
Leveraging other data
sources with flow to
identify anomalous
network behavior

Peter Mullarkey, Peter.Mullarkey@ca.com
Mike Johns, Mike.Johns@ca.com
Ben Haley, Ben.Haley@ca.com

FloCon 2011

Presenter
Presentation Notes
Abstract
Tools for monitoring the performance and behavior of modern large networks produce an abundance of data, resulting in considerable interest in the ability to bring the most critical facets to the attention of human operators. While the coverage and sophistication of data being collected is expanding greatly to be comprehensive and detailed enough to solve hard problems, methods for analyzing this data tend to be either 1) too simplistic, resulting in too much information for users to process, many of which are false positives, or 2) too computationally intensive to keep up with the volume of data generated by large networks. We describe a system that seeks a middle ground between these extremes using probability-based thresholding and temporal correlation of targeted, domain-specific network behavior metrics, resulting in fewer, more actionable events presented to users. In this paper we outline the problem area, present some of the mechanisms used, focus on the approach of using domain-knowledge-based sensors for flow and other datasources, and then share two real examples of using anomaly detection to help large enterprises solve network problems.

mailto:Mike.Johns@ca.com�

—Goal: Create high quality events without sacrificing
scalability

—Approach: Create a system that
− Is more abstract than a signature-based approach
− Leverages domain knowledge more than a pure statistical

approach
− Makes use of all available data to increase event quality
− Relies only on readily available data – no new collection

Goal and Approach

Presenter
Presentation Notes
Our approach is an attempt at combining capabilities from both signature-based and pure statistical approaches, balancing the various aspects of scalability against the goal of delivering high quality events. There are several ways this goal is achieved.

We sought to employ analysis techniques that are specific enough to identify interesting network behavior and misbehavior, while not being so specific that there needs to be hundreds or thousands of them to cover the space. For example, while the implementation details within particular classes of malware may vary widely and change from day to day, the fundamental behavior and impact on the network does not. It is therefore possible to spot numerous incarnations of a particular type of threat by looking for particular patterns of behavior. For example, a traffic source talking to an unusual number of destinations often suggests the presence of malware.

In contrast with pure statistical methods, our analysis techniques embody domain knowledge of how networks work and can be misused. An example is that typical DNS queries have a consistent size in bytes, and if there are hosts that are apparently talking to a DNS server using packets significantly larger than typical, there is a significant possibility that the destination host is not a legitimate DNS server. It may be a server that is the destination for data exfiltration.

Modern network management systems collect and store a variety of metrics. It is valuable to have a system that can analyze the various metrics (e.g., Netflow, SNMP, and response time data) for interesting behavior and then correlate events within and across data sources.

Finally, we “use what we have”. In many cases, metrics are collected for reporting – and can be additionally used by a separate analysis system at little, if any, additional cost.

Architecture

Controller

Sensors

Metric
Storage

Metric
Storage

Metric
Storage

Anomaly
Storage

Correlation
Engine

Statistical
Analysis

GUI

Presenter
Presentation Notes
This block diagram shows the key parts of the architecture. On the following slides, the Sensors and Correlation Engine components will be discussed in more detail. The other components will be described here.

The controller process coordinates the following steps to drive the system. It loads the combination of the sensors and the active datasource descriptions (since a given sensor can run against several instances of its datasource type) and runs them against the Metric Storage resources. The Metric Storage resources are of different types, such as Netflow, SNMP, and response time data. Those differences are handled within each sensor, so the data returned to the system is consistently delivered as time-series data. Additionally, this approach allows metric storage resources to be used by the system without any changes - even though they are designed and deployed as part of a different network monitoring solution. This time-series data is operated on by the Statistical Analysis module, which then writes anomalies, if found, into the Anomaly Storage. The controller also runs other services, as needed (e.g., the correlation process, alerting via SNMP and/or CEF-compliant Syslog messages).
The system also has a browser-based user interface with two main, separate parts – administration and results/status reporting.

—Sensors are a level of abstraction above signatures
− leveraging knowledge of network behavior

—Sensors describe behavior to watch for
− Is this host contacting more other hosts than usual?
− Is this host transmitting large ICMP packets?

—Sensors can be created and modified in the field

Sensors

TCP ACK
TCP SYN ACK

TCP SYN

Presenter
Presentation Notes
Our analysis is driven by sensors, which are queries targeted at a particular class of network behavior. While encoding domain knowledge, sensors operate at a level of abstraction above signature-based approaches, searching for general patterns of behavior instead of specific fingerprints.

