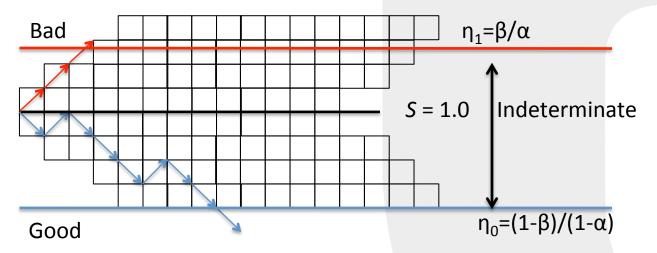
Considerations for Scan Detection Using Flow Data.

REDJACK

Overview

- Scans and scan detection goals and objectives
- A review of Threshold Random Walk
- Real time vs. Flow based approaches
- Bi-flows and Oracles
- Extensions
 - to ICMP and UDP
 - indeterminate reduction to improve benign detection
- Beyond detection actionable intelligence
- Comparisons with rwscan
- Conclusions and future directions

Scans and scan detection goals and objectives


- At one time 90% of internet traffic was scanning
 - Now about 10% or so, so why do we care
- Still a viable propagation mechanism for malware
 - many newly compromised machines scan locally
 - scanning of entire internet happens, e.g. sip server
 - Analysis of a "/0" Stealth Scan from a Botnet CAIDA
- Scan detection provides situational awareness
 What is sought, who is looking on a global level
- Responses provide local inventory
- Interactions with scanners can identify compromise
 - actionable in many cases

Scan detection **REDJACK** Threshold Random Walk (TRW)

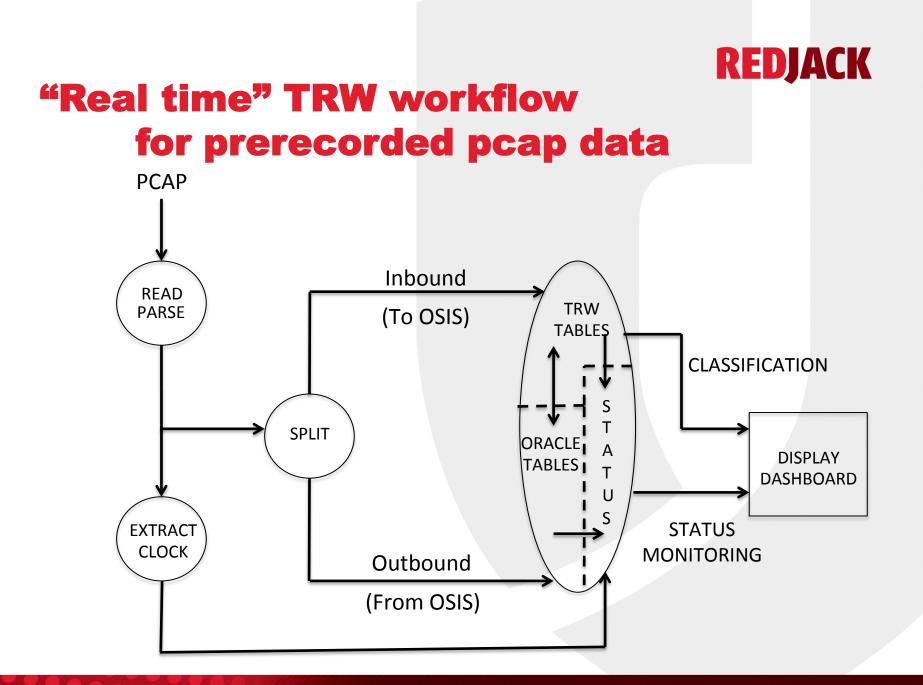
- Assumptions
 - good guys connect, bad guys don't (mostly, for both)
 - bad guys behavior random, targets random (hah! / huh?)
- Model both behaviors
 - analyze connection attempt sequence
 - choose between good guy / bad guy hypothesis
- Need probabilities for models
 - $\theta_0 \text{good guy connects}$
 - $\theta_1 bad guy connects$
- Score S starts at 1.0 (indeterminate)
 - Successful connection multiplies score by θ_1 / θ_0
 - Failed connection multiplies score by $(1-\theta_1) / (1-\theta_0)$

TRW scoring and classification

- α is the desired false positive rate (0.01 often used)
- β is the desired detection rate (0.99 often used)
- $\eta_1 = \beta/\alpha$ and $\eta_0 = (1-\beta)/(1-\alpha)$ set the bad and good thresholds for the score *S*
- For a given set of parameters, possible to calculate min all hit counts for good and min all miss counts for bad

TRW and oracles

- In real time, hit/miss determination hard / expensive
 - Scan may be over before you can score
 - Use an *oracle* to predict connections
- An *oracle* tracks internal network services
 - Updated dynamically by outgoing traffic (or static)
 - For *ex post facto* analysis, oracle can be calculated from outbound traffic for an epoch, prior to inbound scan detection
 - Analysis of inbound traffic can be used to create an oracle if bi-directional traffic is not available
 - Both are effective with flow
 - Used to evaluate connection attempts
 - Works through temporary outages reducing false misses


