
Flow Analysis Using MapReduce
Strengths and Limitations

Markus De Shon
Sr. Security Engineer

Agenda

MapReduce
What is it?

Case Study
Entropy Timeseries

Scaling MapReduces

Other thoughts, Conclusions

MapReduce: What is it?

A parallel computational method

3 stages
● Map: Apply function(s) to each record, compute a sharding key
● Shuffle: Group data by sharding key
● Reduce: Apply function(s) to records for each key

Optimal for trivially parallelizable problems
● Our problems sometimes are, sometimes not...

Shuffle phase

This is where the magic happens...

Transport
● Locally: localhost sockets
● Different host: RPC of protocol buffer over TCP socket

There is no free lunch (e.g. count distinct)
● How is data distributed among input shards?
● Ideally, key by input shard (e.g. input filename), but any non-trivial

shuffle will defeat this
● Try to optimize (number of keys * number of emits per key)

Case study: Entropy timeseries

Normalized Shannon Entropy:

Single pass version (after binning):

pi = probability of each bin (count in bin i/N)
N = total count

"logsum" L, "sum" S, "entropy" E
ci = count in each bin

Case study: Entropy: High-level design

Map
● Only calculate partial sums

Shuffle
● Deliver data for each key to the shard handling that key

Reduce
● Calculate the final sums (L and S)
● Calculate the entropy

Case study: Entropy: Details

Map
● Calculate the key (e.g. [source ASN, time bin])
● For each key, emit e.g. { source IP, packet count } tuples

Shuffle
● Reorganize data by the [source ASN, time bin] key
● A particular shard receives all the tuples for a particular [source

ASN, time bin] key

Reduce
● Iterate through the data calculating a map[source IP] of packet

counts
● Finally, iterate through the map and perform the one-pass entropy

calculation

Case study: Entropy: Optimization

Typically, you would be generating multiple such entropy time series
● source IP, dest IP, source port, dest port

perhaps multiple weightings
● by packet count
● by byte count

Optmize by emitting once for each chunk of input records
● data type = enum { sIP, dIP, sPort, dPort }
● e.g. per [ASN, time bin] key do a single emit for a list of all your {

data type, packet count, byte count } tuples
○ Advantage: Fewer RPCs
○ Danger: RPC too large

Scaling MapReduces

Map
● How many unique input sources?

○ Log files processed simultaneously
○ HBase rows

● How is data distributed by sharding key?
○ More grouping is better

Reduce
● How many unique sharding keys?

○ More than that many shards is pointless
● Memory/CPU allocation per shard

"Real time" flow analysis

Frequent, small MapReduces over recently arrived data

Time windowing vs. latency are critical considerations (cursors)

Need good bookmarking of input files

Other thoughts:

SiLK http://tools.netsa.cert.org/silk
Can SiLK-like analyses be done using MapReduce? Sort of...

rwfilter
● Yes! Just matching, boolean forward or not on per-record basis
● Hard: doing ipsets, tuples efficiently per shard

rwsort
● Done automatically by sharding key, subkeys (depending on

output method)
rwcount, rwuniq, rwbag

● Yes, but need to optimize for scalability
rwstats

● Yes, rwuniq plus sorting by value
rwset

● Yes, sort of. Not easy, not optimized to IPv4
● rwsettool: not really, not as elegantly

Quick, iterative analysis: Not really, unless... (cf. SQL/MR)

http://tools.netsa.cert.org/silk

Conclusions

Strengths
● Commodity computing platform
● Strong scalability for many problems of interest to us
● Good for ongoing, repeated analyses of large amounts of data
● "Real time" analyses feasible (not as much of a commodity)

Limitations
● Inherent overhead in shuffling phase

○ Irreducible anyway? Remember: no free lunch
● Not so good for iterative, ad hoc analysis (except SQL/MR)

