

Indexing Full Packet Capture Data With Flow

FloCon

January 2011

Randy Heins Intelligence Systems Division

© 2011 Northrop Grumman Corporation

- Full packet capture systems can offer a valuable service provided that they are:
 - Retaining full fidelity data
 - Providing access to that data in a timely manner
- This discussion outlines lessons learned in developing a full packet capture system that meets these needs by using:
 - Abstracted flow representations
 - Application data extraction
 - Data indexing and caching

Goal: A full packet capture system capable of returning all relevant information quickly

Keeping Up With the Threats

- Know your threats
 - DOS
 - Data loss
 - Email phishing
 - Covert channels
- Know your sensors
 - What data is kept
 - How long can it be retained
 - How long it takes to retrieve
- Data is useless if it's not actionable

Protocol Distribution

The threats drive system design

Full Packet Capture Cycle

Volume Estimates

- Full packet capture of a saturated 1 Gbps link will yield:
 - 1 Day = 6TB
 - 1 Week = 42TB
 - 1 Month = 180TB
- Data is stored on sensors
 - Moving data to central storage would duplicate all traffic, not an option.
 - Data will be queried on sensors as well – causes disk I/O contention.

Daily Volume Distribution

- Indicators can be vague
 - "Anti-virus labs report a new malicious domain, <u>www.badguy.com</u>, has been used since December 15, 2010 to exploit vulnerable versions of web browsers."
- My initial thoughts:
 - 1. Do I still have PCAP data from December 15?
 - Saving 1.5 months of full packet capture logs will be close to 45TB.
 - 2. Do I search for December 15 or the last 1.5 months?
 - Searching through 1 days worth of full packet capture logs using regular expressions on all port 80 data will take 6 hours. A query for 1.5 months will take 11+ days to complete.
 - 3. Should I filter on subject or URL?
 - Do both, because I don't have an extra 11 days to wait for any subsequent queries.

- Linear analysis of full packet capture files does not scale
 - Too much time is wasted searching for the needle in the haystack
 - File creation time is the only index provided by the capture, major inefficiency
- Possible Solution: A tiered schema to support analytical needs
 - High-fidelity data
 - Quick results using smart indices
 - Long data retention

Tier 1: Full Packet Capture

- Record all bytes captured off the wire using LibPCAP
 - TCPdump
 - DaemonLogger from Snort
- PCAP files are saved onto disk for analysis
 - TCPdump rotates every X MB's
 - DaemonLogger can rotate by size or time interval
 - Filename useful if saved in format:
 - YYYY-MM-DD_HHMMSS.pcap

1 Day of Full Packet Capture

- 1TB of disk space used
- 6 hours to query all data

Call For Data: Identify traffic to www.badguy.com in the last 24 hours.

- Search PCAP files for regular expression:
 - /^Host: www.badguy.com/
 - Limit to port 80 for efficiency by use of BPF
- Effectiveness:
 - Accurate, low amount of false positives
- Cost:
 - Disk I/O: Reading 1TB (2,000 512MB files) of data may hinder other disk-bound applications, such as the capture process
 - Speed: Up to 6 hours for query to complete, not acceptable

Tier 2: NetFlow

- Flowmeter used to produce a Netflow representation of full packet capture data
 - SiLK YAF
 - softflowd
- Provides layer 4 summary*
 - *YAF applabel feature identifies some protocols

Call For Data: Identify traffic to www.badguy.com in the last 24 hours.

- Search NetFlow records:
 - --dip=[IP address of www.badguy.com]
- Effectiveness:
 - Low accuracy: traffic may be for another virtual host using the same IP
 - Limited context: protocol information is not given by NetFlow, this could be a non-HTTP process listening on port 80
- Cost:
 - Disk I/O: Reading 1GB of packed NetFlow is relatively low
 - Speed: Within several minutes for query to complete

- Looking for the best of both worlds:
 - The speed of NetFlow
 - The fidelity of full packet capture
- AppFlow- a hybrid approach:
 - Unique list of relevant attributes are extracted from each full packet capture file
 - Extract attributes that are the source of most queries:
 - SMTP header elements, attachment filenames
 - HTTP URI's, user-agent strings, SSL certificate attributes
 - **DNS** question/answer attributes
 - Layer 3 source IP, destination IP
 - Context is provided by the associated full packet capture file

