Traffic Analysis of UDP-based Flows
In ourmon

Jim Binkley, Divya Parekh
, divyap@pdx.edu
Portland State University
Computer Science
Courtesy of John McHugh

% Portland State

Outline

o problem space - and short ourmon intro
o UDP flow tuple

= UDP work weight

= UDP guesstimator

» problems (DNS and p2p as scanners)

0 packet-size based UDP application
guessing

o conclusions

@ Portland QJTdT(—‘

motivation - problem space

o UDP-based DOS attacks certainly exist
o p2p searching courtesy of Distributed Hash Tables on

the rise (use UDP to search and TCP to fetch)

» Kademlia protocol - Maymounkov and D. Mazieres.
stormworm botnet is UDP/P2P based

* based on edonkey related protocol (overnet)
p2p-based apps not just for file-sharing

= Joost - “cable TV”, Skype - VOIP

goal: focus on UDP flow activity in terms of security and
p2p

@ Portland State

brief ourmon intro

o 2 part system: front-end, back-end
= front-end: packet sniffer, output ASCII files
» back-end: web-interface with graphs, and aggregated logs

o front-end produces:

» scalars that produce RRDTOOL web graphs
« either hardwired or programmable (BPF)

= various kinds of top-N lists (ourmon flows)
o back-end
= web access plus graphics processing, log aggregation
= 30-second view and hourly aggregation views
= event log for important security events

c%-) Portland State

ourmon architectural breakdown

pkts from NIC/kernel BPF
\ buffer
mon.lite
report file
probe box/FreeBSD » graphics box/BSD
tcpworm.txt or linux
etc.
I runtime: outputs:
ourmon.conf {1 N BPF expressions 1. RRDTOOL strip charts
config file 2. + topn (hash table) of 2. histogram top N graphs
flows and other things 3. various ASCI| reports,
(tuples or lists) hourly summaries
3. some hardwired C filters or report period

(scalars of interest)

filters: BPF expressions, lists, some hardwired C filters

G%-D Portland State

ourmon flow breakdown

o top N traditional (IP.port->IP.port) flows

 |P, UDP, TCP, ICMP
* hourly summarizations and web histograms

o IP host centric flows at Layer 4

= TCP (presented in TCP port report)

= UDP (presented in UDP port report) <-----
(this is what we are talking about here)

o Layer 7 specific flows now include
* |RC channels and hosts in channels
* DNS and ssh flows (spin-off of traditional flows)

@ Portland State

UDP port report

o UDP centric top N tuple collected by front-end
every 30 seconds

o hourly summarizations made by back-end

o flow tuple fields:
» |P address - key
» |P dst address - one sampled IP dst
= UDP work weight - noise measurement (sort by)
= SENT - packet count of packets sent
= RECV - packet count of packets returned to IP

» [CMPERRORS - icmp errors returned (unreachables
in particular)

@ Portland State

UDP port report tuple, cont.

L3D - count of unique remote IP addresses in 30-
second sample period

L4D - count of unique remote UDP dst ports

SIZEINFO - size histogram

= 5 buckets, <=40, 90. 200, 1000, 1500

» (this is L7 payload size)
SA - running average of sent payload size
RA - running average of recv. payload size

APPFLAGS - tags based on L7 regular expressions
= s for spim, d for DNS, b for Bittorrent, etc.

PORTSIG - first ten dst ports seen with packet counts
expressed as frequency in 30 sec report
" e.g., [53,100] meaning 100% sent to port 53

c%-) Portland State

UDP work weight calculation

o per |IP host

o UDP ww = (SENT * ICMPERRORS) + RECV
» if CMPERRORS == 0, then just SENT + RECV

o we sort the top N report by the UDP ww

o basically can divide results up into about 3
bands: (numbers are relative to ethernet
speed, 1 Gbit in our case)

= TOO HIGH (> 10 million in our case)
= BUSY 1000..1 million (p2p/games/dns servers)
= LOW (most - e.g., clients doing DNS) < 1000

@ Portland State

theory behind UDP workweight

If a host is doing
= scanning
" p2p
it may generate SENT * ERROR packets and hence
appear higher in the report
scanning error generation is obvious

p2p error generation is because a p2p host has a set of
peers, some of which are stale

if just busy, we add SENT + RECV

= some hosts may recv more packets then they send
= e.g., JOOST p2p video apps
result: big error makers to the top, busy hosts next

c%-) P()rtlanfln Stdte
10

some added features of UDP
work weight

o we graph the very first tuple (the winner!) over the day,
which

= gives an average distribution
= shows spikes

= average day shown in next slide

a if work weight > HIGH THRESHOLD

we record N packets with automated tcpdump mechanism

this has proved effective at the past in catching DOS attacks
sources and targets

even when monitoring fails if DOS was too much for probe - so
far have always managed to capture sufficient packets

