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Outline 

  Intro to Continuous Query Systems 
•  a.k.a Streaming Databases 
•  Relevance to data networks 

  Optimizing the evaluation of multiple Boolean queries 
•  Counting Algorithm 
•  Snort 
•  Static Dataflow Optimization 

–  Common Subexpression 
–  Vector Algorithms 

  Performance Comparisons 
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Observations 

  Traffic analysis tools are data-type-specific 
•  Flowtools – netflow 
•  Snort – pcap  
•  Psad – iptables logs 
•  … 

  Most analysis systems lack a framework for optimizing 
rules/queries 
•  Reordering boolean expressions 
•  Grouping (common sub-expressions) 
•  Vector/set operations 
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Continuous Query Systems 

  Continuous Query systems are to streaming data what Relational 
Database systems are to stored data 
•  Filtering, summarization, aggregation 

  Example datasets: 
•  Sensor data (temperature, traffic, etc) 
•  Stock exchange transactions 
•  Packets, flows, logs 

  Inefficient and high latency to load data into a traditional database 
and query periodically.   
•  How often could you afford to re-execute the query? 

  Example systems: 
•  NiagraCQ (Wisc), Telegraph (Berkeley), SMACQ, etc. 
•  Commerical: StreamBase, etc. 

  Example systems in disguise: 
•  Snort, router ACLs, firewall filters, packet classification, egrep 
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System for Modular Analysis &  
Continuous Queries 

Queries 

Optimized Data-Flow Graphs


Scheduler


Processing Modules


Type Run-Time 

Specified at run-time


Dynamically Loaded


Internals


Type Modules 
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Type Model 

  Stream of dynamically & heterogeneously typed objects 
•  Each object can have different type 
•  Types need not be statically defined in advance 

  Objects refer to storage locations 
•  Internal to the object, or references into other objects or external memory 

  Objects have fields 
•  Fields are (indifferently) struct elements, enums, unions, casts, string 

conversions, etc. 
•  Fields are first-class objects 
•  Fields can be dynamically attached to objects 

  Objects are immutable 
•  Enables parallelism without locking 
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Type Module Definition 

  There are no fundamental types 

  Pcap packet example 
struct dts_field_spec dts_type_packet_fields[] = { 
//Type  Name   Access Function if not fixed 
{ "timeval",     "ts",           NULL },  // Fixed-length, fixed-location 
{ "uint32",      "caplen",        NULL }, 
{ "uint32”,  "len",           NULL }, 
{ "ipproto”,  "ipprotocol",    dts_pkthdr_get_protocol },  // Function-pointer 
{ "string”,  "packet",        dts_pkthdr_get_packet }, 
{ "macaddr”,  "dstmac",        dts_pkthdr_get_dstmac }, 
{ "nuint16",     "ethertype",    dts_pkthdr_get_ethertype }, 
{ "ip",         "srcip",         dts_pkthdr_get_srcip }, 
… 
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SMACQ Processing Modules 

  Modules are the atoms of query optimization 

  Written in C++ or Python 

  Take arbitrary flags and arguments 
•  Unix command-line style 

  Introspection: Can ask runtime to identify downstream invariants 
•  When module can do eager pre-filtering (e.g. hardware prefilter 

on NIC, database query, etc.) 

  Event-driven (produce/consume) API 
•  Can use “threaded” wrapper if lazy (really co-routines) 

  Can embed other query instantiations 
•  Can instantiate new scheduler, or share primary (preferred) 
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Example Processing Module (Python) 

Class Dumper: 
    “””Print a few elements of each datum and pass every 5th””” 
    def __init__(self, smacq, *args): 
        print ('init', args) 
        self.smacq = smacq  #Save reference to runtime 
        self.buf = []   #List of objects received 

    def consume(self, datum): 
        for i in 'srcip', 'dstip', 'ipprotocol', 'len': 
            v = datum[i].value 
            print (i, datum[i].type, type(v), v) 
        self.buf.append(datum) 
        if len(self.buf) == 5: 
            self.smacq.enqueue(datum)   # Output object downstream 
            self.buf = [] 



10 

Query Model: Dataflow Graphs 

  Queries are dataflow graphs 

  Modules declare algebraic properties: 
•  stateless (map), annotation, vector, demux, (associative) 
•  Enables optimization, rewriting, parallelization, map/reduce 

  Static optimizer applies all data-flow optimizations 
permitted by algebraic properties of the involved modules 

pcaplive == uniq print 

Stateful 
filtering 

Stateless 
filtering 

Input Output 

AND 
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Optimizing Continuous Queries 

  Traditional database query optimization: 
•  Uses data indexes 
•  Minimizes individual query times 

  Continuous-query optimization: 
•  Executing many queries simultaneously 
•  Minimize resource consumption per unit of data input 

–  Maximize data throughput 
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Why is multiple query processing important? 
Approximately 8 new rules each week 



Optimization of 150 Snort Rules 

= 
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Example Queries 
          6 Tests in 3 Rules 

Packet

Capture
 Reporter


ip=x?


contains

“FOO”?


sport=80?


ip=y?


sport=80?


sport=80?
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Snort Approach 
[Roesh, LISA 99]            Example: 6-7 Tests 

Packet

Capture


Reporter

srcip=y?


sport=80?


srcip=x?

sport=80?


srcip=*?

sport=80?