Multiple oracles for multiple scan modes

Service oracle from sources that lead with SYN/ACK

REDJACK

- Include service (responsive port) for precision
- Can deal with things like passive mode FTP
- UDP oracle possible, as well
 - Can infer UDP service ports over time
- ICMP (ping) oracle trivial from ping response flows
- Adding ports improves precision
 - Detects vertical scans / mixed mode scans
 - Host only oracles for non-SYN TCP, etc. work too.
 - Computation of appropriate θ_1 is interesting
 - Randomness assumptions probably not correct

Flow is liberating (somewhat)

- Can separate oracle maintenance and scan analysis
 - Can pre-compute oracle for analysis epoch
 - In the absence of outbound data, can infer consensus oracle from multiple complete connections
 - With enough state, can detect very slow scans
 - Can even detect distributed scans with a bit of thought
- TRW computation simplified with oracles
 - Per host target lists most difficult part
 - Cuckoo sets for {source, target, service [, mode]}
 - Bloom filters to eliminate duplicates
 - Short, linear, list of targets (indeterminates with many targets are very rare – can be special cased)
 - Sorted data (as with rwscan)

REDJACK The dirty truth about indeterminates

- TRW requires minimum target count to classify a source
 - Lots of sources have all hits to too few targets
 - Regular users of your primary web site (nothing else) OK
 - Lots of singletons (one target, hit or miss, never again)
 - Can probably forget about them (or aggregate off line)
 - Partial results from multiple locations / epochs compose
 - Could put partial results in a DBMS & periodically compose
 - Detect very slow scans this way composing on source
 - Detect distributed scans composing on service
 - Look for aggregates with good coverage
 - The epoch over which the initial analysis is done sets the detectability threshold.
 - Probably want a continuous process with table maintenance

Beyond detection – what now?

- TRW in real time can be an active defense
 - Block scanners before they learn about you
 - With flow, it is too late (even in the pipeline)
- Ex post facto detection can
 - Identify possibly compromised machines
 - Significant exchanges between scanner / scanee bad sign
 - Even small exchanges are a danger sign
 - Link target service to vulnerabilities and prioritize fixes
 - Characterize scan targets to see "what's hot"
 - Fix vulnerable machines based on scan interest
 - Whether machine has been successfully scanned or not.
 - Trends over time repeat scanners, modes, services

Comparison with rwscan (I)

- Flow data from 14 months of a /22 in Canada
 - oracle is set of all active hosts
 - Implementation using cubags
 - Span bag all inbound sources w active interval as data
 - Hit bag all src/dst pairs w dst in oracle (# flows as data)
 - Miss bag ditto for dst not in oracle
 - Project dst off hit / miss bags and roll up to dst counts
 - Join projected bags, span bag to give src, hit / miss counts
 - Compute TRW score and classify.
 - We took 0:13, rwscan took 3:15 (malloc ???)
 - Found 8000 more scanners, 75,000 more benign than rwscan
 - 400,000 indeterminate, mostly too few flows, some single target with many repeats and lots of flows (5% of total flows)

Comparison with rwscan (II)

- IARPA (OSIS) data from PREDICT
 - Streaming pcap implementation for comparison
 - No timings: different platforms and demo stream slowed
 - Flow at 1 pkt/flow from rwptoflow
 - Separate oracles for Hosts, TCP, ICMP
 - Results for background data (scenario 5b5)

	rwscan	Host	ТСР	ICMP
Scanner	14	16	26	5
Benign	-	329	39	0

- Host includes 1 UDP, 1 ping + 14 detected by rwscan
- TCP includes 12 vertical, 2 mixed + 10_1 + 2_2 by rwscan
- Only 1 ICMP detected by rwscan. Others less than 32 flows (Minimum for missile component)

Observations

- Stopping analysis on classification only good in real time
 - Can take action (block, whitelist, etc.) in real time
 - In batch mode lose information on volume, targets
- Benign classifications are important
 - Useful to know nice as well as naughty
 - Detect behavior changes
- Multiple oracles very useful.
 - oracle data is a cheap dynamic system inventory
- Confounding scan detection with backscatter analysis, etc. is not useful.
 - This is not an "either / or" case

Future Directions

- Refinement of θ parameters
 - oracle allows tightening of θ_0 (closer to 1.0)
 - What is the actual target density (θ_1)
- State maintenance for continuous operation
 - Management / pruning of indeterminate hosts
- oracle maintenance
 - Might link removal to DNS ttl?
 - New services / transient ports
- Consequences of scanning
 - Compromised host detection
 - Prioritization of patching CVE/NVD linkage
- Distributed scans might be tractable

Conclusions

- Scan detection is still important
- Most useful in real time, but *ex post fact*o is useful
- Can be done with flow has some advantages
- Predictive oracles better than traffic matching
 - A miss should be a hit sometimes
 - Multiple oracles for multiple scanning modes work
- Management of "indeterminates" is important
- Diagnosing "benigns" is important
- rwscan needs to be replaced
 - Scan database needs more information
 - Need to feed operationally useful actions

Questions / Discussion

John McHugh Senior Principal RedJack, LLC john.mchugh@redjack.com

I'll be around for the rest of the meeting. Come talk to me.

Questions?