Sensors embody general, time-proven knowledge about how networks behave, and can be made to misbehave. Each is self-contained and focused so that it is easy to for a knowledgeable network analyst to create, understand, and, if necessary, modify. Additionally, based on their implementation in a declarative form (SQL) so that it is easy to change them in the field without requiring any changes to the core system. A third aspect is that sensors have a two-phase data gathering approach.

These two phases can be thoughts of as nomination and then time-series data gathering. In the nomination phase, the sensor returns the top N hosts that are most actively behaving in the way that is interesting to the sensor (e.g., the FanOut sensor looks for the top hosts that talking with the largest number of destinations). In the second phase, the sensor uses SQL to returns the data points for each of the nominated hosts during the time period under study. In general, the second phase uses the same criteria as the nomination phase, as is the case for FanOut, but that is not required.

An example of where the two phases differ is a sensor that nominates the hosts that have had the largest number of null-routed flows. But then in the second phase, the sensor gathers the time-series data of the number of flows that were successfully routed through the network. This has the effect of identifying hosts that have had traffic blocked – while during the same time period have had success communication across the network. This behavior can be a result of policy that applies different ACLs on the edge versus core, but it has also identified compromised hosts that haven’t been isolated effectively.

— SYN-only Packet Sources
− Looking at flows with SYN as the only flag. SYN flood, denial of service

attack, worm infection

— High Packet Fan Out
− Looking at hosts talking to many more peers tan usual. Virus or worm

infection

— Large DNS and/or ICMP Packet Sources
− Looking at volume/packet, compared to typical levels for these protocols.

Data ex-filtration – discretely attempting to offload data from internal
network to an external location

— TTL Expired Sources
− Network configuration issue – routing loops, heavy trace route activity

— Previously Null Routed Sources
− Traffic discovered from hosts that have had previous traffic null routed

Example Sensors

Presenter
Presentation Notes
These are several of the netflow-based sensors.

— Incoming Discard Rate
The Incoming Discard Rate sensor look for patterns where incoming packets were

dropped even though they contained no errors. Can be caused by: Overutilization,
Denial of service, or VLAN misconfiguration

— Voice Call DoS
This sensor looks for patterns where a single phone is called repeatedly over a short

period of time. This type of attack differs from other Denial of Service (DoS) attacks
and traditional IDS may not catch it because it is so low volume. It only takes about
10 calls per minute or less to keep a phone ringing all the time.

— Packet Load
This sensor looks for a pattern in bytes per packet to server. Applications running on

servers generally have a fairly constant ratio between the number of packets they
receive in requests for their service and the volume of those packets. This sensor
looks for anomalous changes in that ratio.

Example Sensor (non-Flow data sources)

Presenter
Presentation Notes
These sensors show how this approach can be used to analyze behaviors from non-flow-based datasources.

— Very helpful for exploring the data – to look for interesting patterns, and
develop sensors

— Example: top talkers (by flows)

SELECT srcaddr as source,
count(*) as flowsPerSrc,
count(*)/ ((max(timestamp) - min(timestamp)) / 60) as avgPerMin

FROM AHTFlows
group by source order by flowsPerSrc desc limit 10

SQL Interface to Metric Data (including flow)

Presenter
Presentation Notes
One of the key innovations was developing a sql-based interface to Netflow data. This allows the analyst or researcher that is already familiar with SQL to focus their efforts on the patterns and behaviors of interest.

— More in-depth example: looking at profiling SSL traffic (as a basis for
identifying exfiltration)

Select inet_ntoa(srcaddr) as srcHostAddr, count(if(dstport = 443, inbytes, 0)) as samples,

count(distinct(dstAddr)) as numOfDestsPerSrcHost,

min(if(dstport = 443, inbytes/inpkts, 0)) as minBytesPerPacketPerSrcHost,

avg(if(dstport = 443, inbytes/inpkts, 0)) as avgBytesPerPacketPerSrcHost,

std(if(dstport = 443, inbytes/inpkts, 0)) as stdBytesPerPacketPerSrcHost,

max(if(dstport = 443, inbytes/inpkts, 0)) as maxBytesPerPacketPerSrcHost,

sum(if(dstport = 443, inbytes, 0)) / sum(inbytes)as sslRatioPerSrcHost,

group_concat(inet_ntoa(dstAddr)) as destAddrsPerSrcHost

from AHTFlows where protocol = 6 and timestamp > (unix_timestamp(now()) - 30*60)

group by hostAddr having sslBytes > 0 and numOfDestsPerSrcHost < 10

order by sslBytes desc

SQL Interface to Metric Data (including flow)

Presenter
Presentation Notes
Here is a more complex example. This query is being used to profile port 443 traffic in an effort to determine various criteria that may be useful in identifying exfiltration efforts. A key aspect is the ability (in one query) to get a ratio of the 443 traffic to total traffic from a given source host, in addition to gathering various statistical measures.

