

Coordinated Non-intrusive Capturing of Flow Paths

Tanja Zseby Competence Center Network Research Fraunhofer FOKUS, Berlin, Germany

January 2011

Motivation

- Traffic Observation
 - Network operation (management, security,..)
 - Information to users (quality, path)
 - Adaptive network algorithms
- Answering questions
 - routes that are followed by my flows through the network
 - delays and losses that occurred between nodes
 - quality that was experienced by my traffic

Coordinated Traffic Observation

• Hop-by-hop *path* and *quality* of packet delivery

- Coordinated network observation
- *Non-Intrusive* measurement method

Capturing the Path

Challenge: Coordinated Data Selection

Selection Processes:

Filtering: $f(c_i) \rightarrow parts$ on c remain $\rightarrow can select same packets <math>\bigcirc$ Sampling: $f(s_i)$ or $f(t_i,) \rightarrow s$, t change \rightarrow cannot select same \bigcirc

Hash-based Selection [RFC5475]

Goal: Select same packet at different observation points

Duffield, Grossglauser: Trajectory Sampling, 2001

[RFC 5475] Zseby, Molina, Duffield, Niccolini, Raspall. Sampling and Filtering Techniques for IP Packet Selection, RFC 5475, Standards Track, March 2009.

Challenges

Goal: Emulate random selection

- Problem1: Some content not suitable →
 Content Selection
- Problem2: Predictability of selection decision → Detection Avoidance
- Problem3: Deterministic operation →
 Biased Selection
- Problem4: Variability of traffic → Sample size variation

Suitable Content

Criterion1: Invariant on the path

IP	Version IHL Tos				Total Length			
	Identification				Flags	Fragment Offset		
	TX		Protocol		Heater Checksum			
	Source Address							
	Destination Address							
	Options					Padding		
ТСР	Source Port				Destination Port			
	Sequence Number							
	Acknowledgement Number							
	Offset	Reserved	C	ontrol Flags	Window			
	Checksum				Urgent Pointer			
	Options					Padding		
Payload	Higher Layer Data							

Suitable Content

Criterion2: Variable among packets → Theoretical and Empirical

IP	Version IH. TOS			Total Length					
	Identificati	ion		Flags	Fagment Offset				
	TX- F		ocol	Heater Checksum					
	Source Address								
	Destination Address								
ТСР	Options				Padding				
	Source Po	ort		Destination Port					
	Sequence Number								
	Acknowledgement Number								
	Offset	Reserved	Control Flags	Window					
	Checksum	า		Urgent Pointer					
	Options				Padding				
Payload	bad Higher Layer Data								

Coordinated Packet Selection

- Problem1: Content selection (further challenges)
 - IPv6 \rightarrow different fields, few data available
 - Middlebox operations (e.g., NAT)
- Problem2: Predictability of selection decision
 - [Goldberg&Rexford, 2007]: Crypto-strong PRF with secret key
- Problem3: Bias
 - Traffic Dependent (!)
- Problem4: Sample size variation
 - Adaptation to CPU load → but further investigations needed

Adaptation of Parameters

Advantages

- Non-intrusive
 - No test traffic, no side effects
 - Quality statement about real traffic \rightarrow SLA validation
- Controllable costs
 - Sampling parameter adjustment
 - Heterogeneous/federated environments
- Privacy-preserving
 - Sampling and aggregation, no DPI
- Standardized data export (IPFIX)
 - Comparability of results, re-usability of tools, traces
 - Reduction of errors from conversion steps

Main Contributions

- Investigations on suitable hash-functions

 Statistical properties, performance [HeSZ08]
- Sampling parameter adjustment
 - Adjust accuracy and resource consumption
 - Coordinate parameter settings in heterogeneous/federated environments
- Contributions to Standardization
- Deployment in experimental facilities
- Open Source Packet Tracking Software

HeSZ08] Henke, Schmoll, Zseby: Empirical Evaluation of Hash Functions for Multipoint Measurements, ACM Comput. Commun. Rev. CCR 38, 3, July 2008.

Standardization is Crucial

- Provide comparability of results
 - Allow comparison of results
 - Provide reference data
- Reduce Costs
 - Common interfaces for analysis tools
 - Re-usage of archived data
- Reduce errors
 - Avoid error-prone conversion steps
 - Gain experiences with only one format

PlanetLab

PlanetLab Europe

- PlanetLab Nodes in Europe
 - PLE Control in Paris (UPMC)
 - In cooperation with PlanetLab Central, Princeton
 - PLE users have access to whole PlanetLab
 - Profit from additional testbeds and new tools
- Supported by the EU FIRE Project OneLab
 - Development of new tools for PLE users
 - Integration of new testbed types: wireless, autonomic, DTNs, etc.
 - Federation with other testbeds
- http://www.planet-lab.eu/

Demonstration

Future Work

- Deployment in Future Internet testbeds
 - Support for experimentere
 - OneLab, G-Lab, Federica, KOREN, ..)
- Solutions for IPv6
 - Different Header fields
 - Different traffic patterns
 - →new recommendations for hash functions
- New Applications
 - Support for Routing Security

Thank you!

Contact: tanja.zseby@fokus.fraunhofer.de

