
Traffic Analysis
Using

Streaming Queries

Mike Fisk
Los Alamos National Laboratory

mfisk@lanl.gov

2

Outline

  Intro to Continuous Query Systems
•  a.k.a Streaming Databases
•  Relevance to data networks

  Optimizing the evaluation of multiple Boolean queries
•  Counting Algorithm
•  Snort
•  Static Dataflow Optimization

–  Common Subexpression
–  Vector Algorithms

  Performance Comparisons

3

Observations

  Traffic analysis tools are data-type-specific
•  Flowtools – netflow
•  Snort – pcap
•  Psad – iptables logs
•  …

  Most analysis systems lack a framework for optimizing
rules/queries
•  Reordering boolean expressions
•  Grouping (common sub-expressions)
•  Vector/set operations

4

Continuous Query Systems

  Continuous Query systems are to streaming data what Relational
Database systems are to stored data
•  Filtering, summarization, aggregation

  Example datasets:
•  Sensor data (temperature, traffic, etc)
•  Stock exchange transactions
•  Packets, flows, logs

  Inefficient and high latency to load data into a traditional database
and query periodically.
•  How often could you afford to re-execute the query?

  Example systems:
•  NiagraCQ (Wisc), Telegraph (Berkeley), SMACQ, etc.
•  Commerical: StreamBase, etc.

  Example systems in disguise:
•  Snort, router ACLs, firewall filters, packet classification, egrep

5

System for Modular Analysis &
Continuous Queries

Queries

Optimized Data-Flow Graphs

Scheduler

Processing Modules

Type Run-Time

Specified at run-time

Dynamically Loaded

Internals

Type Modules

6

Type Model

  Stream of dynamically & heterogeneously typed objects
•  Each object can have different type
•  Types need not be statically defined in advance

  Objects refer to storage locations
•  Internal to the object, or references into other objects or external memory

  Objects have fields
•  Fields are (indifferently) struct elements, enums, unions, casts, string

conversions, etc.
•  Fields are first-class objects
•  Fields can be dynamically attached to objects

  Objects are immutable
•  Enables parallelism without locking

7

Type Module Definition

  There are no fundamental types

  Pcap packet example
struct dts_field_spec dts_type_packet_fields[] = {
//Type Name Access Function if not fixed
{ "timeval", "ts", NULL }, // Fixed-length, fixed-location
{ "uint32", "caplen", NULL },
{ "uint32”, "len", NULL },
{ "ipproto”, "ipprotocol", dts_pkthdr_get_protocol }, // Function-pointer
{ "string”, "packet", dts_pkthdr_get_packet },
{ "macaddr”, "dstmac", dts_pkthdr_get_dstmac },
{ "nuint16", "ethertype", dts_pkthdr_get_ethertype },
{ "ip", "srcip", dts_pkthdr_get_srcip },
…

8

SMACQ Processing Modules

  Modules are the atoms of query optimization

  Written in C++ or Python

  Take arbitrary flags and arguments
•  Unix command-line style

  Introspection: Can ask runtime to identify downstream invariants
•  When module can do eager pre-filtering (e.g. hardware prefilter

on NIC, database query, etc.)

  Event-driven (produce/consume) API
•  Can use “threaded” wrapper if lazy (really co-routines)

  Can embed other query instantiations
•  Can instantiate new scheduler, or share primary (preferred)

9

Example Processing Module (Python)

Class Dumper:
 “””Print a few elements of each datum and pass every 5th”””
 def __init__(self, smacq, *args):
 print ('init', args)
 self.smacq = smacq #Save reference to runtime
 self.buf = [] #List of objects received

 def consume(self, datum):
 for i in 'srcip', 'dstip', 'ipprotocol', 'len':
 v = datum[i].value
 print (i, datum[i].type, type(v), v)
 self.buf.append(datum)
 if len(self.buf) == 5:
 self.smacq.enqueue(datum) # Output object downstream
 self.buf = []

10

Query Model: Dataflow Graphs

  Queries are dataflow graphs

  Modules declare algebraic properties:
•  stateless (map), annotation, vector, demux, (associative)
•  Enables optimization, rewriting, parallelization, map/reduce

  Static optimizer applies all data-flow optimizations
permitted by algebraic properties of the involved modules

pcaplive == uniq print

Stateful
filtering

Stateless
filtering

Input Output

AND

11

Optimizing Continuous Queries

  Traditional database query optimization:
•  Uses data indexes
•  Minimizes individual query times

  Continuous-query optimization:
•  Executing many queries simultaneously
•  Minimize resource consumption per unit of data input

–  Maximize data throughput

12

Why is multiple query processing important?
Approximately 8 new rules each week

Optimization of 150 Snort Rules

=

14

Example Queries
 6 Tests in 3 Rules

Packet

Capture
 Reporter

ip=x?

contains

“FOO”?

sport=80?

ip=y?

sport=80?

sport=80?