—Multiple anomaly types for the same monitored item
within the same time frame combine into a correlated
anomaly

—These can span data from disparate sources
− NetFlow, Response Time, SNMP, etc

—An index is calculated that aids in ranking the correlated
anomalies

Correlation Engine

Presenter
Presentation Notes
If the system sees a device talking to many other hosts, it may think there is something wrong. But if that device is a DNS server, it is its job to be talking to many hosts. The statistical analysis component handles that case by looking for changes in behavior. To enhance the quality of events, it is valuable to look for other indicators that the host is behaving oddly. By using a heuristic that if a host is involved in several interesting behaviors, assertions of concern are stronger. In this example, if a host is fanning out and it is also sending many SYN-only packets (meaning that full TCP connections are not being established), it is a much stronger possibility that the host has been compromised and is trying to spread malware.

The approach used here can be thought of as simple, in that it only requires that a host be participating in several types of behavior, with several instances of anomalies, within a given timeframe. For example, it does not require that specific anomaly types must be seen together, or in a certain time sequence. This apparent simplicity has some unexpected benefits, since it does not require the developers to predetermine all interesting combinations. In one customer example, the system found several compromised hosts based on a correlated anomaly consisting of FanOut and SynOnly basic anomalies. After the customer had done their remediation, the system still found a situation where the malware had adapted its behavior (not using SYN probes), but it was discovered using a correlated anomaly that consisted of FanOut and PreviouslyNullRouted basic anomalies.

The developed system has found issues that are beyond
single issue description

—Spreading Malware

—Router overload causing server performance degradation
(Example #1)

—Data exfiltration

—Interface drops causing downstream TCP
retransmissions

—Unexpected applications on the network (Example #2)

Types of Problems Found

Presenter
Presentation Notes
Although we have described interesting behavior in terms of sensors, basic anomalies, and correlated anomalies, the real problems on networks are described in different terms. Examples include spreading malware, performance degradation caused by overloaded routers, loss of corporate assets due to data exfiltration.

In some cases, the basic anomalies map directly to end-user issues. For example, the LargeICMP or LargeDNS anomalies are key indicators of data exfiltration. In other cases, a correlated anomaly will map to an end-user issue. For example, a correlated anomaly composed of SynOnly and FanOut anomalies usually means a host has been compromised by malware.

There are cases where additional knowledge and investigation are required. For example, if a host starts exhibiting FragsAndLoss anomalies, this indicates that during a TCP conversation involving fragmented packets, not all of the segments arrived within the time window, forcing the host (which had already devoted memory and cpu resources to re-assembling the packets) to discard that packet, and ask for retransmission. But looking at the path the conversation has taken, it is possible to see if an intermediate node (e.g., a router) is overloaded and dropping packets. This allows the root cause of the issue to be found and fixed, based on the initiating clue provided by the anomaly detection. This situation is explored in Example #1.

Helping network operators to know what is really happening on their networks is a focus of FloCon2011, and a scenario of that type is shown as Example #2.

In the examples that follow, products from CA/NetQoS will be used for illustration. This system is embodied in the AnomalyDetector product.

Customer Example 1: Unexpected Performance
Degradation

Ny1-x.x.100.52

Presenter
Presentation Notes
Four servers in the NY1 x.x.100/24 server subnet had consistent FragsAndLoss anomalies on 6/17/2010. The FragsAndLoss anomaly indicates a failure to reassemble fragmented packets, meaning that the receiving host has to discard the packet, forcing the sending server to retransmit the data, causing additional performance degradation due to TCP slow start. This example shows anomalies from one of those four servers, x.x.100.52.

Note in red box #1 the FragsAndLoss anomalies around 5 PM. These anomalies led us to investigate the traffic pattern on the NY WAN interface at that time.

Looking at the ReporterAnalyzer network traffic reporting software (shown in the lower two tables), we found high utilization on the outbound NY1 MPLS interface at the time of the FragsAndLoss anomalies.

