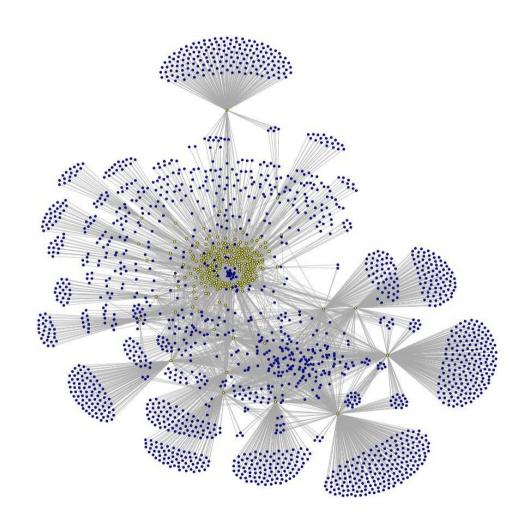
Realtime Change Detection & Automatic Network Response


Alex Brugh (presenter)
Mike Fisk, Josh Neil, Paul Ferrell, Scott Miller,
Danny Quist
Los Alamos National Laboratory
Advanced Computing Solutions
LA-UR 09-08132

Outline

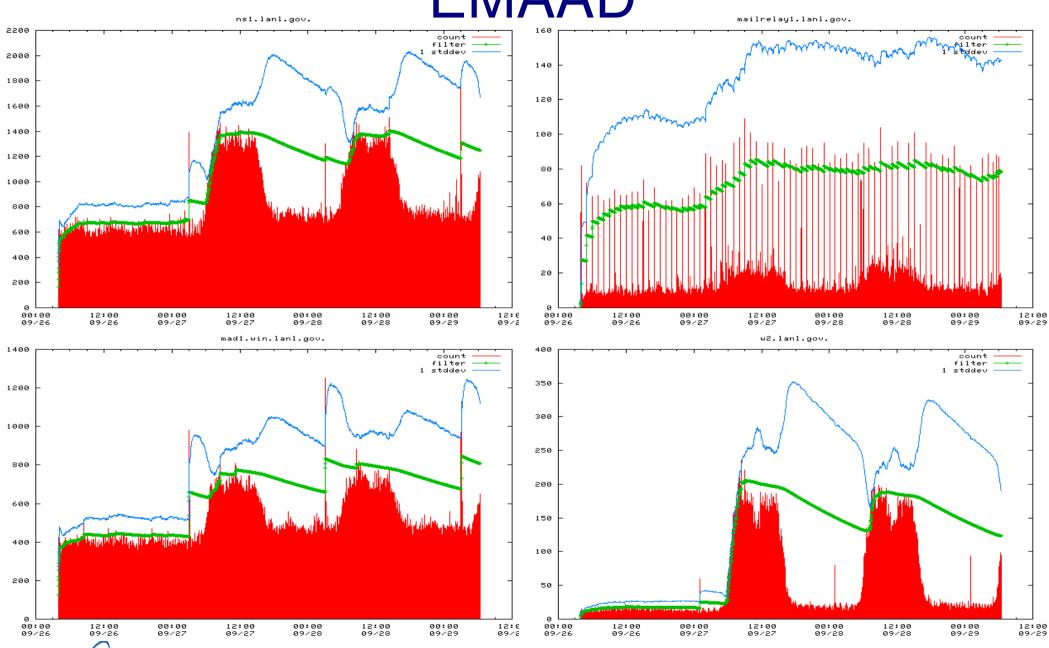
- Use of Flow in Change Detection
 - Current Methods
 - Areas of research
- Response
 - Automated framework
 - Methods

Change Detection

- We'd like to detect misuse of the network
- Most researchers have attempted to train systems to detect malicious traffic
 - But there is no realistic, representative training data
 - Over-fitting the training data is always a risk
- Our approach: focus on detecting change in the status quo
 - Change can be detected without training data
 - Statistically significant changes tend to be interesting to security and/or operations
 - Finding only future attacks isn't perfect but isn't bad

