
 Considerations for Scan
Detection Using Flow Data.

1

Overview

•  Scans and scan detection – goals and objectives
•  A review of Threshold Random Walk
•  Real time vs. Flow based approaches
•  Bi-flows and Oracles
•  Extensions

–  to ICMP and UDP
–  indeterminate reduction to improve benign detection

•  Beyond detection – actionable intelligence
•  Comparisons with rwscan
•  Conclusions and future directions

2

Scans and scan detection
 goals and objectives

•  At one time 90% of internet traffic was scanning

–  Now about 10% or so, so why do we care
•  Still a viable propagation mechanism for malware

–  many newly compromised machines scan locally
–  scanning of entire internet happens, e.g. sip server

•  Analysis of a “/0” Stealth Scan from a Botnet – CAIDA
•  Scan detection provides situational awareness

–  What is sought, who is looking on a global level
•  Responses provide local inventory
•  Interactions with scanners can identify compromise

–  actionable in many cases

Scan detection
 Threshold Random Walk (TRW)

•  Assumptions
–  good guys connect, bad guys don’t (mostly, for both)
–  bad guys behavior random, targets random (hah! / huh?)

•  Model both behaviors
–  analyze connection attempt sequence
–  choose between good guy / bad guy hypothesis

•  Need probabilities for models
–  θ0 – good guy connects
–  θ1 – bad guy connects

•  Score S starts at 1.0 (indeterminate)
–  Successful connection multiplies score by θ1 / θ0

–  Failed connection multiplies score by (1-θ1) / (1-θ0)

TRW scoring and classification

•  α is the desired false positive rate (0.01 often used)
•  β is the desired detection rate (0.99 often used)
•  η1=β/α and η0=(1-β)/(1-α) set the bad and good

thresholds for the score S
•  For a given set of parameters, possible to calculate min

all hit counts for good and min all miss counts for bad

η1=β/α	

η0=(1-‐β)/(1-‐α)	

S	 =	 1.0	 	 	 	 	 Indeterminate	

Bad	

Good	

TRW and oracles

•  In real time, hit/miss determination hard / expensive
–  Scan may be over before you can score
–  Use an oracle to predict connections

•  An oracle tracks internal network services
–  Updated dynamically by outgoing traffic (or static)

•  For ex post facto analysis, oracle can be calculated from
outbound traffic for an epoch, prior to inbound scan detection

•  Analysis of inbound traffic can be used to create an oracle if
bi-directional traffic is not available

•  Both are effective with flow

–  Used to evaluate connection attempts
•  Works through temporary outages reducing false misses

6

Multiple oracles for
 multiple scan modes

•  TRW primarily used for TCP scans
–  Service oracle from sources that lead with SYN/ACK
–  Include service (responsive port) for precision
–  Can deal with things like passive mode FTP

•  UDP oracle possible, as well
–  Can infer UDP service ports over time

•  ICMP (ping) oracle trivial from ping response flows
•  Adding ports improves precision

–  Detects vertical scans / mixed mode scans
–  Host only oracles for non-SYN TCP, etc. work too.
–  Computation of appropriate θ1 is interesting

•  Randomness assumptions probably not correct

“Real time” TRW workflow
 for prerecorded pcap data

READ	
PARSE	

PCAP	

EXTRACT	
CLOCK	

SPLIT	

Inbound	

(To	 OSIS)	

Outbound	

(From	 OSIS)	

DISPLAY	
DASHBOARD	

CLASSIFICATION	

STATUS	
MONITORING	

TRW	
TABLES	

ORACLE	
TABLES	

S
T
A
T
U
S

8

Flow is liberating (somewhat)
•  Can separate oracle maintenance and scan analysis

–  Can pre-compute oracle for analysis epoch
–  In the absence of outbound data, can infer consensus

oracle from multiple complete connections
–  With enough state, can detect very slow scans

•  Can even detect distributed scans with a bit of thought

•  TRW computation simplified with oracles
–  Per host target lists most difficult part

•  Cuckoo sets for {source, target, service [, mode]}
•  Bloom filters to eliminate duplicates
•  Short, linear, list of targets (indeterminates with many targets

are very rare – can be special cased)
•  Sorted data (as with rwscan)

The dirty truth about indeterminates
•  TRW requires minimum target count to classify a source

–  Lots of sources have all hits to too few targets
•  Regular users of your primary web site (nothing else) OK

–  Lots of singletons (one target, hit or miss, never again)
•  Can probably forget about them (or aggregate off line)

–  Partial results from multiple locations / epochs compose
•  Could put partial results in a DBMS & periodically compose
•  Detect very slow scans this way composing on source
•  Detect distributed scans composing on service

–  Look for aggregates with good coverage

–  The epoch over which the initial analysis is done sets
the detectability threshold.