Note in the red box #2 that the traffic spike at approximately 5 PM, composed mainly of MS-DS traffic (light blue), affected two of the servers, x.x.100.52 and x.x.100.27.

This customer implements QoS. In the situation above, even though we had only 80% average utilization at 1-minute data granularity, full QoS queues will still lead to lost packets. While high interface utilization can be an indicator of network congestion leading to packet loss, when QoS is implemented it is more important to monitor queue drops, as this is the real indicator of lost data (a highly utilized interface without queue drops indicates an efficiently-run network).

For networks with QoS, dropped packets serve as a key indicator of congestion. Although overall interface utilization is well below 100%, queues may in fact be full with resulting packet loss.

Customer Example 1: Unexpected Performance
Degradation

Presenter
Presentation Notes
Drilling into the MS-DS protocol in ReporterAnalyzer, we looked at the top 12 conversations for the protocol. The view above is from 4:50 to 5: 15PM, or 25 minutes worth of data.

In the red box #1, the top conversation was between ny1-x.x.100.52, the first server in this example, and a remote server, x.x.100.78, with 78.47 MB of traffic in 25 minutes.

In the red box #2, it is seen that this fourth-largest MS-DS conversation involved ny1-x.x.100.27, another of the four affected servers in the x.x.100.0/24 subnet, with 4.37 MB of traffic in 25 minutes.

The FragsAndLoss anomalies for these two servers correlated with the spike in MS-DS traffic in observed in ReporterAnalyzer around 5 PM. The anomalies indicated that the queue containing the MS-DS traffic was most likely experiencing problems. Given that MS-DS is a TCP-based protocol, the fragmented and lost data would require retransmissions. Retransmissions, by adding additional traffic to the already-congested queue, will often exacerbate the existing packet loss.

In this case, we recommended that the customer monitor their traffic patterns and QoS queue drops to determine if this problem was a single event or if it was a reoccurring issue.

Customer Example 2: What is really happening
on your network?

Presenter
Presentation Notes
This example highlights one of the focuses of this year’s FloCon – “what is really happening on your network?.” In this example, the system found a correlated anomaly – composed of a FanOut anomaly and a PreviouslyNullRouted anomaly. The customer’s host naming convention allowed us to quickly make the conclusion that it was one of the SNMP Poller products on their network trying to do discovery and/or polling of devices on parts of the network where that poller should not have been active.

High quality anomalies can be found without sacrificing
scalability

—Key aspects
− Embodying domain knowledge in sensors
− Leveraging statistical analysis approach, separating domain

knowledge from data analysis
− Using simple, fast event correlation

Effectiveness of approach has been shown by solving
customer problems on real networks

Summary

Presenter
Presentation Notes
Producing fewer, higher quality events leverages precious human analyst resources.

Areas for further work include:
 Adding even more datasource types. In addition to Netflow, SNMP, and response time data, it would be interesting, for example, to add log parsing, and IDS alerts. These additions would extend the system’s ability by supporting wider correlation.
 Formalizing the next level of analysis. For a trained user of the system, seeing a correlated anomaly composed of SynOnly and FanOut anomalies leads almost directly to a conclusion that the identified host has been compromised. But to support less-experienced users, this conclusion could be made for them. Initial efforts to take this step have been prototyped, in code and alternatively using a rule-based approach.

Questions?

—Extra info slides

Backup Slides

Customer Example 3: Malware Outbreak

Presenter
Presentation Notes
Our system reported that hosts in the x.184.75.0/24 subnet were having correlated anomalies composed of FanOut together with SynOnly anomalies. The first host, x.184.75.1, started showing this behavior on 9/22, the first day that AnomalyDetector was enabled on the customer’s network.

The blue line represents the value metric. In this graph, the metric is the number of destination hosts in thousands. The pink line represents the probability of each metric value indicating that an anomaly has been found. By default, AnomalyDetector will generate alerts when the probability value crosses the ninetieth percentile threshold. This threshold can be reduced in order to desensitize the alerting threshold, or it can be raised to increase the required threshold necessary to generate an anomaly.

This view looked at the last seven days of activity (9/22-9/27). Notice that x.184.75.1 has a number of anomalies starting with 9/23 and continuing forward on a daily basis.

Upon drill down (shown in the table in the lower right), it was found that each host had the same FanOut/SynOnly correlated anomalies.

As the week progressed, additional hosts, starting with x.184.75.37, started to show similar anomalous behavior. The additional hosts showing FanOut/SynOnly correlated anomalies included x.184.75.43, x.184.77.32, x.184.75.30, x.184.75.29, x.184.75.28, x.184.75.27, x.184.75.21, x.184.75.15, and x.184.75.10.