Flows

- Flows are binned by time
 - e.g., X counts per minute
- Many possible features
 - Connections from 1 host to many, from many to 1
 - Protocol distribution (e.g, TCP/UDP)
 - Ports
 - Bytes or packets sent/received
 - Graphs


EMAAD

- Exponential Moving Average Anomaly Detector
- Models number of unique connections originating from a given host per unit time
 - IP to IP, ignores ports
- How it works
 - Assumes Gaussian model
 - Asymmetric moving average
 - Adapt quickly to increases
 - Decay slowly with decreases
 - Model built for each host (little state)

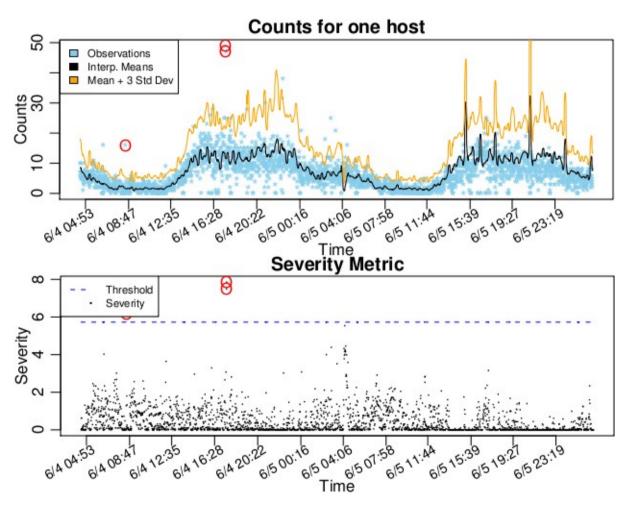
EMAAD

EMAAD

- Sub-minute response times
 - Continually recalculates as a bin updates
 - Handles 10s of thousands without
- Alarm causes
 - Host discovery (nmap, ping sweeps, etc)
 - Misconfiguration
 - HP printer administration software

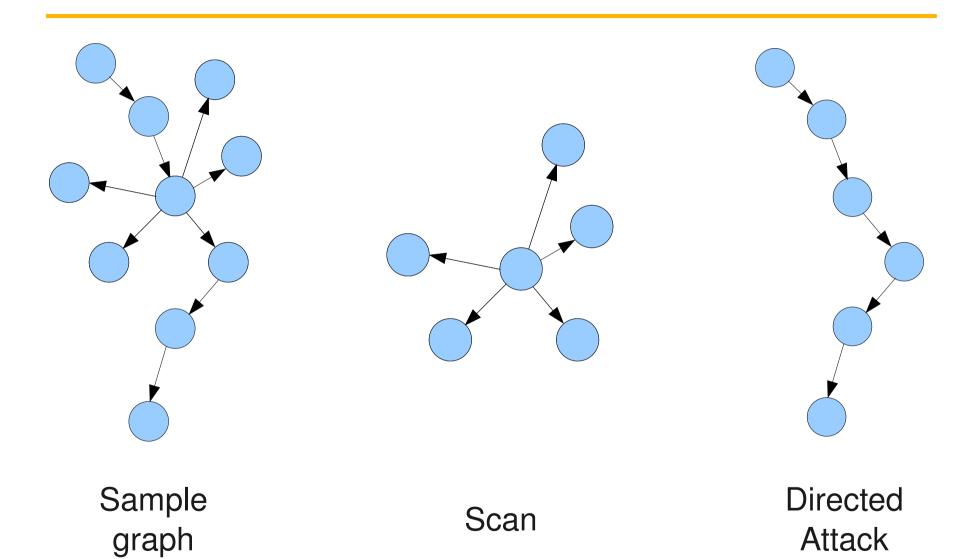
EMAAD Mark II

- We applied research by Lambert and Liu of Bell Labs [1]
 - Focuses on network degradation
 - Assumes a negative binomial model for changes
 - Also an EWMA
 - Quadratic mean interpolation
 - Has a normalized "Severity" metric
 - Outlier handling
 - Replace with random 'abnormal' draw
 - Able to detect gradual changes


