiers)

• Near real time Alert conditions remains our
biggest challenge.
– currently experimenting with algorithmic and system

modifications to improve alert performance.

Current and Recent Challenges
Behavioral Alert Classification

Interesting results from neural classifiers for user/machine
pairing

– training with 72 hours of real flow data from the population of a beta client
– using flow data statistics similar to that described in my presentation at FloCon 2006.
– multilayer feed forward network with back propagation of error.
– neural network maintains 100% discrimination accuracy for a small sample set of (3)

machines for one month without re-training. Not tested beyond this point.
– challenges include the incorporation of the neural classifier into the alert processor and

scaling of test population. One is limiting the other. Would like to have the ability to
dynamically expand and contract the number of machines we are classifying to test the
scalability.

Interesting areas of experimentation and development
– User signatures - isolate an individual based on network traffic. For use in insider masquerade

attacks and for covert surveillance.
– Device signatures – isolate a device based on traffic signature. For use in authentication and

surveillance.
– Application signatures – classify an application.

Some Unresolved Questions for our Beta
Clients

• How long do you want to maintain your flow
database? 30 days?

• How long do you need full payload capture to
be running? 1 minute per sample?

Our biggest challenges and ongoing work

• performance on the client.
• secure remote communication.
• server infrastructure that is sustainable in the

business model.
• provisioning and decommissioning customers

and clients.
• Near real time alerts and classification.

Thank You!

 Questions?