All of these hosts were within the same /24 subnet. At the time, similar anomalies were not seen outside of this range of hosts. The pattern indicated a potential malware outbreak within the x.184.75.0/24 subnet.

Customer Example 3: Malware Outbreak

Presenter
Presentation Notes
To further understand the issue, we ran a detailed flow report (using a complimentary product, ReporterAnalyzer , via a workflow link from AnomalyDetector) on host x.184.75.43 displaying this behavior within a 30 minute period. This forensics report showed four key details.
Column 1 shows that TCP 445 is the target port, which is a commonly exploited port/application.
Column 2 shows that TCP ports 1025-5000 are the source ports. The targeted clients are not perfectly sequential; however, the TCP source ports are. At the bottom 4 lines of the screen, 1025 increments to 1026. Looking at the full report, the TCP source ports incremented up to port 5000 but not beyond.
Column 3 shows that each flow contains 2 packets, which indicates that a TCP conversation was never set up, and that this behavior is more than likely an automated process.
The overall report (one which the above figure is only one page) showed that within 30 minutes, the client attempted to contact around 60,000 hosts.
We informed the customer, who verified that this was a malware outbreak.

Customer Example 4: Retransmissions traced
back

Presenter
Presentation Notes
In this example, the system noticed anomalously high retransmissions (based on a response time datasource). Using the workflow connection to the associated general Netflow analysis tool, a query was run that returned the routers and interfaces involved with that network. Then using that information, the SNMP Poller data was investigated for those interfaces, and the problematic interfaces, with errors and discards, was identified.

— Define anomaly as a sequence of improbable events

— Derive the probability of observing a particular value
from (continually updated) historical data
− Example

• Under normal circumstances values above the 90th percentile occur 10
percent of the time

— Use Bayes’ Rule to determine the probability that a
sequence of events represents anomalous behavior

Statistical Analysis Methodology

)(
)(*)|()|(

pointp
anomalypanomalypointppointanomalyp =

Presenter
Presentation Notes
While sensors embody domain knowledge, the statistical analysis engine is a domain-independent system that monitors any stream of numbers. Sensors produce time-series data that, in isolation, is insufficient to make claims as to abnormality. It is the combination of this data with statistical analysis that permits anomaly detection.

Arriving data points are used in two ways. First, they contribute to an aggregation of historical data. In most cases, this is based on percentiling. This allows us to determine where a particular data point lies within the historical range for a particular sensor. Second, each data point contributes to an ongoing calculation of anomaly probability. Based on historical norms, individual data points are assigned likelihoods of signifying either normal or anomalous conditions as they arrive, and each new data point updates the overall likelihood via Bayesian updating.

This division between sensors and statistical analysis separates knowledge engineering from data analysis, thus allowing domain experts to concentrate on developing metrics of interest without the added burden of determining how to analyze them.

Network behavior data is particularly well-suited to this sort of approach because data is abundant. The typical range of values for a given sensor is readily available. Consequently, we can empirically derive many of the probabilities needed to use Bayes’ Rule.

Thresholding directly off of observations is difficult

Why Bayesian?

We wanted an approach that could take both time and
degree of violation into account, so we threshold on
probability

Presenter
Presentation Notes
Traditionally, network data is analyzed by baselining data, comparing observed values to these baselines, and generating an event if the difference exceeds some threshold. In some approaches, events may only be generated if a threshold is exceeded for a certain length of time or for a certain percentage of observations within a window of time. These approaches can be problematic in that it is notoriously difficult to determine optimal parameters for the system: a slight change in parameters can lead to a major change in the quality and quantity of events created.
�A probability-based approach helps to alleviate these issues. Depending on the degree to which a particular data point lends evidence to one diagnosis or another, probability estimates can change dramatically with a single data point, not at all, or somewhere in between. There are no inherent assumptions about how many points in a row must violate a threshold, or even what that threshold is. Since probabilities are assigned according to a continuous probability mass function, the likelihood of an anomaly updates proportionally to the degree of evidence lent to one hypothesis or another. Ambiguous measurements will lead to anomaly probability staying the same while more evidence is gathered, where measurements that are clear indicators will signal anomalies immediately.