G%-D P()rtlansin \S};{l te
11

&

L2 M

1.OM;
0.8 M

0.4 M1
0.2 M1

welight /period

PP O 0 0 O O O I O | OO

daily graph of top UDP work
weights

daily: udp weight : Mon Dec 15 10:46:34 PST 2008

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

0.0 -

Sun 12: 00 Mon 00: 00

B weight

Max welght 1 M Avg weilght 69 k Last weight 69 k

top single work weight per 30-second period for typical day:
note: peaks here are usually SPIM outside in

Portland State

UUUUUU ERSITY

12

contrived UDP port report

(simplified)
IP src | ww Guess | SENT |RECV |ICMP |L3D/ |App portsig
ERR |L4D |flags
1* 20 scan |20000 | 18000 |827 208/ |b many
million 527
2 12 ipscan | 6598 |12 1936 |600/ |s 1026,
million 2 1027
3* 49000 | p2p 1555 [1215 |31 1637/ |b many
1297
4 3321 | p2p 2430 | 891 1 703/ |d 53
279

C%D Portland State

13

UDP guesstimator algorithm

o attempt to guess what host is up to based on
attributes

o principally on L3D/L4D and workweight

0 goal: use only L3 and L4 attributes not L7
attributes and avoid destination port semantics

= thus it should work if bittorrent is on port 53 and
encrypted

o per IP host guess
0 basically a decision tree with 3 thresholds

= WW high threshold - set at 10 million
= |.3D/L4D - p2p counts (say 10 for a low threshold)

@ P(,)rtlanfiu Stdte
14

rough algorithm

guess = “unknown’”
if wv > HHGHTHRESHOLD

" guess = scanner

» if L4D is HIGH and L3D is LOW
e guess = portscanner

» else if L3D is HIGH and L4D is LOW
e guess = ipscanner

else if L3D and L4D > P2PTHRESHOLD
" guess = p2p
we have HIGHTHRESHOLD at 10million, port

thresholds at 10 (might be higher/lower depending on
locality)

c%-) Portland State

15

a

g

how well does it work?

it is really only pointing out obvious attribute aspects but
this is helpful to a busy analyst

two interesting errors

1. because DNS servers are typically busy and because
they send to many ports, many destinations

= diagnosed as p2p -- true, but somehow annoying
= our L7 pattern is complex and is probably sufficient as DNS
isn’t going to be encrypted
2. some p2p hosts -- typically with stale caches may be
diagnosed as “scanners’
" in a sense this is true
» note that p2p/scanner overlap is a long-standing problem

c%-) Portland State

16

application guessing - limited
experiment

inspired by Collins, Reiter: Finding Peer-To-Peer File
Sharing Using Coarse Network Behaviors, Sept. 2006

decided to try to use packet sizes to see if we could
guess UDP-based applications

SIZEINFO SA/RA fields used for the most part

» thus 7 attributes in all, basic sent size histogram + SA,RA

initially only done if guesstimator guesses “p2p”
» had to back that off for Skype

only tested in a lab using Windows Vista and
applications (some testing on a MAC)

culled stats from 30 second UDP port reports
this information is appended to guess e.g.,
" p2p:joost

@ P()rtlanfi" Stdte
17

approach

o limited testing - lab only (barring stormworm
where we got pcap traces from elsewhere)

o gathered attribute stats and
» graphed them

= per attribute choose lower and upper threshold
based on >= 90% of samples

* note that the 1000-1500 byte SIZE attribute was
always 0 (not used)

0 result coded as decision tree forest
* really a set of if tests - not if-then-else
» therefore results could overlap (fuzzy match)

@ Portland State

18

apps/protocols in experiment

application protocol

edonkey emule

bittorrent bittorrent

azureus bittorrent

utorrent bittorrent

limewire gnutella or bittorrent
joost joost

skype skype

stormworm (UDP)

emule variant

G%-D Portland State

19

results?!

o suggestive and interesting but not 100% conclusive that
this approach might be valuable

o problems:

not enough testing but seemingly worked well barring skype

not enough apps (should have included DNS! and probably
NTP)

we may be finding app classes not particular apps

we don’t know all the p2p apps on our network
 itis a university, although bittorrent and gnutella are dominant

perhaps should have more buckets, look at recv packet
buckets. better threshold estimation, etc.

we could not get skype to behave - could catch it sometimes,
other times not, not necessarily p2p, not necessarily UDP

@ Portland State

20

conclusions

o UDP centric port tuple is useful for host behavior
analysis
= with simple stats and a top N sort
o UDP ww is a good simple stat

» helps up track down blatant security problems
* measure of noise and load

0 guesstimator is useful in terms of

» dividing world into security threats vs p2p based on non-L7
data

» saving time spent looking at data
» best to learn DNS servers though
o application guessing

»= promising -- would be nice if researchers elsewhere would
pursue it as well

@ Portland State

ourmon on sourceforge

Q open source

0 new release (2.9) including work here expected
Spring 2009
= UDP port report guesstimator etc, plus hourly UDP
summarization for port report
= ssh flow statistics (global site logging)
» expanded DNS statistics (errors, top N queries)
» expanded blacklist mechanism (can handle net/
mask)
0 ourmon.sourceforge.net (version 2.81)
= currently supports threads in front-end

@ P(,)rtlanfiu Stdte
22

