Background Visual Motifs Traffic Classification Evaluation

Towards Reliable Traffic Classification Using Visual Motifs

Wilson Lian¹ John McHugh^{1,2} Fabian Monrose¹

¹University of North Carolina at Chapel Hill

²RedJack, LLC

FloCon 2010

Background Visual Motifs Traffic Classification Evaluation

Overview

- Background
- Visual Motifs
- Traffic Classification
- Evaluation

Motivation

Motivation

Goals

Assumptions

- Reliable transport via TCP
- Stream Cipher
 - No access to payload
 - Length preservation
- Negligible packet loss & retransmission

Related Work

- Scatter (and other) Plots for Visualizing User Profiling Data and Network Traffic, Goldring 2004.
- Using Visual Motifs to Classify Encrypted Traffic, Wright et al. 2006
- Intelligent Classification and Visualization of Network Scans Muelder et al. 2008.
- FloVis: A Network Security Visualization Framework, Taylor 2009.

Image credit: Wright et al. 2006

Unigram Heatmaps

Bigram Heatmaps

(-48, 40) (-1500, 40) (-1500, 40)	(40, 891)
(-40, -270) (-270, -1500)	(48, -48) (891, -40) (40, -1500)

3/9 = 33.3%	1/9 = 11.1%
2/9 = 22.2%	3/9 = 33.3%

Bigram Heatmaps

Modeling Protocol Behavior

3/9 = 33.3%	1/9 = 11.1% 2
2/9 = 22.2%	3/9 = 33%
3	4

Modeling Protocol Behavior

$$A_{total} = \sum_{k=1}^{n} A_{k}$$

$$B_{total} = \sum_{k=1}^{n} B_{k}$$

$$Score_{A \leftrightarrow B} = \sum_{i=1}^{n} \left| \frac{A_{i}}{A_{total}} - \frac{B_{i}}{B_{total}} \right|$$

$$= \frac{1}{A_{total} \cdot B_{total}} \sum_{i=1}^{n} |A_{i} \cdot B_{total} - B_{i} \cdot A_{total}|$$

Classifying Samples: Easy as 1-2-3

- Oreate training models for desired protocols
- Build distribution for sample network trace
- Find training model with lowest difference score

$$Score_{A \leftrightarrow B} = \sum_{i=1}^{n} \left| \frac{A_i}{A_{total}} - \frac{B_i}{B_{total}} \right|$$
$$= \frac{1}{A_{total} \cdot B_{total}} \sum_{i=1}^{n} |A_i \cdot B_{total} - B_i \cdot A_{total}|$$

Evaluation

- How much traffic must be collected for:
 - Training
 - Testing
- Precision?

Recall?

 $\frac{\textit{true positives}}{\textit{true positives} + \textit{false negatives}}$

Data

- CRAWDAD Dataset
- Weekdays: January 19, 2004 February 6, 2004
- Ports with sufficient traffic
 - ullet \geq 1M packets
 - 0.3% of ports \rightarrow 95.21% of packets
- Keep top 10 ports by number of sessions observed
- No ground truth

Total Packets	1.3 Billion
Traffic Volume	707 GB
Observed Ports	64,214
Sessions	5.2 Million
Port 80 Sessions	1.7 Million

Methodology

- Trial :=
 - Randomly sample some percentage of available data for each port and train classifier
 - Randomly sample some number of the remaining data points for each port and create testing samples
 - Classify testing samples
- 50 Trials

Training Size Selection

Training Size Selection

Testing Size Selection

Testing Size Selection

Results

Classification Confidence Threshold

- Goal: Eliminate close calls
- Require 1st place candidate to lead 2nd place by certain amount to make decision
- Standard deviation of scores

Methodology v2.0

- Randomly sample some percentage of available data for each port and train classifier
- Randomly sample some number of the remaining data points for each port and create testing samples
- Attempt to classify testing samples
 - If all testing samples reach threshold, done.
 - If any testing sample fails, rebuild testing samples and try again.

Classification Confidence

50 Trials

5% Training Set Size

35,000 Data Points Testing Set Size

1.0 Lead Threshold

96.9% Precision

96.6% Recall

Classification Confidence

Ground Truth Testing

MIT Lincoln Labs DARPA Data 50 trials, 5% training sample size, 35,000 data point testing sample size, 1.25 lead threshold

• Precision: 98.3%

Recall: 98.0%

Results

50 Trials

5% Training Set Size

35,000 Data Points Testing Size

1.25 Lead Threshold

Ground Truth

Evasion

One might attempt to thwart our technique by padding all packets to MTU.

Reduces problem to 4-quadrant problem.

Can still make decisions based on relative prevalence of each quadrant.

Current/Future Work

- Packet loss/re-transmission may cause unpredictable results
- On-line classification
- Training and testing from separate datasets
- UDP
- Subcategorization

Conclusion

- Modeling protocol behavior using only packet size, direction, and order
- Resistant to encryption and padding
- Average precision and recall > 97%
- Quick and reliable traffic inspection
- Useful for pre-screening traffic for deeper analysis

Questions?

Thanks for listening. Q & A

wwlian@gmail.com