Hardware-Accelerated Flexible Flow Measurement

Pavel Čeleda celeda@liberouter.org

Martin Žádník

zadnik@liberouter.org

Lukáš Solanka

solanka@liberouter.org

🕻 liberouter

Part I

Introduction and Related Work

Introduction

Motivation

- Networks are difficult to understand without monitoring.
- Networks are complex and prone to failures and attacks.
- Monitoring of multi-gigabit networks is a challenging problem.

What We Need?

- Real-time traffic monitoring, QoS measurement.
- Anomaly detection, security analysis and forensics.
- Capacity and topology planning, ...

Standard Flow Monitoring Solutions

Routers – CISCO, Juniper, Enterasys, ...

- Busy with routing, flow monitoring addon feature.
- Flow monitoring is not implemented in all models.
- Fixed placement, possible target of attacks.
- Often mandatory sampling, no advanced features.

Flow Probes - nProbe, fprobe, softflowd,

- Based on commodity HW PC and standard NICs.
- Solution when flow monitoring required but not available.
- Limited performance (PCAP, PCI-X) and stability problems (packet drops, time stamps issues, ...).
- Requires extra system tuning and system/tools hacks.

Hardware Acceleration

- PC is flexible but not fast enough to process gigabit links.
- Hardware is fast but not easy to use.

⇒ Combination of PC and programmable hardware FPGA (*Field-Programmable Gate Array*).

COMBO6X and COMBOv2 Card Family

- Time-critical parts of monitoring are processed in FPGA.
- New cards designed for 10+Gb/s speeds (up to 40-100Gb/s).

COMBO6X front side

COMBO-LXT front side

COMBOI-10G2 2x10 Gb/s

FlowMon Probe - Short Overview

Goals

- Usage of hardware acceleration for IP flow measurement.
- Implementation of advanced methods for network monitoring.

Features

- Mobile network appliance, no fixed network position.
- Independent of network infrastructure used.
- Based on Linux \rightarrow "unlimited" addon smart extensions.
- Observes whole network traffic under all conditions.
- Standard compliant NetFlow v5/9 and IPFIX.
- Secure configuration via NETCONF web interface or SSH.

FlowMon probe block schema.

FlowMon Probe - Summary

- Stable firmware and SW for COMBO6X HW.
- Mature technology for standard NetFlow v5/9 monitoring.
- Scientific projects flow monitoring, anomalies detection.
- Recognized by GÉANT2 as part of security toolset + NfSen.

Detailed network view with NetFlow data.

Part II

Flexible Flow Measurement

Hardware-Accelerated Flexible Flow Measurement

Motivation – I

New Measurement Requirements

- QoS statistics of interarrival packet interval,
- Application identification statistical fingerprinting, ...
- IDS pushed number of bytes, number of zero window probes, sample of payload, ...
- First N packets statistics, averages, variances, histograms, ...

Current Flow Measurement

- Requirements not met with traditional 5-tuple NetFlow.
- IPFIX defined and vendor-specific Information Elements.
- New vendor/user-specific Information Elements are inevitable.

Motivation – II

Current Practice of User-Specific Measurement

- Packet sniffing with tcpdump, wireshark,
- Offline aggregation by arbitrary scripts.

Challenge of Flow Monitoring Infrastructure

- Measurement and collection of ad-hoc Information Elements has not been fully addressed.
- The goal should be to specify new (non-existing) Information Element and setup exporter and collector to report it automatically.
- Dynamic and flexible flow measurement
 - \rightarrow Tell me what you want and I will deliver.
- Steps to define new Information Elements (IE):
 - 1 Select packet header fields and IE to work with.
 - 2 Specify how to aggregate these fields into a new IE.
 - Define triggers.

Measurement Framework

Dynamic Flow Measurement

- Standardized definition of packet structure NetPDL (*Network Protocol Description Language*).
- Standardized definition for flow record IPFIX.
- Standardized definition of operation simple C function.

Design Challenges of the System

- Flexibility and performance of metering process.
 - Possible solution: Utilization of network card with FPGA.
 - Flexible, yet wired functionality.
 - Line rate processing.
- Collector for dynamic flow measurement.
 - Sufficient performance.
 - Allows not only to store flow records but also understand and visualize information encoded.

System Architecture

Probe Architecture

Firmware - FPGA

- Packet parsing engine hardcoded Finite State Machine.
- Indexing hash and overflow scheme.
- Fast (line-rate) flow record update engine.
- Flow cache large SSRAM + internal memory in FPGA.

Software

- Aggregates sliced flows (if definition allows).
- Export flows.

Flexible FlowMon

Our Testbed and Deployment Network

- HW testers for line-rate (worst-case) testing.
- NREN (*National Research and Education Network*) backbones, university campuses and ISP networks.
- Sustained live traffic 4-5 Gb/s, 700 kpkt/s, 30 kflows/s.
- Long-time NetFlow monitoring probes and collectors.

Performance Expectation

- Measurement of 10 Gbps without packet loss.
- Timestamp (< 60 ns) able to distinguish consequent packets.
- Cover IPFIX and allow for user-specific Information Elements.
- Variety of optional sampling methods.

Part III

Future Work and Conclusion

State of Development

- Module for assembling parsing engine ready.
- Module for assembling flow record update engine ready.
- NETCONF data path ready.
- IPFIX exporter (user-defined flow record) work in progress.
- IPFIX collector (user-defined flow record) work in progress.

HW and SW Support

- Firmware for COMBO6X + COMBO-2XFP2 2x10 Gb/s.
- Linux OS CentOS 5.

Thank You For Your Attention

Hardware – Accelerated Network Traffic Monitoring

Pavel Čeleda celeda@liberouter.org

Martin Žádník zadnik@liberouter.org

Lukáš Solanka solanka@liberouter.org

