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Overview 

•  Scans and scan detection – goals and objectives 
•  A review of Threshold Random Walk 
•  Real time vs. Flow based approaches 
•  Bi-flows and Oracles 
•  Extensions  

–  to ICMP and UDP 
–  indeterminate reduction to improve benign detection 

•  Beyond detection – actionable intelligence 
•  Comparisons with rwscan
•  Conclusions and future directions 
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Scans and scan detection 
   goals and objectives 

 
•  At one time 90% of internet traffic was scanning 

–  Now about 10% or so, so why do we care 
•  Still a viable propagation mechanism for malware 

–  many newly compromised machines scan locally 
–  scanning of entire internet happens, e.g. sip server 

•  Analysis of a “/0” Stealth Scan from a Botnet – CAIDA 
•  Scan detection provides situational awareness 

–  What is sought, who is looking on a global level 
•  Responses provide local inventory 
•  Interactions with scanners can identify compromise 

–  actionable in many cases 



Scan detection 
  Threshold Random Walk (TRW) 

•  Assumptions 
–  good guys connect, bad guys don’t (mostly, for both) 
–  bad guys behavior random, targets random (hah! / huh?) 

•  Model both behaviors 
–  analyze connection attempt sequence 
–  choose between good guy / bad guy hypothesis 

•  Need probabilities for models 
–  θ0 – good guy connects 
–  θ1 – bad guy connects 

•  Score S starts at 1.0 (indeterminate) 
–  Successful connection multiplies score by θ1 / θ0 

–  Failed connection multiplies score by (1-θ1) / (1-θ0) 



TRW scoring and classification 

•  α is the desired false positive rate (0.01 often used) 
•  β is the desired detection rate (0.99 often used) 
•  η1=β/α and η0=(1-β)/(1-α) set the bad and good 

thresholds for the score S 
•  For a given set of parameters, possible to calculate min 

all hit counts for good and min all miss counts for bad 

η1=β/α	  

η0=(1-‐β)/(1-‐α)	  

S	  =	  1.0	  	  	  	  	  Indeterminate	  

Bad	  

Good	  



TRW and oracles 

•  In real time, hit/miss determination hard / expensive 
–  Scan may be over before you can score 
–  Use an oracle to predict connections  

•  An oracle tracks internal network services 
–  Updated dynamically by outgoing traffic (or static) 

•  For ex post facto analysis, oracle can be calculated from 
outbound traffic for an epoch, prior to inbound scan detection  

•  Analysis of inbound traffic can be used to create an oracle if 
bi-directional traffic is not available 

•  Both are effective with flow 

–  Used to evaluate connection attempts 
•  Works through temporary outages reducing false misses 
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Multiple oracles for  
   multiple scan modes 

•  TRW primarily used for TCP scans 
–  Service oracle from sources that lead with SYN/ACK 
–  Include service (responsive port) for precision 
–  Can deal with things like passive mode FTP 

•  UDP oracle possible, as well 
–  Can infer UDP service ports over time 

•  ICMP (ping) oracle trivial from ping response flows 
•  Adding ports improves precision 

–  Detects vertical scans / mixed mode scans 
–  Host only oracles for non-SYN TCP, etc. work too. 
–  Computation of appropriate θ1 is interesting 

•  Randomness assumptions probably not correct 



“Real time” TRW workflow 
  for prerecorded pcap data 
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Flow is liberating (somewhat) 
•  Can separate oracle maintenance and scan analysis 

–  Can pre-compute oracle for analysis epoch 
–  In the absence of outbound data, can infer consensus 

oracle from multiple complete connections 
–  With enough state, can detect very slow scans 

•  Can even detect distributed scans with a bit of thought 

•  TRW computation simplified with oracles 
–  Per host target lists most difficult part 

•  Cuckoo sets for {source, target, service [, mode]} 
•  Bloom filters to eliminate duplicates 
•  Short, linear, list of targets (indeterminates with many targets 

are very rare – can be special cased)  
•  Sorted data (as with rwscan) 



The dirty truth about indeterminates  
•  TRW requires minimum target count to classify a source 

–  Lots of sources have all hits to too few targets 
•  Regular users of your primary web site (nothing else) OK 

–  Lots of singletons (one target, hit or miss, never again) 
•  Can probably forget about them (or aggregate off line) 

–  Partial results from multiple locations / epochs compose 
•  Could put partial results in a DBMS & periodically compose 
•  Detect very slow scans this way composing on source 
•  Detect distributed scans composing on service 

–  Look for aggregates with good coverage 

–  The epoch over which the initial analysis is done sets 
the detectability threshold. 