EMAAD Mark II

- Modified to detect increases in activity
- Models 10 minute intervals independently
- Different cycles exist throughout the week
 - Monday-Thursday != Friday != Saturday, Sunday
 - More state than EMAAD Mk I
- Needs to train on a several cycles of data
 - Can't detect an abnormal Monday without seeing several normal ones first
 - Can use historical data, of which we have plenty

EMAAD Mark II


Next Generation Change Detection

- IP graphs based on flow records
 - Allows examination of subgraphs in a network
 - Looks for anomalies in a "neighborhood"
 - Assumes hackers behave locally
- Handles daily periods in the data
- Hidden Markov model used on edges of the graph
 - Distinct states of activity in flows
 - Probabilities in changing between states varies across time

Next Generation Change Detection

Response System

- Change detected, now what
 - Send e-mail to an analyst
 - Log this event somewhere
 - Quarantine a host
 - A combination of actions
- Not all events are equal
 - The responses shouldn't be either
 - A dynamic system needed

FRNSE

- Framework for Responding to Network Security Events
- "Replacing lowest level analyst work with a script"
- Takes alerts from Agents
 - Formated in XML
 - Transmitted securely
 - Alerts are queued and retried if unsuccessfully sent
- Uses rules to implement policy
- Can respond in a configurable way
- Exemptions can be specified
 - We still need Name Servers, pwn3d or not

FRNSE

- Python API for easy rule creation and response interfacing
- It has web interface for configuration
 - Rules
 - Exceptions
 - Data types
 - Viewing alerts

Agents

- EMAAD
- TippingPoint
- Snort
- AirDefense
- MassAV

FRNSE Production Results

- In 2007:
 - 919,737 alerts handled by FRNSE
 - 283,192 automatic firewall blocks
 - 2,293 analyst tickets generated
 - 179 automatic internal host quarantine events

Of 919,737 alerts generated in 2007, 99.75% were directly addressed by technical implementation of policy and required no analyst intervention.

Response Arsenal

- Internal Host Quarantine
- Perimeter block on external host
- Blackhole DNS name
- Open a Ticket for analysts
- Send email or page

- Get a host off the network quickly
- Impact as few collateral systems as possible
- Handle the dynamic nature of a large network
 - Laptops move
 - Switches, ugh
- Deal with resourceful users
 - Jump ports
 - Change IP

- Three lists need to be maintained by hand
 - The MAC vendor codes of switches
 - The IP addresses of routers
 - Every SNMP community string ever
- Harvest ARP tables from routers
- Switches found in ARP data
- Harvest forwarding tables from switches
- Crunch data
- Store in a database

- Host location mapped and stored by MAC
- MAC/IP mappings stored in a separate table
 - MACs might map to multiple IPs, also stored
 - IPs could have multiple MACs, ugh
- Complete history* of every host's location
 - Useful in forensics/investigations
- Web interface
 - Can view a switch
 - Search by MAC or IP

- Our current environment
 - Aprox. 1600 Switches, multiple vendors, vintages, settings
 - 20 Routers
- Runs every half hour
 - Parallelism in device harvesting and crunching needed to achieve this
 - Port jumpers handled after every run
 - Aprox. 40,000 database records generated per run
 - Aprox 2 million a day.
- Time from request to quarantine between 10 and 30 seconds depending on switch

Conclusion

- Flows used in change detection
- Detected changes feed into larger response system
- Of our responses we're pretty proud of Host-Based Quarantine

Questions

Alex Brugh abrugh@lanl.gov

[1]D. Lambert and C. Liu. Adaptive Thresholds: Monitoring Streams of Network Counts Online. Journal of the American Statistical Association, 101(473):78–88, 2006.

