
© 2010 Carnegie Mellon University

Secure Coding Initiative

Robert C. Seacord

2

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the
trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

mailto:permission@sei.cmu.edu�

3

Presenter Bio
Robert Seacord began programming
(professionally) for IBM in 1982 and has
been programming in C since 1985.
Robert leads the Secure Coding Initiative
at the CERT, located at Carnegie
Mellon’s Software Engineering Institute
(SEI). He is author of The CERT C
Secure Coding Standard (Addison-
Wesley, 2009), Secure Coding in C and
C++ (Addison-Wesley, 2005), Building
Systems from Commercial Components
(Addison-Wesley, 2002) and
Modernizing Legacy Systems (Addison-
Wesley, 2003).

4

Secure Coding Initiative
Initiative Goals
Work with software developers and
software development organizations
to eliminate vulnerabilities resulting
from coding errors before they are
deployed.

Current Capabilities
Secure coding standards
www.securecoding.cert.org
Source code analysis and
conformance testing
Training courses
Involved in international standards
development.Overall Thrusts

Advance the state of the practice in
secure coding
Identify common programming
errors that lead to software
vulnerabilities
Establish standard secure coding
practices
Educate software developers

http://www.securecoding.cert.org/�

5

Secure Coding in the SDLC

6

Increasing Vulnerabilities
Reacting to vulnerabilities in
existing systems is not working

7

CERT Secure Coding Initiative
Reduce the number of vulnerabilities to a level where
they can be handled by computer security incident
response teams (CSIRTs)
Decrease remediation costs by eliminating
vulnerabilities before software is deployed

8

Fun With Integers
char x, y;

x = -128;

y = -x;

if (x == y) puts("1");

if ((x - y) == 0) puts("2");

if ((x + y) == 2 * x) puts("3");

if (((char)(-x) + x) != 0) puts("4");

if (x != -y) puts("5");

Lesson: Process is irrelevant
without a strong fundamental
knowledge of the language and
environment

9

Secure Coding Roadmap

University courses
• CMU
• Purdue
• University of Florida
• Santa Clara University
• St. John Fisher College

SEI Secure
Coding Course

Licensed to:
• Computer Associates
• Siemens
• SANS

Adoption by Analyzer Tools

Tool Test Suite

Application
Conformance
Testing

Secure Design
Patterns Influence International

Standard Bodies

B
re

ad
th

 o
f i

m
pa

ct

2003 Time 2010

Adoption by software developers
• Lockheed Martin Aeronautics
• General Atomics

10

Products and Services
CERT Secure Coding Standards
CERT SCALe (Source Code Analysis Laboratory)
TSP Secure
Training courses
Research

11

CERT Secure Coding Standards
Establish coding guidelines for commonly used
programming languages that can be used to improve
the security of software systems under development
Based on documented standard language versions
as defined by official or de facto standards
organizations
Secure coding standards are under development for:

• C programming language (ISO/IEC 9899:1999)
• C++ programming language (ISO/IEC 14882-2003)
• Java Platform Standard Edition 6

12

Published as candidate rules
and recommendations on the
CERT Wiki.

Rules are solicited from the
community

Threaded discussions used
for public vetting

Candidate coding practices are
moved into a secure coding
standard when consensus is
reached

www.securecoding.cert.org

Secure Coding Web Site (Wiki)

http://www.securecoding.cert.org/�

13

Noncompliant Examples & Compliant Solutions

Noncompliant Code Example
In this noncompliant code example, the char pointer p is
initialized to the address of a string literal. Attempting to modify
the string literal results in undefined behavior.
char *p = "string literal"; p[0] = 'S';

Compliant Solution
As an array initializer, a string literal specifies the initial values
of characters in an array as well as the size of the array. This
code creates a copy of the string literal in the space allocated
to the character array a. The string stored in a can be safely
modified.
char a[] = "string literal"; a[0] = 'S';

14

11

15

12

16

4

3

9

11

17

5

3

7

16

3

0 5 10 15 20

Preprocessor (PRE)