     …


Unique 5-Tuples


contains 

“BOO”?


 …


Per-Tuple

Tests
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Counting Approach          
[Carzaniga & Wolf, SIGCOMM 03]                Example: 7 Tests 

Packet

Capture
 Reporter


ip=x?


ip=y?


sport=80?


Unique

Sub-expressions


(x, 80)

total=2?


(y, 80, “BOO”)

total=3?


sport=80

total=1?


Rules/Queries


…

…


contains 

“BOO”?
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Data-Flow Approach 
     Example: 1-4 Tests 

Packet

Capture
 Reporter


ip=x?


ip=y?


sport=80?

contains 

“BOO”?


1.  Common roots 

2.  Common leaves 
3.  Common upstream graphs 

4.  Common downstream graphs 



18 

Performance Comparison 

Total Constraints
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Vector Functions 

  Most optimizations in stream analysis have employed a class of 
algorithms that can be characterized as vector functions: 
•  f(x, v ) = f(x, v1), f(x, v2), …. 
•  Vector version is typically O(1) or O(log n) instead of O(n) 

  Examples 
•  Set of equality tests becomes a single lookup in a hash-table 
•  Set of string matches becomes a single DFA to traverse 

dstport==25 Y 

dstport==80 

= 
X 

Lookup   
dstport  

80 

25 Y 

X 
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Performance Comparison  
with Vector Functions 

> 80% of tests short-circuited
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Analysis:  Why was Counting better only 
without vectors? 
  Assume that each test results in p more tests 

•  p = fanout • short-circuiting 
•  p ≤ fanout 
•  0 ≤ short-circuiting ≤ 1 

  Assume data-flow of tests is a balanced tree of depth d 
•  d  is an integer ≥ 1 

  Expected number of evaluations: 
 1 + p + p2 + p3 + … + pd-1  =  (1 - pd) / (1 - p) 

  Let u = number of unique tests = Counting’s performance 
      s(1 - pd) / (1 - p) < u     if   (d > 1, p < 1)  

  For IDS test: d = 6 
•  With Vectors (u=39): p < 1.7 is desired.  Actual p = 1 
•  Without Vectors (u=1782): p < 4.2 is desired.  Actual p = 5.8 
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Supported Query Languages 

  SQL style: 
print srcip, dstip from  

(cflow where dstport==80 and uniq(srcip, dstip)) 
•  Misplaced belief that since SQL is well defined, people can just 

use it 
•  Deeply nested queries make you wish you were merely nested in 

s-expressions 

  Unix pipe style: 
cflow | where dstport==80 | uniq srcip dstip | print srcip, dstip 

pcaplive == uniq print 

Stateful 
filtering 

Stateless 
filtering 

Input Output 

AND 
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Supported Query Languages 

  Datalog 
Pairs   :- cflow | uniq(srcip dstip) 
SrcCount :- count() group by ipprotocol srcport 
DstCount :- count() group by ipprotocol dstport 
Pdf     :- filter(count) | pdf 
Print   :- sort(-r probability) | print(type ipprotocol port probability) 

Pairs | SrcCount | const(-f type src) | Pdf | rename (srcport port) | Print 
Pairs | private | DstCount | const(-f type dst) | Pdf | rename (dstport port) | Print 

•  Clean, allows named subexpressions 
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Join Models 

  DFA module 
•  Define a state machine where transitions specified as Booleans 

on new inputs 

  SQL style 
•  Example: print running cross-product 

print a.ipid b.ipid from  
     pcapfile(0325@1112-snort.pcap) a, b where a.ipid != b.ipid 

•  New keyword UNTIL defines when state can be removed 
–  “NEW” refers to newly input data for comparison 

•  Example: print retransmissions within the same second 
print expr(b.ts - a.ts) from pcaplive() a until(new.a.ts.sec > a.ts.sec), b until(new)  

where b.ts > a.ts and a.srcip == b.srcip and a.srcport == b.srcport  
          and a.seq == b.seq and a.payload != “” and b.payload != “” 
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Usage Experience 

  Online detection & automated response systems 

  Ad-hoc queries for forensic analysis and data exploration 

  Feature extraction for other software 
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Conclusions 

  Continuous Queries provide a common query syntax,  
software infrastructure, and optimization framework for 
traffic analysis 

  CQ necessary for streaming applications, sufficient for 
ad-hoc forensic analysis  

Open source at  smacq.sf.net!
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Conclusions 

  Continuous Queries provide a common query syntax,  software 
infrastructure, and optimization framework for traffic analysis 

  Two identified strategies for static optimization of multiple queries 
•  Remove (Counting) or Reduce (Data-flow) redundant tests 
•  Boolean (Data-flow) short-circuiting removes need for some subsequent 

tests 

  Performance Analysis: 
•  Counting is preferable when short-circuiting is rare 
•  Data-flow out-performs counting when short-circuiting is significant 

–  When breadth of graph is reduced with vector functions, actual IDS workload 
benefits significantly from short-circuiting 

  Data-flow approach can also benefit from additional, dynamic 
reordering of tests to maximize early short-circuiting 

Open source at  
smacq.sf.net!


