
Traffic Analysis
Using

Streaming Queries

Mike Fisk
Los Alamos National Laboratory

mfisk@lanl.gov

2

Outline

  Intro to Continuous Query Systems
•  a.k.a Streaming Databases
•  Relevance to data networks

  Optimizing the evaluation of multiple Boolean queries
•  Counting Algorithm
•  Snort
•  Static Dataflow Optimization

–  Common Subexpression
–  Vector Algorithms

  Performance Comparisons

3

Observations

  Traffic analysis tools are data-type-specific
•  Flowtools – netflow
•  Snort – pcap
•  Psad – iptables logs
•  …

  Most analysis systems lack a framework for optimizing
rules/queries
•  Reordering boolean expressions
•  Grouping (common sub-expressions)
•  Vector/set operations

4

Continuous Query Systems

  Continuous Query systems are to streaming data what Relational
Database systems are to stored data
•  Filtering, summarization, aggregation

  Example datasets:
•  Sensor data (temperature, traffic, etc)
•  Stock exchange transactions
•  Packets, flows, logs

  Inefficient and high latency to load data into a traditional database
and query periodically.
•  How often could you afford to re-execute the query?

  Example systems:
•  NiagraCQ (Wisc), Telegraph (Berkeley), SMACQ, etc.
•  Commerical: StreamBase, etc.

  Example systems in disguise:
•  Snort, router ACLs, firewall filters, packet classification, egrep

5

System for Modular Analysis &
Continuous Queries

Queries

Optimized Data-Flow Graphs

Scheduler

Processing Modules

Type Run-Time

Specified at run-time

Dynamically Loaded

Internals

Type Modules

6

Type Model

  Stream of dynamically & heterogeneously typed objects
•  Each object can have different type
•  Types need not be statically defined in advance

  Objects refer to storage locations
•  Internal to the object, or references into other objects or external memory

  Objects have fields
•  Fields are (indifferently) struct elements, enums, unions, casts, string

conversions, etc.
•  Fields are first-class objects
•  Fields can be dynamically attached to objects

  Objects are immutable
•  Enables parallelism without locking

7

Type Module Definition

  There are no fundamental types

  Pcap packet example
struct dts_field_spec dts_type_packet_fields[] = {
//Type Name Access Function if not fixed
{ "timeval", "ts", NULL }, // Fixed-length, fixed-location
{ "uint32", "caplen", NULL },
{ "uint32”, "len", NULL },
{ "ipproto”, "ipprotocol", dts_pkthdr_get_protocol }, // Function-pointer
{ "string”, "packet", dts_pkthdr_get_packet },
{ "macaddr”, "dstmac", dts_pkthdr_get_dstmac },
{ "nuint16", "ethertype", dts_pkthdr_get_ethertype },
{ "ip", "srcip", dts_pkthdr_get_srcip },
…

8

SMACQ Processing Modules

  Modules are the atoms of query optimization

  Written in C++ or Python

  Take arbitrary flags and arguments
•  Unix command-line style

  Introspection: Can ask runtime to identify downstream invariants
•  When module can do eager pre-filtering (e.g. hardware prefilter

on NIC, database query, etc.)

  Event-driven (produce/consume) API
•  Can use “threaded” wrapper if lazy (really co-routines)

  Can embed other query instantiations
•  Can instantiate new scheduler, or share primary (preferred)

9

Example Processing Module (Python)

Class Dumper:
 “””Print a few elements of each datum and pass every 5th”””
 def __init__(self, smacq, *args):
 print ('init', args)
 self.smacq = smacq #Save reference to runtime
 self.buf = [] #List of objects received

 def consume(self, datum):
 for i in 'srcip', 'dstip', 'ipprotocol', 'len':
 v = datum[i].value
 print (i, datum[i].type, type(v), v)
 self.buf.append(datum)
 if len(self.buf) == 5:
 self.smacq.enqueue(datum) # Output object downstream
 self.buf = []

10

Query Model: Dataflow Graphs

  Queries are dataflow graphs

  Modules declare algebraic properties:
•  stateless (map), annotation, vector, demux, (associative)
•  Enables optimization, rewriting, parallelization, map/reduce

  Static optimizer applies all data-flow optimizations
permitted by algebraic properties of the involved modules

pcaplive == uniq print

Stateful
filtering

Stateless
filtering

Input Output

AND

11

Optimizing Continuous Queries

  Traditional database query optimization:
•  Uses data indexes
•  Minimizes individual query times

  Continuous-query optimization:
•  Executing many queries simultaneously
•  Minimize resource consumption per unit of data input

–  Maximize data throughput

12

Why is multiple query processing important?
Approximately 8 new rules each week

Optimization of 150 Snort Rules

=

14

Example Queries
 6 Tests in 3 Rules

Packet
Capture Reporter

ip=x?

contains
“FOO”?

sport=80?

ip=y?

sport=80?

sport=80?