 Relevant attributes from each Full Packet Capture file are extracted into a corresponding AppFlow file

Full Packet Capture	2011-01-23_0000.pcap 512MB	2011-01-23_0007.pcap 512MB	2011-01-23_0010.pcap 512MB
AppFlow	2011-01-23_0000.appflow 124KB joe_smith@example.com Meeting next week www.example.com/ /files/document.pdf host.example.com Meeting_2011_01_24.doc 2015-10-22 05:00:00	2011-01-23_0007.appflow 92KB test.example.com Fwd: Upcoming event bob@example.com Re: Wainscoting quote 10.132.53.21 /cgi-bin/temp/index.html	2011-01-23_0010.appflow 145KB Fwd: Upcoming event bob@example.com Re: Wainscoting quote 10.132.53.21 /cgi-bin/temp/index.html ftp.example.com jnorthrop@example.com /get_weather.php test.example.com

Call For Data: Identify traffic to www.badguy.com in the last 24 hours.

• Search AppFlow records:

\$ grep `www.badguy.com' 2011-01-22*.appflow 2011-01-22_034521.appflow: www.badguy.com 2011-01-22_083200.appflow: www.badguy.com

- Effectiveness:
 - Decent Accuracy: 'www.badguy.com' may be part of an HTTP, SMTP, or DNS flow
 - No context: there is no association to the traffic
- Cost:
 - Disk I/O: Very low
 - Speed: Very fast

Data As An Index

- AppFlow serves as an efficient index for full packet capture files
 - Determine, "Is value X in the AppFlow index"?
 - Yes: then query the associated full packet capture file for related data
 - No: skip to the next file
 - Reduces disk I/O and query time by identifying the relevant full packet captures files

- Most analytical queries start with the question, "does this value exist in a set of data?"
- Bloom filters are specifically designed to answer that question¹
 - Great use-case presented by Chris Roblee in FloCon 2008²
 - Use a hashing algorithm to store a set of values
 - Returns a Boolean response to the existence of a value in a set
 - Can produce false positive but no false negatives
 - The probability of false negatives is tunable but more reliable Bloom filters increase the data structure size
- Easy to store AppFlow data in a Bloom filter
 - Convert file to Bloom filter in 14 lines of code
 - Store on disk as a serialized data structure
 - 1 Ripeanu & Lamnitchi <u>www.cs.uchicago.edu/~matei/PAPERS/bf.doc/</u>
 - 2 Roblee Hierarchical Bloom Filters: Accelerating Flow Queries and Analysis http://www.cert.org/flocon/2008/presentations/roblee_bloomdex-flocon2008.pdf

- How well Bloom filters perform:
 - Sample: 1 day of full packet capture data
 - Query speed and storage efficiency drastically increase
 - The two operations complete in the same amount of time (6 hours):
 - Querying 1 day of full packet capture data
 - Querying 50+ years of AppFlow Bloom filters

Data Type	Size	Query Time	Time Speedup	Storage Efficiency
Full Packet Capture	1 TB	6 hours	-	-
AppFlow	200 MB	4 seconds	5,400x	5,000x
AppFlow Bloom Filter	20 MB	1 second	21,600x	50,000x

- Bloom filters produce limited false positives
 - Associated full packet capture files must be queried to determine which are incorrect
 - That operation can be costly but is ultimately necessary with any index
 - Analyst clustering the problem worsens when multiple users are conducting similar queries, each making the same mistakes
- Limit the amount of redundant queries for false positive results by caching the correct results in memory
 - memcached¹ an open-source distributed memory caching system
 - Distributed: values can be retrieved, set, or updated from remote systems
 - Values to store:
 - Paths to PCAP files with relevant information
 - Time range, BPF, and path to query result PCAP file

1- http://memcached.org

- Full packet is here to stay because the network will remain common to most incidents
- Attack vectors will change so tools need to remain flexible
- Indexing abstracted flow representations is one method for improving the gap between indicators and identification.

© 2011 Northrop Grumman Corporation