Declarations and Initialization (DCL)

Expressions (EXP)

Integers (INT)

Floating Point (FLP)

Arrays (ARR)

Characters and Strings (STR)

Memory Management (MEM)

Input Output (FIO)

Environment (ENV)

Signals (SIG)

Error Handling (ERR)

Miscellaneous (MSC)

POSIX (POS)

CERT C Secure Coding Standard
Recommendations (132)

2

7

9

6

5

9

8

6

15

4

5

3

2

8

0 2 4 6 8 10 12 14 16

Preprocessor (PRE)

Declarations and
Initialization (DCL)

Expressions (EXP)

Integers (INT)

Floating Point (FLP)

Arrays (ARR)

Characters and Strings
(STR)

Memory Management
(MEM)

Input Output (FIO)

Environment (ENV)

Signals (SIG)

Error Handling (ERR)

Miscellaneous (MSC)

POSIX (POS)

CERT C Secure Coding Standard Rules (89)

15

CERT Mitigation Information

US CERT Technical Alerts

CERT Secure Coding Standard

Examples of vulnerabilities
resulting from the violation
of this recommendation can
be found on the CERT
website .

Vulnerability Note VU#649732
This vulnerability occurred as a
result of failing to comply with rule
FIO30-C of the CERT C
Programming Language Secure
Coding Standard.

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+keywords+contains+EXP04-A&SearchOrder=4&SearchMax=0�
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+keywords+contains+EXP04-A&SearchOrder=4&SearchMax=0�
https://www.securecoding.cert.org/confluence/x/WwE�

16

Secure Coding Standard Applications
Establish secure coding practices within an
organization

• may be extended with organization-specific rules
• cannot replace or remove existing rules

Train software professionals
Certify programmers in secure
coding
Establish requirements for
software analysis tools
Certify software systems

17

Industry Adoption
Software developers that require code to conform to
The CERT C Secure Coding Standard:

Software tools that (partially) enforce The CERT C
Secure Coding Standard:

18

Industry Adoption
LDRA ships new TBsecure™ complete with
CERT C Secure Coding programming checker

Screenshot from the LDRA tool suite shows the selection of the
CERT C secure coding standard from the C standards models

19

Products and Services
CERT Secure Coding Standards
CERT SCALe (Source Code Analysis Laboratory)
TSP Secure
Training courses
Research

20

Enforcing Coding Standards
Increasingly, application source code reviews are dictated.

The Payment Card Industry (PCI) Data
Security Standard requires that
companies with stored credit card or other
consumer financial data

• install application firewalls around all
Internet-facing applications or

• have all the applications' code reviewed for
security flaws.

This requirement could be met by a
manual review of application source code
or the proper use of automated
application source code analyzer tools.

21

CERT SCALe (Source Code Analysis Lab)

Satisfy demand for source code assessments for
both government and industry organizations.
Assess source code
against one or more
secure coding standards.
Provided a detailed
report of findings.
Assist customers in
developing conforming
systems.

22

Conformance Testing
Client contacts SCALe

SCALe communicates
requirement

Client provides buildable
software

SCALe selects tool set

SCALe analyzes source
code and generates initial

report

Client repairs software

SCALe issues conformance
tests results and certificate

The use of secure coding standards
defines a proscriptive set of rules and
recommendations to which the source
code can be evaluated for compliance.

