
Traffic Analysis of UDP-based Flows
in ourmon

Jim Binkley, Divya Parekh
jrb@cs.pdx.edu, divyap@pdx.edu

Portland State University
Computer Science

Courtesy of John McHugh

 2

Outline

  problem space - and short ourmon intro
  UDP flow tuple

 UDP work weight
 UDP guesstimator
 problems (DNS and p2p as scanners)

  packet-size based UDP application
guessing

  conclusions

 3

motivation - problem space

  UDP-based DOS attacks certainly exist
  p2p searching courtesy of Distributed Hash Tables on

the rise (use UDP to search and TCP to fetch)
  Kademlia protocol - Maymounkov and D. Mazieres.

  stormworm botnet is UDP/P2P based
  based on edonkey related protocol (overnet)

  p2p-based apps not just for file-sharing
  Joost - “cable TV”, Skype - VOIP

  goal: focus on UDP flow activity in terms of security and
p2p

 4

brief ourmon intro

  2 part system: front-end, back-end
  front-end: packet sniffer, output ASCII files
  back-end: web-interface with graphs, and aggregated logs

  front-end produces:
  scalars that produce RRDTOOL web graphs

•  either hardwired or programmable (BPF)
  various kinds of top-N lists (ourmon flows)

  back-end
  web access plus graphics processing, log aggregation
  30-second view and hourly aggregation views
  event log for important security events

 5

ourmon architectural breakdown

probe box/FreeBSD graphics box/BSD
 or linux

ourmon.conf
config file

runtime:
1. N BPF expressions
2. + topn (hash table) of
flows and other things
(tuples or lists)
3. some hardwired C filters
(scalars of interest)

pkts from NIC/kernel BPF
 buffer

mon.lite
report file

outputs:
1. RRDTOOL strip charts
2. histogram top N graphs
3. various ASCII reports,

 hourly summaries
 or report period

tcpworm.txt
etc.

filters: BPF expressions, lists, some hardwired C filters

 6

ourmon flow breakdown

  top N traditional (IP.port->IP.port) flows
  IP, UDP, TCP, ICMP
  hourly summarizations and web histograms

  IP host centric flows at Layer 4
  TCP (presented in TCP port report)
  UDP (presented in UDP port report) <-----

(this is what we are talking about here)
  Layer 7 specific flows now include

  IRC channels and hosts in channels
  DNS and ssh flows (spin-off of traditional flows)

 7

UDP port report

  UDP centric top N tuple collected by front-end
every 30 seconds

  hourly summarizations made by back-end
  flow tuple fields:

  IP address - key
  IP dst address - one sampled IP dst
  UDP work weight - noise measurement (sort by)
  SENT - packet count of packets sent
  RECV - packet count of packets returned to IP
  ICMPERRORS - icmp errors returned (unreachables

in particular)

 8

UDP port report tuple, cont.

  L3D - count of unique remote IP addresses in 30-
second sample period

  L4D - count of unique remote UDP dst ports
  SIZEINFO - size histogram

  5 buckets, <= 40, 90. 200, 1000, 1500
  (this is L7 payload size)

  SA - running average of sent payload size
  RA - running average of recv. payload size
  APPFLAGS - tags based on L7 regular expressions

  s for spim, d for DNS, b for Bittorrent, etc.
  PORTSIG - first ten dst ports seen with packet counts

expressed as frequency in 30 sec report
  e.g., [53,100] meaning 100% sent to port 53

 9

UDP work weight calculation

  per IP host
  UDP ww = (SENT * ICMPERRORS) + RECV

  if ICMPERRORS == 0, then just SENT + RECV
  we sort the top N report by the UDP ww
  basically can divide results up into about 3

bands: (numbers are relative to ethernet
speed, 1 Gbit in our case)
  TOO HIGH (> 10 million in our case)
  BUSY 1000..1 million (p2p/games/dns servers)
  LOW (most - e.g., clients doing DNS) < 1000

 10

theory behind UDP workweight

  if a host is doing
  scanning
  p2p

  it may generate SENT * ERROR packets and hence
appear higher in the report

  scanning error generation is obvious
  p2p error generation is because a p2p host has a set of

peers, some of which are stale
  if just busy, we add SENT + RECV

  some hosts may recv more packets then they send
  e.g., JOOST p2p video apps

  result: big error makers to the top, busy hosts next

 11

some added features of UDP
work weight

  we graph the very first tuple (the winner!) over the day,
which
  gives an average distribution
  shows spikes
  average day shown in next slide

  if work weight > HIGH THRESHOLD
  we record N packets with automated tcpdump mechanism
  this has proved effective at the past in catching DOS attacks

sources and targets
  even when monitoring fails if DOS was too much for probe - so

far have always managed to capture sufficient packets

 12

daily graph of top UDP work
weights

top single work weight per 30-second period for typical day:
note: peaks here are usually SPIM outside in