15

Snort Approach
[Roesh, LISA 99] Example: 6-7 Tests

Packet

Capture

Reporter

srcip=y?

sport=80?

srcip=x?

sport=80?

srcip=*?

sport=80?

 …

Unique 5-Tuples

contains

“BOO”?

 …

Per-Tuple

Tests

16

Counting Approach
[Carzaniga & Wolf, SIGCOMM 03] Example: 7 Tests

Packet

Capture
 Reporter

ip=x?

ip=y?

sport=80?

Unique

Sub-expressions

(x, 80)

total=2?

(y, 80, “BOO”)

total=3?

sport=80

total=1?

Rules/Queries

…

…

contains

“BOO”?

17

Data-Flow Approach
 Example: 1-4 Tests

Packet

Capture
 Reporter

ip=x?

ip=y?

sport=80?

contains

“BOO”?

1.  Common roots

2.  Common leaves
3.  Common upstream graphs

4.  Common downstream graphs

18

Performance Comparison

Total Constraints

19

Vector Functions

  Most optimizations in stream analysis have employed a class of
algorithms that can be characterized as vector functions:
•  f(x, v) = f(x, v1), f(x, v2), ….
•  Vector version is typically O(1) or O(log n) instead of O(n)

  Examples
•  Set of equality tests becomes a single lookup in a hash-table
•  Set of string matches becomes a single DFA to traverse

dstport==25 Y

dstport==80

=
X

Lookup
dstport

80

25 Y

X

20

Performance Comparison
with Vector Functions

> 80% of tests short-circuited

21

Analysis: Why was Counting better only
without vectors?
  Assume that each test results in p more tests

•  p = fanout • short-circuiting
•  p ≤ fanout
•  0 ≤ short-circuiting ≤ 1

  Assume data-flow of tests is a balanced tree of depth d
•  d is an integer ≥ 1

  Expected number of evaluations:
 1 + p + p2 + p3 + … + pd-1 = (1 - pd) / (1 - p)

  Let u = number of unique tests = Counting’s performance
 s(1 - pd) / (1 - p) < u if (d > 1, p < 1)

  For IDS test: d = 6
•  With Vectors (u=39): p < 1.7 is desired. Actual p = 1
•  Without Vectors (u=1782): p < 4.2 is desired. Actual p = 5.8

22

Supported Query Languages

  SQL style:
print srcip, dstip from

(cflow where dstport==80 and uniq(srcip, dstip))
•  Misplaced belief that since SQL is well defined, people can just

use it
•  Deeply nested queries make you wish you were merely nested in

s-expressions

  Unix pipe style:
cflow | where dstport==80 | uniq srcip dstip | print srcip, dstip

pcaplive == uniq print

Stateful
filtering

Stateless
filtering

Input Output

AND

23

Supported Query Languages

  Datalog
Pairs :- cflow | uniq(srcip dstip)
SrcCount :- count() group by ipprotocol srcport
DstCount :- count() group by ipprotocol dstport
Pdf :- filter(count) | pdf
Print :- sort(-r probability) | print(type ipprotocol port probability)

Pairs | SrcCount | const(-f type src) | Pdf | rename (srcport port) | Print
Pairs | private | DstCount | const(-f type dst) | Pdf | rename (dstport port) | Print

•  Clean, allows named subexpressions

24

Join Models

  DFA module
•  Define a state machine where transitions specified as Booleans

on new inputs

  SQL style
•  Example: print running cross-product

print a.ipid b.ipid from
 pcapfile(0325@1112-snort.pcap) a, b where a.ipid != b.ipid

•  New keyword UNTIL defines when state can be removed
–  “NEW” refers to newly input data for comparison

•  Example: print retransmissions within the same second
print expr(b.ts - a.ts) from pcaplive() a until(new.a.ts.sec > a.ts.sec), b until(new)

where b.ts > a.ts and a.srcip == b.srcip and a.srcport == b.srcport
 and a.seq == b.seq and a.payload != “” and b.payload != “”

25

Usage Experience

  Online detection & automated response systems

  Ad-hoc queries for forensic analysis and data exploration

  Feature extraction for other software

26

Conclusions

  Continuous Queries provide a common query syntax,
software infrastructure, and optimization framework for
traffic analysis

  CQ necessary for streaming applications, sufficient for
ad-hoc forensic analysis

Open source at smacq.sf.net!

27

Conclusions

  Continuous Queries provide a common query syntax, software
infrastructure, and optimization framework for traffic analysis

  Two identified strategies for static optimization of multiple queries
•  Remove (Counting) or Reduce (Data-flow) redundant tests
•  Boolean (Data-flow) short-circuiting removes need for some subsequent

tests

  Performance Analysis:
•  Counting is preferable when short-circuiting is rare
•  Data-flow out-performs counting when short-circuiting is significant

–  When breadth of graph is reduced with vector functions, actual IDS workload
benefits significantly from short-circuiting

  Data-flow approach can also benefit from additional, dynamic
reordering of tests to maximize early short-circuiting

Open source at
smacq.sf.net!

