
Traffic Analysis of UDP-based Flows
in ourmon

Jim Binkley, Divya Parekh
jrb@cs.pdx.edu, divyap@pdx.edu

Portland State University
Computer Science

Courtesy of John McHugh

 2

Outline

  problem space - and short ourmon intro
  UDP flow tuple

 UDP work weight
 UDP guesstimator
 problems (DNS and p2p as scanners)

  packet-size based UDP application
guessing

  conclusions

 3

motivation - problem space

  UDP-based DOS attacks certainly exist
  p2p searching courtesy of Distributed Hash Tables on

the rise (use UDP to search and TCP to fetch)
  Kademlia protocol - Maymounkov and D. Mazieres.

  stormworm botnet is UDP/P2P based
  based on edonkey related protocol (overnet)

  p2p-based apps not just for file-sharing
  Joost - “cable TV”, Skype - VOIP

  goal: focus on UDP flow activity in terms of security and
p2p

 4

brief ourmon intro

  2 part system: front-end, back-end
  front-end: packet sniffer, output ASCII files
  back-end: web-interface with graphs, and aggregated logs

  front-end produces:
  scalars that produce RRDTOOL web graphs

•  either hardwired or programmable (BPF)
  various kinds of top-N lists (ourmon flows)

  back-end
  web access plus graphics processing, log aggregation
  30-second view and hourly aggregation views
  event log for important security events

 5

ourmon architectural breakdown

probe box/FreeBSD graphics box/BSD
 or linux

ourmon.conf
config file

runtime:
1. N BPF expressions
2. + topn (hash table) of
flows and other things
(tuples or lists)
3. some hardwired C filters
(scalars of interest)

pkts from NIC/kernel BPF
 buffer

mon.lite
report file

outputs:
1. RRDTOOL strip charts
2. histogram top N graphs
3. various ASCII reports,

 hourly summaries
 or report period

tcpworm.txt
etc.

filters: BPF expressions, lists, some hardwired C filters

 6

ourmon flow breakdown

  top N traditional (IP.port->IP.port) flows
  IP, UDP, TCP, ICMP
  hourly summarizations and web histograms

  IP host centric flows at Layer 4
  TCP (presented in TCP port report)
  UDP (presented in UDP port report) <-----

(this is what we are talking about here)
  Layer 7 specific flows now include

  IRC channels and hosts in channels
  DNS and ssh flows (spin-off of traditional flows)

 7

UDP port report

  UDP centric top N tuple collected by front-end
every 30 seconds

  hourly summarizations made by back-end
  flow tuple fields:

  IP address - key
  IP dst address - one sampled IP dst
  UDP work weight - noise measurement (sort by)
  SENT - packet count of packets sent
  RECV - packet count of packets returned to IP
  ICMPERRORS - icmp errors returned (unreachables

in particular)

 8

UDP port report tuple, cont.

  L3D - count of unique remote IP addresses in 30-
second sample period

  L4D - count of unique remote UDP dst ports
  SIZEINFO - size histogram

  5 buckets, <= 40, 90. 200, 1000, 1500
  (this is L7 payload size)

  SA - running average of sent payload size
  RA - running average of recv. payload size
  APPFLAGS - tags based on L7 regular expressions

  s for spim, d for DNS, b for Bittorrent, etc.
  PORTSIG - first ten dst ports seen with packet counts

expressed as frequency in 30 sec report
  e.g., [53,100] meaning 100% sent to port 53

 9

UDP work weight calculation

  per IP host
  UDP ww = (SENT * ICMPERRORS) + RECV

  if ICMPERRORS == 0, then just SENT + RECV
  we sort the top N report by the UDP ww
  basically can divide results up into about 3

bands: (numbers are relative to ethernet
speed, 1 Gbit in our case)
  TOO HIGH (> 10 million in our case)
  BUSY 1000..1 million (p2p/games/dns servers)
  LOW (most - e.g., clients doing DNS) < 1000

 10

theory behind UDP workweight

  if a host is doing
  scanning
  p2p

  it may generate SENT * ERROR packets and hence
appear higher in the report

  scanning error generation is obvious
  p2p error generation is because a p2p host has a set of

peers, some of which are stale
  if just busy, we add SENT + RECV

  some hosts may recv more packets then they send
  e.g., JOOST p2p video apps

  result: big error makers to the top, busy hosts next

 11

some added features of UDP
work weight

  we graph the very first tuple (the winner!) over the day,
which
  gives an average distribution
  shows spikes
  average day shown in next slide

  if work weight > HIGH THRESHOLD
  we record N packets with automated tcpdump mechanism
  this has proved effective at the past in catching DOS attacks

sources and targets
  even when monitoring fails if DOS was too much for probe - so

far have always managed to capture sufficient packets

 12

daily graph of top UDP work
weights

top single work weight per 30-second period for typical day:
note: peaks here are usually SPIM outside in