 13

contrived UDP port report
(simplified)

IP src ww Guess SENT RECV ICMP
ERR

L3D /
L4D

App
flags

portsig

1* 20
million

scan 20000 18000 827 208 /
527

b many

2 12
million

ipscan 6598 12 1936 600 /
2

s 1026,
1027

3* 49000 p2p 1555 1215 31 1637 /
1297

b many

4 3321 p2p 2430 891 1 703 /
279

d 53

 14

UDP guesstimator algorithm

  attempt to guess what host is up to based on
attributes

  principally on L3D/L4D and workweight
  goal: use only L3 and L4 attributes not L7

attributes and avoid destination port semantics
  thus it should work if bittorrent is on port 53 and

encrypted
  per IP host guess
  basically a decision tree with 3 thresholds

  WW high threshold - set at 10 million
  L3D/L4D - p2p counts (say 10 for a low threshold)

 15

rough algorithm

  guess = “unknown”
  if ww > HIGHTHRESHOLD

  guess = scanner
  if L4D is HIGH and L3D is LOW

•  guess = portscanner
  else if L3D is HIGH and L4D is LOW

•  guess = ipscanner
  else if L3D and L4D > P2PTHRESHOLD

  guess = p2p
  we have HIGHTHRESHOLD at 10million, port

thresholds at 10 (might be higher/lower depending on
locality)

 16

how well does it work?

  it is really only pointing out obvious attribute aspects but
this is helpful to a busy analyst

  two interesting errors
  1. because DNS servers are typically busy and because

they send to many ports, many destinations
  diagnosed as p2p -- true, but somehow annoying
  our L7 pattern is complex and is probably sufficient as DNS

isn’t going to be encrypted

  2. some p2p hosts -- typically with stale caches may be
diagnosed as “scanners”
  in a sense this is true
  note that p2p/scanner overlap is a long-standing problem

 17

application guessing - limited
experiment

  inspired by Collins, Reiter: Finding Peer-To-Peer File
Sharing Using Coarse Network Behaviors, Sept. 2006

  decided to try to use packet sizes to see if we could
guess UDP-based applications

  SIZEINFO SA/RA fields used for the most part
  thus 7 attributes in all, basic sent size histogram + SA,RA

  initially only done if guesstimator guesses “p2p”
  had to back that off for Skype

  only tested in a lab using Windows Vista and
applications (some testing on a MAC)

  culled stats from 30 second UDP port reports
  this information is appended to guess e.g.,

  p2p:joost

 18

approach

  limited testing - lab only (barring stormworm
where we got pcap traces from elsewhere)

  gathered attribute stats and
  graphed them
  per attribute choose lower and upper threshold

based on >= 90% of samples
  note that the 1000-1500 byte SIZE attribute was

always 0 (not used)
  result coded as decision tree forest

  really a set of if tests - not if-then-else
  therefore results could overlap (fuzzy match)

 19

apps/protocols in experiment

application protocol
edonkey emule
bittorrent bittorrent
azureus bittorrent
utorrent bittorrent
limewire gnutella or bittorrent
joost joost
skype skype
stormworm (UDP) emule variant

 20

results?!

  suggestive and interesting but not 100% conclusive that
this approach might be valuable

  problems:
  not enough testing but seemingly worked well barring skype
  not enough apps (should have included DNS! and probably

NTP)
  we may be finding app classes not particular apps
  we don’t know all the p2p apps on our network

•  it is a university, although bittorrent and gnutella are dominant
  perhaps should have more buckets, look at recv packet

buckets. better threshold estimation, etc.
  we could not get skype to behave - could catch it sometimes,

other times not, not necessarily p2p, not necessarily UDP

 21

conclusions

  UDP centric port tuple is useful for host behavior
analysis
  with simple stats and a top N sort

  UDP ww is a good simple stat
  helps up track down blatant security problems
  measure of noise and load

  guesstimator is useful in terms of
  dividing world into security threats vs p2p based on non-L7

data
  saving time spent looking at data
  best to learn DNS servers though

  application guessing
  promising -- would be nice if researchers elsewhere would

pursue it as well

 22

ourmon on sourceforge

  open source
  new release (2.9) including work here expected

Spring 2009
  UDP port report guesstimator etc, plus hourly UDP

summarization for port report
  ssh flow statistics (global site logging)
  expanded DNS statistics (errors, top N queries)
  expanded blacklist mechanism (can handle net/

mask)
  ourmon.sourceforge.net (version 2.81)

  currently supports threads in front-end

