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Motivation

Clarify timing relationships

Formalize analysis semantics

• Clearer discussions

• Enhance automation & frameworks

• Combining analyses

Avoid over-specification of timing

Support reasoning about analysis tasks

Access temporal logic methods
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Temporal Logic

Logic with explicit inclusion of time

Classically, first-order logic, could be any logic form

Temporal interpretation: Instantiating circumstances

• Linear time with rollback on contradiction

• Branching time with branch termination on contradiction

• Advantage to linear: simpler structure, no worry over paths

• Advantage to branching: can express path-related conditions
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Temporal Logic Operators

Next(t,p) – p is true in the instant after t

Global(p) – p is true independent of time

Following(t, p) – p is true at some instant after t

Until(t,p,q) – p is true at each instant after t until q is true

Forall (p) – p is true along all paths

Exists (p) – p is true along at least one path
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Adaptation to Flow

Description first, then reasoning

Iterative semantics – suitable for filter-like processing

Specific semantics:

• 5-tuple

• Ordinal time (inexact comparisons)

• Related flows
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Adapted semantics

R(f1,f2) relation – flow-flow connection

p(f,…), q(f,…) – logic predicates on flow 

records/fields

Enable reasoning using Horn clause resolution and 

backtracking
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Temporal Operators for Flow

Globally:
G(p): forall(R(f,f’) → p(f) and p(f’))

Next:
N(f,f’): iff R(f,f’) and f’.stime > f.stime and

does not exists (
R(f,f’’) and  f’.stime > f’’.stime >f.stime)

N*(f,f’): transitive relation on N

X(f,p): forall(N(f,f’) →p(f’))

Following:
F(f,p): exists(N*(f,f’) and p(f’))

Until:
U(f,p,q): 

exists (N*(f,f’’) and q(f’’), 
forall (N*(f,f’) and f’’.stime>f’.stime → p(f’) and not q(f’)))
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Descriptive Temporal Example

Spam(s,f):

R(f,f’): f.sip = f’.sip = s and s not on whitelist

If and only if

|{f’, Following(f,f’,f’.stime < f.stime+5min and 

f’.dport=email)}|>15 and

|{f’, Following(f,f’, f’.stime < f.stime+5min and 

f’.dport=email)}| ≥ 

|{f’, Following(f,f’, f’.stime < f.stime+5min)}| * 0.1
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Implementation

Use temporal logic to express analysis criteria

Prolog-based (GNU-Prolog)

Logic programming, incorporating time in resolution

Initial prototype to refine semantics

Construct interface to analysis tools (plugin)

Python-based (PySiLK)

Declarative programming, incorporate limited 
resolution mechanism

Secondary prototype to demonstrate applicability

Eventually construct reasoning rules for analysis 
relationships or proof
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Conclusions

Temporal logic adaptation of flow analysis offers 

opportunity to encompass large literature of pre-

existing methods

Formalization of time relationships offers opportunity 

to improve flow analysis methods

More formal reasoning on flow analysis?