 13

contrived UDP port report
(simplified)

IP src ww Guess SENT RECV ICMP
ERR

L3D /
L4D

App
flags

portsig

1* 20
million

scan 20000 18000 827 208 /
527

b many

2 12
million

ipscan 6598 12 1936 600 /
2

s 1026,
1027

3* 49000 p2p 1555 1215 31 1637 /
1297

b many

4 3321 p2p 2430 891 1 703 /
279

d 53

 14

UDP guesstimator algorithm

  attempt to guess what host is up to based on
attributes

  principally on L3D/L4D and workweight
  goal: use only L3 and L4 attributes not L7

attributes and avoid destination port semantics
  thus it should work if bittorrent is on port 53 and

encrypted
  per IP host guess
  basically a decision tree with 3 thresholds

  WW high threshold - set at 10 million
  L3D/L4D - p2p counts (say 10 for a low threshold)

 15

rough algorithm

  guess = “unknown”
  if ww > HIGHTHRESHOLD

  guess = scanner
  if L4D is HIGH and L3D is LOW

•  guess = portscanner
  else if L3D is HIGH and L4D is LOW

•  guess = ipscanner
  else if L3D and L4D > P2PTHRESHOLD

  guess = p2p
  we have HIGHTHRESHOLD at 10million, port

thresholds at 10 (might be higher/lower depending on
locality)

 16

how well does it work?

  it is really only pointing out obvious attribute aspects but
this is helpful to a busy analyst

  two interesting errors
  1. because DNS servers are typically busy and because

they send to many ports, many destinations
  diagnosed as p2p -- true, but somehow annoying
  our L7 pattern is complex and is probably sufficient as DNS

isn’t going to be encrypted

  2. some p2p hosts -- typically with stale caches may be
diagnosed as “scanners”
  in a sense this is true
  note that p2p/scanner overlap is a long-standing problem

 17

application guessing - limited
experiment

  inspired by Collins, Reiter: Finding Peer-To-Peer File
Sharing Using Coarse Network Behaviors, Sept. 2006

  decided to try to use packet sizes to see if we could
guess UDP-based applications

  SIZEINFO SA/RA fields used for the most part
  thus 7 attributes in all, basic sent size histogram + SA,RA

  initially only done if guesstimator guesses “p2p”
  had to back that off for Skype

  only tested in a lab using Windows Vista and
applications (some testing on a MAC)

  culled stats from 30 second UDP port reports
  this information is appended to guess e.g.,

  p2p:joost

 18

approach

  limited testing - lab only (barring stormworm
where we got pcap traces from elsewhere)

  gathered attribute stats and
  graphed them
  per attribute choose lower and upper threshold

based on >= 90% of samples
  note that the 1000-1500 byte SIZE attribute was

always 0 (not used)
  result coded as decision tree forest

  really a set of if tests - not if-then-else
  therefore results could overlap (fuzzy match)

 19

apps/protocols in experiment

application protocol
edonkey emule
bittorrent bittorrent
azureus bittorrent
utorrent bittorrent
limewire gnutella or bittorrent
joost joost
skype skype
stormworm (UDP) emule variant

 20

results?!

  suggestive and interesting but not 100% conclusive that
this approach might be valuable

  problems:
  not enough testing but seemingly worked well barring skype
  not enough apps (should have included DNS! and probably

NTP)
  we may be finding app classes not particular apps
  we don’t know all the p2p apps on our network

•  it is a university, although bittorrent and gnutella are dominant
  perhaps should have more buckets, look at recv packet

buckets. better threshold estimation, etc.
  we could not get skype to behave - could catch it sometimes,

other times not, not necessarily p2p, not necessarily UDP

 21

conclusions

  UDP centric port tuple is useful for host behavior
analysis
  with simple stats and a top N sort

  UDP ww is a good simple stat
  helps up track down blatant security problems
  measure of noise and load

  guesstimator is useful in terms of
  dividing world into security threats vs p2p based on non-L7

data
  saving time spent looking at data
  best to learn DNS servers though

  application guessing
  promising -- would be nice if researchers elsewhere would

pursue it as well

 22

ourmon on sourceforge

  open source
  new release (2.9) including work here expected

Spring 2009
  UDP port report guesstimator etc, plus hourly UDP

summarization for port report
  ssh flow statistics (global site logging)
  expanded DNS statistics (errors, top N queries)
  expanded blacklist mechanism (can handle net/

mask)
  ourmon.sourceforge.net (version 2.81)

  currently supports threads in front-end