Events are then generated by comparing anomaly probability, and not the metric itself, to a threshold. Since anomaly probability asymptotically approaches one, we can generate progressively fewer events by moving the threshold closer to one without risk of moving past the theoretical maximum and generating no events at all. For users, it is intuitive to indicate how certain the system should be before generating an event, in contrast to traditional systems with proprietary parameters.

Customizable, pluggable Engines

))(~*)|~(())(*)|((
)(*)|()|(

anomalypanomalypointpanomalypanomalypointp
anomalypanomalypointppointanomalyp

+
=

p(anomaly) is the prior probability – either some starting value or the
output from last time

p(point|anomaly) & p(point|~anomaly) are given by probability mass
functions – and are the basis for our customizable, pluggable engines

0.01

Percentile(point)

P
ro

ba
bi

lit
y P(~anomaly | point)

Percentile(point)

P
ro

ba
bi

lit
y

P(anomaly | point)

Presenter
Presentation Notes
The system relies on probability mass functions that assign a probability that a given data point would occur under normal versus anomalous conditions. Assuming that the system is typically monitoring normal conditions, the ordinary range of values can be empirically observed. Under normal circumstances we expect a uniform distribution of values within the historical range (p(point|~anomaly)) = 0.01 for all points. Under anomalous circumstances, we typically expect values near or exceeding the upper percentiles. This means low values will push the system towards a no-anomaly diagnosis while high ones will push towards signaling an anomaly. Values towards the middle of the range will result in evidence being lent to both hypotheses, and consequently little to no movement in anomaly probability.

The system can be configured to behave in a variety of ways by manipulating these probability mass functions. It can be made to react more quickly or slowly by adjusting the range of the p(anomaly|point) curve. It can respond to values that are unusually low by bending the curve to suggest anomalies at the low end of the range. We have developed several such alternatives and packaged them as separate “engine types” that can be chosen on a sensor-by-sensor basis. The original engine uses the straight percentile of the current metric value; another engine detects and accounts for significant business hour/non-business hour behavior (without depending on being told explicitly when these hours are). Another engine compares the current metric to its running median and 90th values. Finally, the system supports the setting of fixed thresholds in cases where that approach is appropriate. For example, in many cases any nonzero value for a particular sensor signifies an anomalous event.

Motivation

Less Scalable
Higher Quality Events

More Scalable
Lower Quality Events

Intrusion Detection Systems

Virus Scanners

Packet Inspection

Per-metric thresholds

Baselining

“Behavior
Analysis”

Signature-Based Statistical Methods

Presenter
Presentation Notes
In addition to other market-based motivations, the main drivers behind our efforts were to provide high-quality events, while still being able to scale to the largest production networks. In the area of scalability, generally the focus is on whether an approach can “keep up” as the amount and density of the data of interest increases. That is clearly important to us, but there are two additional aspects of scalability that impact the full life-cycle ability of an approach to have a lasting impact. Thus, we think of scalability in several senses: 1) development effort; 2) deployment; 3) computational complexity.

Development effort has to do with how hard it is to develop and maintain the core system, but more importantly, it involves how easy it is to continue to refine and enhance the system. For example, consider the ease of extending IDS and virus scanners, which is primarily done by enhancing existing signatures and creating new ones. In contrast to it is harder to change the behavior of a system that uses internal, hard-coded statistical algorithms, since that typically requires creating and releasing a new version of the system.

Scalability in terms of deployment is more of an operational issue, and has to do with how much software must be installed, where it has to be installed, how invasive the installation is, and the performance impact of any added processes. This is an aspect that where virus scanners, which typically have to be deployed on client devices has a heavy cost. It is also worth noting that keeping IDS signatures up to date, while typically automated, does require connectivity with all probes fairly frequently.

We will discuss how we address the event quality challenge, and balancing between quality and scalability in the next section.

	Leveraging other data sources with flow to identify anomalous network behavior��
	Goal and Approach
	Architecture
	Sensors
	Example Sensors
	Example Sensor (non-Flow data sources)
	SQL Interface to Metric Data (including flow)
	SQL Interface to Metric Data (including flow)
	Correlation Engine
	Types of Problems Found
	Customer Example 1: Unexpected Performance Degradation
	Customer Example 1: Unexpected Performance Degradation
	Customer Example 2: What is really happening on your network?
	Summary
	Questions?
	Backup Slides
	Customer Example 3: Malware Outbreak
	Customer Example 3: Malware Outbreak
	Customer Example 4: Retransmissions traced back
	Statistical Analysis Methodology
	Why Bayesian?
	Customizable, pluggable Engines
	Motivation

