
John McHugh - RedJack, LLC and
The University of North Carolina

Jeff Janies - Redjack LLC

Teryl Taylor - Dalhousie University

FloCon 2010

New Orleans

January 2010

First experiences with
Cuckoo bags

What is a cuckoo bag?
• SiLK sets and bags have single index field

– chosen from subset of SiLK record fields
– bags have single volume data field: flows, pkts, bytes
– pointer tree implementation limits key to 32 bits

• Cuckoo bags have multiple index fields
– all meaningful SiLK record fields plus

• derived fields such as country code, and
• key fields can be masked or reduced in precision

– multiple data fields, volume, plus “span”, plus TBD
– efficient, hash based indexing

Why Cuckoo?
• Cuckoo bags use multiple hash functions, so

there are several places to put an object.
• If these are all full, their occupants alternates

are checked and if there is a space, the
occupant is kicked out to the alternate space.
– This is likened to the European Cuckoo bird which

lays its eggs in the nests of other birds, dumping
one or more existing eggs.

– The search for an entry to move is done
recursively until a space is found, or we give up.

Give Up?

• At every level, the search expands.
– Takes longer to find a hole
– above about 90% table occupancy it is better to

reallocate and rehash.
– Since the new table is less than 50% full, no

searching is required on the rehash
– If you know how big the table needs to be, you can

avoid searching altogether.
• First search typically occurs at 65%+ occupancy

Advantages and disadvantages

• Works with IPv6 keys and multiple keys
• A set is a bag with no data

– Can treat a bag as a set for set operations
– Disk representation is similar to rwbags

• Key is explicitly part of memory representation
– can require more space; depends on locality

• Constant time lookup for filter applications
– does not grow with size as with R/B trees
– can use multiple cores to speed hashing

What do we have?
• cubag program

– like rwbag / rwset but more general
--bag-file=<path>:<key>..<key>:<data>..<data>
--set-file= :<path>:<key>..<key>
– Can be repeated for multiple bags / sets
– key fields: {s,d,nh}IP, v{4,6}{s,d,nh}IP, protocol,

{s,d}Port, {s,e}Time, duration, sensor, input, output,
{s,d}cc, {,initial,session}flags, attributes, application,
typeclass, ICMPtypecode, IPversion, bytes, pkts

– data fields: flows, bytes, packets, duration, span, counts
– Times to second only
– Span is minimum sTime, maximum eTime for key
– Count is derived data field during projection

What else?
• Command options for rw{set, bag} superset
• Key modifiers

– masking IPs and flags (&, 255.255.0.0) or (&,SAFR)
– reduction of times (*,3600) or (*,86400)

• hourly, daily grouping by start or end time
• will build plugin for rwcount style binning

– example
• hourly volumes between /16s and hosts in a /16
• v4sip(&,255.255.0.0),v4dip(&,0.0.255.255),sTime(/*,3600)
• TCP Initial state flags per IP
• v4sip,initialflags(&,SAFR)

cubagcat

• Simple listing of cubag
– Count entries, describe bag
– With or without headers (cubags are self describing)
– epoch and clock time formats (times, duration, span)
– zero padding of IPs, integer IPs f or IPv4
– No network structure (have to limit to IPv4, single key)
– No binning (moves to bag tool)
– Per field statistics

Example: Mixed IPv4, IPv6 Bag

16582001:5a0:300:200::2
16582001:5a0:300:100::2
16582001:5a0:300::5
16582001:200::8002:203:47ff:fea5:3085

10417128.237.254.83
2417128.237.248.255

11417128.237.247.204
8417128.237.243.180

20441128.237.238.167
1041128.237.238.167
1417128.237.230.30

2044164.86.88.116
194658::

FlowsIPVerprotocolsourceIP

cubagtool (under construction)
• Everything rw{set,bag} tool does, cubagtool

does better (or right)
• Additional operations for projection, binning

– user defined field names for “count” field(s)
• Mix of unary, binary, n-ary operations

– some unary ops combine w. others in one pass
• Stream operations allow arbitrary size growth

– If inputs and outputs maintain sort order, memory
representation of output not needed

• set union, intersection, bag addition, subtraction

cubagtool hacks

• Work with text from cubagcat
• We need set prefix projection now

– script to drop trailing set key fields and merge/count
• We also need set intersection and difference

– script runs through 2 set listings, similar keys
– 3 outputs (common to both, in first and not second,

in second and not first) Could add set union, as well
• Finally, need to join bags on common key

– output has key, selected data fields

Coming soon!!