INT30-C. Provably nonconforming

INT32-C. Conforming

INT31-C. Documented deviation

INT33-C. Provably Conforming

23

Products and Services
CERT Secure Coding Standards
CERT SCALe (Source Code Analysis Laboratory)
TSP Secure
Training courses
Research

24

Secure TSP

221 Guidelines

Source
Code

static
analysis
tools, unit
tests, and
fuzz testing

Deploy

Security
Manager

25

Products and Services
CERT Secure Coding Standards
CERT SCALe (Source Code Analysis Laboratory)
TSP Secure
Training Courses
Research

26

Secure Coding in C/C++ Course
Four day course provides practical guidance on secure
programming

• provides a detailed explanation of common programming errors
• describes how errors can lead to vulnerable code
• evaluates available mitigation strategies
• http://www.sei.cmu.edu/products/courses/p63.html

Useful to anyone involved in developing secure C and C++
programs regardless of the application
Direct offerings in Pittsburgh, Arlington, and other cities
Partnered with industry

• Licensed to Computer Associates to train 9000+ internal software
developers

• Licensed to SANS to provide public training

http://www.sei.cmu.edu/products/courses/p63.html�

27

CMU CS 15-392 Secure Programming
Offered as an undergraduate elective in the School of
Computer Science in S07, S08 and S09

• More of a vocational course than an “enduring
knowledge” course.

• Students are interested in taking a class that goes
beyond “policy”

Secure Software Engineering graduate course
offered at INI in F08, F09
Working with NSF to sponsor a workshop in Mauritius
to help universities throughout the world teach secure
coding

28

Products and Services
CERT Secure Coding Standards
CERT SCALe (Source Code Analysis Laboratory)
TSP Secure
Training Courses
Research

29

As-if Infinitely Ranged (AIR) Integers
AIR integers is a model for automating the elimination of integer overflow
and truncation in C and C++ code.

• integer operations either succeed or trap
• uses the runtime-constraint handling mechanisms defined by ISO/IEC TR

24731-1
• generates constraint violations for

— signed overflow for addition, subtraction, multiplication, negation, and left shifts

— unsigned wrapping for addition, subtraction, and multiplication

— truncation resulting from coercion (not included in benchmarks)

SPECINT2006 macro-benchmarks
Optimization Level Control Ratio Analyzable Ratio % Slowdown
-O0 4.92 4.60 6.96
-O1 7.21 6.77 6.50
-O2 7.38 6.99 5.58

30

CERT C and C++
Develop a holistic solution to the problem that includes

• An analyzability annex for the C1X standard
• As-if infinitely ranged (“AIR”) integers
• Safe Secure C/C++ methods (SSCC)
• C and C++ Secure Coding Guidelines

This solution eliminates the vulnerabilities:
• Writing outside the bounds of an object (e.g., buffer overflow)
• Reading outside the bounds of an object
• Arbitrary reads/writes (e.g., wild-pointer stores)
• Integer overflow and truncation

Prototype using Compass/ROSE and GCC

31

Compiler

Source file

Internal
representation
(IR)

diagnostics

Object code

Pre-linker Linker Safe/Secure
Executable

Run-time
pointer-checking

library

Compiler
Frontend

Modified
Compiler
Backend

Advice file

Prototype
Design

ROSE

32

For More Information
Visit CERT® web sites:
http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/

Contact Presenter
Robert C. Seacord

rcs@cert.org

(412) 268-7608

Contact CERT:
Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh PA 15213-3890

USA

http://www.cert.org/secure-coding/�
https://www.securecoding.cert.org/�
mailto:rcs@cert.org�

	Secure Coding Initiative
	Slide Number 2
	Presenter Bio
	Secure Coding Initiative
	Secure Coding in the SDLC
	Increasing Vulnerabilities
	CERT Secure Coding Initiative
	Fun With Integers
	Secure Coding Roadmap
	Products and Services
	CERT Secure Coding Standards
	www.securecoding.cert.org
	Noncompliant Examples & Compliant Solutions
	Slide Number 14
	CERT Mitigation Information
	Secure Coding Standard Applications
	Industry Adoption
	Industry Adoption
	Products and Services
	Enforcing Coding Standards
	CERT SCALe (Source Code Analysis Lab)
	Conformance Testing
	Products and Services
	Secure TSP
	Products and Services
	Secure Coding in C/C++ Course
	CMU CS 15-392 Secure Programming
	Products and Services
	As-if Infinitely Ranged (AIR) Integers
	CERT C and C++
	Slide Number 31
	For More Information