•  Probably want a continuous process with table maintenance 



Beyond detection – what now? 

•  TRW in real time can be an active defense 
–  Block scanners before they learn about you 
–  With flow, it is too late (even in the pipeline) 

•  Ex post facto detection can 
–  Identify possibly compromised machines 

•  Significant exchanges between scanner / scanee bad sign 
•  Even small exchanges are a danger sign 

–  Link target service to vulnerabilities and prioritize fixes 

–  Characterize scan targets to see “what’s hot” 
•  Fix vulnerable machines based on scan interest 
•  Whether machine has been successfully scanned or not. 

–  Trends over time – repeat scanners, modes, services 



Comparison with rwscan (I)

•  Flow data from 14 months of a /22 in Canada 
–  oracle is set of all active hosts 
–  Implementation using cubags 

•  Span bag – all inbound sources w active interval as data 
•  Hit bag – all src/dst pairs w dst in oracle (# flows as data) 
•  Miss bag – ditto for dst not in oracle 
•  Project dst off hit / miss bags and roll up to dst counts 
•  Join projected bags, span bag to give src, hit / miss counts 
•  Compute TRW score and classify. 

–  We took 0:13, rwscan took 3:15 (malloc ???) 
•  Found 8000 more scanners, 75,000 more benign than rwscan
•  400,000 indeterminate, mostly too few flows, some single 

target with many repeats and lots of flows (5% of total flows) 



Comparison with rwscan (II) 
•  IARPA (OSIS) data from PREDICT 

–  Streaming pcap implementation for comparison 
•  No timings: different platforms and demo stream slowed 
•  Flow at 1 pkt/flow from rwptoflow

–  Separate oracles for Hosts, TCP, ICMP 
–  Results for background data (scenario 5b5) 
 

–  Host includes 1 UDP, 1 ping + 14 detected by rwscan
–  TCP includes 12 vertical, 2 mixed + 101 + 22 by rwscan
–  Only 1 ICMP detected by rwscan. Others less than 32 

flows (Minimum for missile component) 

rwscan Host	   TCP	   ICMP	  

Scanner	   14	   16	   26	   5	  

Benign	   -‐	   329	   39	   0	  



Observations 

•  Stopping analysis on classification only good in real time 
–  Can take action (block, whitelist, etc.) in real time 
–  In batch mode lose information on volume, targets 

•  Benign classifications are important 
–  Useful to know nice as well as naughty 

•  Detect behavior changes 
•  Multiple oracles very useful. 

–  oracle data is a cheap dynamic system inventory 
•  Confounding scan detection with backscatter analysis, 

etc. is not useful. 
–  This is not an “either / or” case 



Future Directions 

•  Refinement of θ parameters 
–  oracle allows tightening of θ0 (closer to 1.0) 
–  What is the actual target density (θ1) 

•  State maintenance for continuous operation 
–  Management / pruning of indeterminate hosts  

•  oracle maintenance 
–  Might link removal to DNS ttl? 
–  New services / transient ports 

•  Consequences of scanning 
–  Compromised host detection 
–  Prioritization of patching – CVE/NVD linkage 

•  Distributed scans might be tractable 



Conclusions 

•  Scan detection is still important 
•  Most useful in real time, but ex post facto is useful 
•  Can be done with flow – has some advantages 
•  Predictive oracles better than traffic matching 

–  A miss should be a hit sometimes 
–  Multiple oracles for multiple scanning modes work 

•  Management of “indeterminates” is important  
•  Diagnosing “benigns” is important 
•  rwscan needs to be replaced 

–  Scan database needs more information 
–  Need to feed operationally useful actions 



Questions / Discussion 

John McHugh 
Senior Principal 
RedJack, LLC 
john.mchugh@redjack.com
 
I’ll be around for the rest of the meeting.  
Come talk to me. 



Questions? 


