Darkspace Construction and Maintenance

Jeff Janies and M. Patrick Collins

RedJack

FloCon 2011
What are Darkspaces?

• **Simple definition:** Externally routable address block(s) to which no legitimate network traffic should be destined.
 – No active hosts

• Gives us an understanding of “background radiation”.
 – Junk traffic that enters a network
 – Ex. Scanning, backscatter
Darksaces are Found Items

• Blocks of unallocated addresses
 – Large networks likely have several large blocks of darkspace.
 – Most networks have dark bits interspersed through the network. *(Result of historical allocations)*

• Need consistent information
 – Estimations from 2 empty /16's should be comparable to 130,000 random dark addresses.
Darkspace Types

• **Dedicated**: A CIDR-block dedicated to being a darkspace
 – Never contained active hosts

• **Partially Populated**:
 – **Static Active Hosts**: Active hosts are present, but static IP addresses. (CAIDA)
 – **Roaming Hosts**: Active hosts are present and have dynamic IP addresses. (Harrop *et al.*)
Bias on the Information Source

• Bias may result from:
 – Misinterpretation of legitimacy of traffic
 – Over/under prediction of darkspace’s traffic volumes

• Bias may cause
 – Incomparable “information”
 – Over/under estimation of “background radiation”
Improved Definition

- Externally **routable** address block(s) for which all traffic may be **accounted for as legitimate or illegitimate** based on observable, consistent address allocation and size.
Construction Methodology

• “Construction” = Selection of address blocks.
 – Rule set for what is used and how it is interpreted.

• Rules based on measurable characteristics.
 – Characteristics have two meanings:
 • Observer (us)– Must care about all.
 • Attacker (the motivated component of radiation) – Only can see or care about a subset.
 – Some controllable, Some based on circumstance
Darkspace maintenance

• Maintain predictability:
 – A) Our observer characteristics must remain the same.
 – B) Modifications must be accounted for when comparing measurements.

• Characteristics for attackers may not be controllable.
 – Exception: Honeypots *(not discussed here!)*
Characteristics

• Unknown to Attackers
 – **Routing** – Who can contact it?
 – **Size** – How big is it?

• Directly impacts attackers and/or radiation
 – **History** – Does it have a past?
 – **Population** – What is in it?
Routable

- **Measurement**: A determination of if the address space is capable of receiving traffic without address translation or mapping.
 - Ex. 192.168.0.0/16 is not considered “routable” in this way.

- **This is a binary characteristic**
 - If un-routable, no darkspace may be made.
Size

• **Measure:** Number of available addresses for observation.
 – Effects expected volume

• **Demonstration:**
 – Various non-overlapping darkspaces.
 – /16 vs. /24 (sample of 100 each)
 – 1 week of traffic
All Records

![Graph showing All Records with two lines, one for /16 blocks and one for /24 blocks, with records on the y-axis and time on the x-axis.]
Record Counts Per Hour
History

- **Measurement:** The stability of light and dark addresses in a block over time.
 - Causes incorrect interpretations of activity

- Probability of receiving a scan
 - In an ideal world, $P(x) \approx 1/N$, where N is the total number of hosts
 - History can change this, even if only one host was previously active!
History

• Experiment:
 – Examined 2 non-consecutive weeks of traffic.
 – Take 50 IP addresses observed as dark for both.
 – Add IP that was lit in the first week and dark in the second.

• The partially lit IP received >90% of the traffic to the 51 addresses in the second week!
Population

- **Measurement:** The number of “active” hosts in a darkspace.
- Do attackers have an interest in netblocks only if:
 - X hosts are active
 - The netblock is announced active
 - Or, they don’t care at all and hit everything equally
Population And Filtering

• Population isn’t just a matter of active hosts.
 – Scans for vulnerable hosts:
 • Network without vulnerability are seen by scanner as “dark”.
 • What use is a /24 of Amigas?

• What’s the “dark factor” on light spaces
 – If you toss out payload bearing sessions, are dark and light networks identically hit?
Characteristics of Construction

<table>
<thead>
<tr>
<th></th>
<th>Routable</th>
<th>Size</th>
<th>History</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated</td>
<td>Assumed</td>
<td>Predictable</td>
<td>Predictable</td>
<td>Controllable</td>
</tr>
<tr>
<td>Static Active Hosts</td>
<td>Assumed</td>
<td>Predictable</td>
<td>Predictable</td>
<td>Controllable</td>
</tr>
<tr>
<td>Dynamic Active Hosts</td>
<td>Assumed</td>
<td>Unpredictable</td>
<td>Unmanageable</td>
<td>Uncontrollable</td>
</tr>
</tbody>
</table>

If we don’t know when, where or how many hosts will be active, we can’t predict observations or attacker interest.
Conclusion

• Darkspaces should be constructed with consistency in mind.
• Characteristics for construction should include:
 – routable, size, population and history
• Dynamic active hosts have no place in darkspaces!
References