• plugin for rwfilter that will filter flow records in
the manner of the current tuples using a
cuckoo set (will automatically extract the
cover set of a cuckoo bag)

• cu bagbuild to construct cuckoo sets and bags
from text records.

• plugin for cubag for time distributed binning
volume fields in the manner of rwcount.

• plugin for cubag to do sums of squares of data

Case studies

• We present 3 examples
– Web activity profiling

• looking for repeated connection patterns: host
pairs, temporal regularity, consistent volumes

– Client Server activity
• Feeds FloVis activity viewer

– Dark Space analysis
• Characterizing traffic in empty network

segments or the space between hosts

Web Profiling

• Demonstrate a clear, consistent communication
pattern for a given host over a time interval.

• Patterns provide evidence:
– Of similar activity.
– User/process preference for external hosts

• Note, here we only discuss the detection of the initial pattern and avoid
discussion of the verification process of a candidate web profile.

Cubags: Represent Trends

• Understanding common elements in client web
activity.
- Destination IP/Port
- Intermittent/continuous
- Size

• Trend of web client activity over time with 5
minute bins.

rwfilter --start=2004/02/01 –-end= 2004/02/14 \
 --proto=6 --sport=1024- --dport=80,443 –pass=stdout | \
cubag --bag-file:clientActivity.cub:sip,dip,stime(/*,300):flows,bytes

Cubag: Organized Raw Data
with Meaning

Showing Consistent Patterns in
Communication

Client / Server Characterization

• 5 categories: Idle, C, S, C/S-diff, C/S-same
– Hosts that are client and server may be questionable
– Look at changes over time - 1 hour bins

• sudden changes suspicious
• plot a week or more using FloVis Activity viewer

• Client starts conversations (TCP initial SYN)
• Server replies (TCP initial SYN/ACK)

Computing sets
• Client and server sets, with and without ports

rwfilter ... --flags-init=S/SAFR ... | \
cubag --set=cp.cus:v4sip,stime(/*,3600),dport \
 --set=c.cus:v4sip,stime(/*,3600)

• Server similar with SA/SAFR and sport
• Intersecting gets C/S, differencing gets C only

and S only
cubagtool --intersect --output=cssp.cus cp.cus sp.cus
cubagtool --difference --output=cop.cus cp.cus cssp.cus
etc.

Two kinds of client / servers
• For a few services, it is normal for a host to

be client and server (SMTP, DNS, etc.)
• For others, this may be suspicious
• We have sets of C, S, CS, with ports

– the later are the CS on the same port
• We also have CS without port information
• Extract IPs from CS same port and difference

with all CS to get CS on different ports
cubagtool --project:v4sip,stime --output=css.cus cssp.cus
cubagtool --difference --output=csd.cus cs.cus css.cus

Selected C / S activity results

What is it?
 sIP| dIP| sPort| dPort|pro| pkts| bytes|initF| flags| sTime| dur|
 xxx.yyy.245.103| aaa.bbb.88.194|34359| 22| 6| 725| 55417| S | S PA |2009/11/18T19:28:09.845|163.961|
 aaa.bbb.88.194| xxx.yyy.245.103| 22|34359| 6| 495| 94839| S A | S PA |2009/11/18T19:28:09.894|163.912|
ccc.ddd.118.175| xxx.yyy.245.103|15912| 22| 6| 2| 88| S | SR |2009/11/18T19:56:58.285| 0.172|
 xxx.yyy.245.103|ccc.ddd.118.175| 22|15912| 6| 1| 48| S A | S A |2009/11/18T19:56:58.285| 0.172|
 and later
ccc.ddd.118.175| xxx.yyy 245.103|60076| 22| 6| 3| 132| S | S |2009/11/18T20:29:13.204| 94.197|
 xxx.yyy.245.103|ccc.ddd.118.175| 22|60076| 6| 8| 352| S A | S A |2009/11/18T20:29:13.204| 94.197|

Harmless in this case, but worrisome nonetheless.

