
© 2010 Carnegie Mellon University

A Temporal Logic For

Network Flow Analysis

Tim Shimeall

tjs@cert.org

2© 2010 Carnegie Mellon University

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING

INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,

BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON

UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM

FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the

trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003

with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded

research and development center. The Government of the United States has a royalty-free government-

purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have

or permit others to do so, for government purposes pursuant to the copyright license under the clause at

252.227-7013.

mailto:permission@sei.cmu.edu

3© 2010 Carnegie Mellon University

Overview

Motivation

Temporal Logic

Application to Flow

Example

Implementations

4© 2010 Carnegie Mellon University

Motivation

Clarify timing relationships

Formalize analysis semantics

• Clearer discussions

• Enhance automation & frameworks

• Combining analyses

Avoid over-specification of timing

Support reasoning about analysis tasks

Access temporal logic methods

5© 2010 Carnegie Mellon University

Temporal Logic

Logic with explicit inclusion of time

Classically, first-order logic, could be any logic form

Temporal interpretation: Instantiating circumstances

• Linear time with rollback on contradiction

• Branching time with branch termination on contradiction

• Advantage to linear: simpler structure, no worry over paths

• Advantage to branching: can express path-related conditions

6© 2010 Carnegie Mellon University

Temporal Logic Operators

Next(t,p) – p is true in the instant after t

Global(p) – p is true independent of time

Following(t, p) – p is true at some instant after t

Until(t,p,q) – p is true at each instant after t until q is true

Forall (p) – p is true along all paths

Exists (p) – p is true along at least one path

7© 2010 Carnegie Mellon University

Adaptation to Flow

Description first, then reasoning

Iterative semantics – suitable for filter-like processing

Specific semantics:

• 5-tuple

• Ordinal time (inexact comparisons)

• Related flows

8© 2010 Carnegie Mellon University

Adapted semantics

R(f1,f2) relation – flow-flow connection

p(f,…), q(f,…) – logic predicates on flow

records/fields

Enable reasoning using Horn clause resolution and

backtracking

9© 2010 Carnegie Mellon University

Temporal Operators for Flow

Globally:
G(p): forall(R(f,f’) → p(f) and p(f’))

Next:
N(f,f’): iff R(f,f’) and f’.stime > f.stime and

does not exists (
R(f,f’’) and f’.stime > f’’.stime >f.stime)

N*(f,f’): transitive relation on N

X(f,p): forall(N(f,f’) →p(f’))

Following:
F(f,p): exists(N*(f,f’) and p(f’))

Until:
U(f,p,q):

exists (N*(f,f’’) and q(f’’),
forall (N*(f,f’) and f’’.stime>f’.stime → p(f’) and not q(f’)))

10© 2010 Carnegie Mellon University

Descriptive Temporal Example

Spam(s,f):

R(f,f’): f.sip = f’.sip = s and s not on whitelist

If and only if

|{f’, Following(f,f’,f’.stime < f.stime+5min and

f’.dport=email)}|>15 and

|{f’, Following(f,f’, f’.stime < f.stime+5min and

f’.dport=email)}| ≥

|{f’, Following(f,f’, f’.stime < f.stime+5min)}| * 0.1

11© 2010 Carnegie Mellon University

Implementation

Use temporal logic to express analysis criteria

Prolog-based (GNU-Prolog)

Logic programming, incorporating time in resolution

Initial prototype to refine semantics

Construct interface to analysis tools (plugin)

Python-based (PySiLK)

Declarative programming, incorporate limited
resolution mechanism

Secondary prototype to demonstrate applicability

Eventually construct reasoning rules for analysis
relationships or proof

12© 2010 Carnegie Mellon University

Conclusions

Temporal logic adaptation of flow analysis offers

opportunity to encompass large literature of pre-

existing methods

Formalization of time relationships offers opportunity

to improve flow analysis methods

More formal reasoning on flow analysis?