•  Probably want a continuous process with table maintenance

Beyond detection – what now?

•  TRW in real time can be an active defense
–  Block scanners before they learn about you
–  With flow, it is too late (even in the pipeline)

•  Ex post facto detection can
–  Identify possibly compromised machines

•  Significant exchanges between scanner / scanee bad sign
•  Even small exchanges are a danger sign

–  Link target service to vulnerabilities and prioritize fixes

–  Characterize scan targets to see “what’s hot”
•  Fix vulnerable machines based on scan interest
•  Whether machine has been successfully scanned or not.

–  Trends over time – repeat scanners, modes, services

Comparison with rwscan (I)

•  Flow data from 14 months of a /22 in Canada
–  oracle is set of all active hosts
–  Implementation using cubags

•  Span bag – all inbound sources w active interval as data
•  Hit bag – all src/dst pairs w dst in oracle (# flows as data)
•  Miss bag – ditto for dst not in oracle
•  Project dst off hit / miss bags and roll up to dst counts
•  Join projected bags, span bag to give src, hit / miss counts
•  Compute TRW score and classify.

–  We took 0:13, rwscan took 3:15 (malloc ???)
•  Found 8000 more scanners, 75,000 more benign than rwscan
•  400,000 indeterminate, mostly too few flows, some single

target with many repeats and lots of flows (5% of total flows)

Comparison with rwscan (II)
•  IARPA (OSIS) data from PREDICT

–  Streaming pcap implementation for comparison
•  No timings: different platforms and demo stream slowed
•  Flow at 1 pkt/flow from rwptoflow

–  Separate oracles for Hosts, TCP, ICMP
–  Results for background data (scenario 5b5)

–  Host includes 1 UDP, 1 ping + 14 detected by rwscan
–  TCP includes 12 vertical, 2 mixed + 101 + 22 by rwscan
–  Only 1 ICMP detected by rwscan. Others less than 32

flows (Minimum for missile component)

rwscan Host	 TCP	 ICMP	

Scanner	 14	 16	 26	 5	

Benign	 -‐	 329	 39	 0	

Observations

•  Stopping analysis on classification only good in real time
–  Can take action (block, whitelist, etc.) in real time
–  In batch mode lose information on volume, targets

•  Benign classifications are important
–  Useful to know nice as well as naughty

•  Detect behavior changes
•  Multiple oracles very useful.

–  oracle data is a cheap dynamic system inventory
•  Confounding scan detection with backscatter analysis,

etc. is not useful.
–  This is not an “either / or” case

Future Directions

•  Refinement of θ parameters
–  oracle allows tightening of θ0 (closer to 1.0)
–  What is the actual target density (θ1)

•  State maintenance for continuous operation
–  Management / pruning of indeterminate hosts

•  oracle maintenance
–  Might link removal to DNS ttl?
–  New services / transient ports

•  Consequences of scanning
–  Compromised host detection
–  Prioritization of patching – CVE/NVD linkage

•  Distributed scans might be tractable

Conclusions

•  Scan detection is still important
•  Most useful in real time, but ex post facto is useful
•  Can be done with flow – has some advantages
•  Predictive oracles better than traffic matching

–  A miss should be a hit sometimes
–  Multiple oracles for multiple scanning modes work

•  Management of “indeterminates” is important
•  Diagnosing “benigns” is important
•  rwscan needs to be replaced

–  Scan database needs more information
–  Need to feed operationally useful actions

Questions / Discussion

John McHugh
Senior Principal
RedJack, LLC
john.mchugh@redjack.com

I’ll be around for the rest of the meeting.
Come talk to me.

Questions?