Dark Space

Dark space is unoccupied address space. Some
organizations own large blocks of it. It is also the
space between addresses in allocated space. The
/22 that we observe has 117 active addresses, 899
that are dark (8 invisible). By filtering out the active
addresses, we can look at the residue.
Note that the fact that there is legitimate activity in the
space may provoke some of the dark space activity.
Barford observed this a few years ago when he
added activity to a previously dark /8. This data is
from Feb. 2006 - Mar. 2007. Large scale collection
failure in Aug. and Nov.

Who is there? What are they doing?
• TCP Scanners; Outside to dark for SYN only

– Sets v4sIP,hour; v4sIP,dPort; v4sIP,v4dIP;
dPort,v4sIP; dport,v4dIP; dPort,hour; hour,v4sIP;
hour,v4dIP; hour,dPort; sCC,hour; sCC,dPort,
sCC,v4dIP

– Bags v4sIP:flows,pkts,bytes,span; dPort:f,p,b,span
hour:f,p,b; sCC:f,p,b,span

• Project second field off sets; add count -> bag
• Join all bags with same key

– gives bags by v4sIP, dPort, hour, sCC
– counts from rollups and volumes, span
– sort by field(s) of interest

• We present results by dPort only here

Dark space results - Sources/dPort

795552521647276367558395T03:18:2877489925795900
1426464283739077390T09:40:04105894296223
4165340860823855482T02:48:0650689930422967
11249042277675933T02:39:44531356814662

12612116262077111191389T20:54:0615508993593135
251607651396181962T15:18:13461455134001
228104446316154060T16:24:17181509847190
327062866551229957T00:31:151511124529272

943480401961423434305386T09:14:321315899136761433
45768460935422266119347T05:43:0360658991642280
739648321513998334937397T13:50:27434789916896139
1298005626177687837345T15:39:4169612346024662

1226366882510187454525397T15:07:29660989992314445
bytespacketsFlowsSpanHoursDstCntSrcCntdPort

Dark space results - Hours/dPort

975604197617396263T23:36:2922001138143631
22569724854919659376T16:22:5822448991351080
14467922992311255264T06:54:3425111151612879
17070283546312206264T07:00:522683116123157

739648321513998334937397T13:50:27434789916896139
45768460935422266119347T05:43:0360658991642280

1226366882510187454525397T15:07:29660989992314445
bytespacketsFlowsSpanHoursDstCntSrcCntdPort

Almost 1800 ports scanned. Hosts/port and hours/port vary widely
Cases with large number of sources, small number of targets
unexplained. Port du jour effect also visible with short span.
SrcCnt = 100 at rank 54, 10 at rank 138, 1 at rank 540
DstCnt = 100 at rank 136, 10 at rank 171, 1 at rank 329
Hours = 100 at rank 62, 10 at rank 179, 1 at rank 661
Most activity is low frequency in some or all dimensions!

Dark Space Sources per hour

Sources per
hour are in the
10-100 range
most of the time

Bursts of up to
about 2000
sources per
hour occur
irregularly and
persist for
several hours.

Conclusions
• Multikey sets and bags support complex analysis tasks

– Time keys simplify multiperiod analysis
• Eliminate false zeros of rwcount

– Rich key set allows (almost) arbitrary viewpoints
– Projection and join bring disparate sources together
– Simple scripts can serve as report generation drivers
– Stream operations remove memory size based limits

• Predictable space / time performance for real time
– Can take advantage of multicore processors
– Constant time lookup for filter applications
– Arbitrary key fields
– Adaptable to packet or other streams

Acknowledgements

• Funding, in part via a grant from Cisco Systems
to the University of North Carolina
– Thanks especially to Henry Stern of Ironport

• The FloVis project at Dalhousie for providing
applications and data

• Ron McLeod of TARA
• RedJack for encouragement, support, and

ongoing interest.
– Greg Virgin, Michael Collins, Doug Creager

Questions?