15

Snort Approach
[Roesh, LISA 99] Example: 6-7 Tests

Packet
Capture

Reporter
srcip=y?

sport=80?

srcip=x?
sport=80?

srcip=*?
sport=80?

 …

Unique 5-Tuples

contains
“BOO”?

 …

Per-Tuple
Tests

16

Counting Approach
[Carzaniga & Wolf, SIGCOMM 03] Example: 7 Tests

Packet
Capture Reporter

ip=x?

ip=y?

sport=80?

Unique
Sub-expressions

(x, 80)
total=2?

(y, 80, “BOO”)
total=3?

sport=80
total=1?

Rules/Queries

…
…

contains
“BOO”?

17

Data-Flow Approach
 Example: 1-4 Tests

Packet
Capture Reporter

ip=x?

ip=y?

sport=80?
contains
“BOO”?

1.  Common roots

2.  Common leaves
3.  Common upstream graphs

4.  Common downstream graphs

18

Performance Comparison

Total Constraints

19

Vector Functions

  Most optimizations in stream analysis have employed a class of
algorithms that can be characterized as vector functions:
•  f(x, v) = f(x, v1), f(x, v2), ….
•  Vector version is typically O(1) or O(log n) instead of O(n)

  Examples
•  Set of equality tests becomes a single lookup in a hash-table
•  Set of string matches becomes a single DFA to traverse

dstport==25 Y

dstport==80

=
X

Lookup
dstport

80

25 Y

X

20

Performance Comparison
with Vector Functions

> 80% of tests short-circuited

21

Analysis: Why was Counting better only
without vectors?
  Assume that each test results in p more tests

•  p = fanout • short-circuiting
•  p ≤ fanout
•  0 ≤ short-circuiting ≤ 1

  Assume data-flow of tests is a balanced tree of depth d
•  d is an integer ≥ 1

  Expected number of evaluations:
 1 + p + p2 + p3 + … + pd-1 = (1 - pd) / (1 - p)

  Let u = number of unique tests = Counting’s performance
 s(1 - pd) / (1 - p) < u if (d > 1, p < 1)

  For IDS test: d = 6
•  With Vectors (u=39): p < 1.7 is desired. Actual p = 1
•  Without Vectors (u=1782): p < 4.2 is desired. Actual p = 5.8

22

Supported Query Languages

  SQL style:
print srcip, dstip from

(cflow where dstport==80 and uniq(srcip, dstip))
•  Misplaced belief that since SQL is well defined, people can just

use it
•  Deeply nested queries make you wish you were merely nested in

s-expressions

  Unix pipe style:
cflow | where dstport==80 | uniq srcip dstip | print srcip, dstip

pcaplive == uniq print

Stateful
filtering

Stateless
filtering

Input Output

AND

23

Supported Query Languages

  Datalog
Pairs :- cflow | uniq(srcip dstip)
SrcCount :- count() group by ipprotocol srcport
DstCount :- count() group by ipprotocol dstport
Pdf :- filter(count) | pdf
Print :- sort(-r probability) | print(type ipprotocol port probability)

Pairs | SrcCount | const(-f type src) | Pdf | rename (srcport port) | Print
Pairs | private | DstCount | const(-f type dst) | Pdf | rename (dstport port) | Print

•  Clean, allows named subexpressions

24

Join Models

  DFA module
•  Define a state machine where transitions specified as Booleans

on new inputs

  SQL style
•  Example: print running cross-product

print a.ipid b.ipid from
 pcapfile(0325@1112-snort.pcap) a, b where a.ipid != b.ipid

•  New keyword UNTIL defines when state can be removed
–  “NEW” refers to newly input data for comparison

•  Example: print retransmissions within the same second
print expr(b.ts - a.ts) from pcaplive() a until(new.a.ts.sec > a.ts.sec), b until(new)

where b.ts > a.ts and a.srcip == b.srcip and a.srcport == b.srcport
 and a.seq == b.seq and a.payload != “” and b.payload != “”

25

Usage Experience

  Online detection & automated response systems

  Ad-hoc queries for forensic analysis and data exploration

  Feature extraction for other software

26

Conclusions

  Continuous Queries provide a common query syntax,
software infrastructure, and optimization framework for
traffic analysis

  CQ necessary for streaming applications, sufficient for
ad-hoc forensic analysis

Open source at smacq.sf.net!

27

Conclusions

  Continuous Queries provide a common query syntax, software
infrastructure, and optimization framework for traffic analysis

  Two identified strategies for static optimization of multiple queries
•  Remove (Counting) or Reduce (Data-flow) redundant tests
•  Boolean (Data-flow) short-circuiting removes need for some subsequent

tests

  Performance Analysis:
•  Counting is preferable when short-circuiting is rare
•  Data-flow out-performs counting when short-circuiting is significant

–  When breadth of graph is reduced with vector functions, actual IDS workload
benefits significantly from short-circuiting

  Data-flow approach can also benefit from additional, dynamic
reordering of tests to maximize early short-circuiting

Open source at
smacq.sf.net!

