
Pointer Ownership Model

Abstract

Pointers are a dangerous feature provided by
C/C++, and incorrect use of pointers is a common
source of bugs and vulnerabilities. Most new
languages lack pointers or severely restrict their
capabilities. Nonetheless, many C/C++ programmers
work with pointers safely, by maintaining an internal
model of when memory accessed through pointers
should be allocated and subsequently freed. This model
is frequently not documented in the program. The
Pointer Ownership Model (POM) can statically
identify certain classes of errors involving dynamic
memory in C/C++ programs. It works by requiring the
developer to identify responsible pointers, whose
objects must be explicitly freed before the pointers
themselves may be destroyed. POM can be statically
analyzed to ensure that the design is consistent and
secure, and that the code correctly implements the
design. Consequently, POM can be used to identify,
and eliminate many dynamic memory errors from C
programs.

1. Introduction

Pointers are a powerful, but dangerous feature
provided by the C and C++ programming languages,
and incorrect use of pointers is a common source of
bugs and security vulnerabilities. Most new languages
lack pointers or severely restrict their capabilities,
providing memory safety to eliminate these problems.
Nonetheless, many C & C++ programs work with
pointers safely. C pointers are still considered a
powerful and useful feature of the language.

Programmers who safely work with pointers

maintain an internal model of when memory accessed
through those pointers should be allocated and
subsequently freed. Commonly-applied models include
garbage collection, Resource Acquisition Is
Initialization (RAII), and smart pointers. The chosen
model is frequently not documented in the program,
because the language lacks any mechanism for
encoding this information.

The pointer ownership model (POM) can statically

identify certain classes of errors involving dynamic
memory in C programs. The model works by requiring

the developer to identify responsible pointers; these are
the pointers whose objects must be explicitly freed
before the pointers themselves may be destroyed. POM
can be statically analyzed to ensure that the design is
consistent and secure, and that the code correctly
implements the design. Consequently, POM can be
used to identify, and eliminate many dynamic memory
errors from C programs.

The model is not perfect. It identifies several types

of errors, including memory leaks, double-frees, and
null dereferences. Out-of-bounds reads or writes to
memory fall outside the current scope of the POM;
hence it cannot detect buffer overflows. It can identify
some, but not all use-after-free errors. Finally, the
model provides an escape clause for the developer: any
pointer may be marked as Out-Of-Scope (OOS), which
means that no checking is performed on it. This is
useful for pointers to dynamic memory that are
handled by other ownership models, such as garbage
collection.

2. Impact

This project aims to improve software security at

the coding level. This would not only improve software
security in general, but also improves productivity. It
has been shown that eliminating bugs during the
coding phase is much cheaper than eliminating them
during the testing phase, or, even worse, after the bugs
appear in production code. As POM could be
considered an extension to the C language, POM
would enhance the expressiveness of the C language to
address coding challenges. Also it would achieve
effective evaluation for a degree of memory safety.

The POM will employ several techniques that have

been used by SEI research projects in the past. POM
will require modification of a compiler (Clang/LLVM
in particular). The Safe/Secure C/C++ system [1] and
AIR Integers[2], jointly developed by Plum Hall and
SCI both rely primarily on static analysis, with
dynamic analysis as a backup. Likewise, the C++
Thread Role Analysis proposal and the Compiler
Enhanced Buffer Overflow Elimination proposal are
both ongoing research projects that again rely primarily
on static analysis, with dynamic analysis as a backup.
(In fact, the Compiler Enhanced Buffer Overflow
Elimination proposal implements the same safety

guarantees as Safe/Secure C/C++). All of these
projects also involve enhancements and modifications
to the LLVM compiler framework.

Ultimately, we believe that adding a small judicious
amount of annotations to a C program enables us to
statically determine if the program is safe with regard
to memory management. This means that the program
need not be built or run. Such a strong guarantee will
improve the maintainability of the program and
consequently speed up software development.

3. Related Work

POM is related, and partially inspired, by several

earlier research projects. Many software tools, both
proprietary and open-source, employ pure static
analysis to find memory-related errors, including both
Fortify SCA and Coverity Prevent. These tools suffer
from false positives; because they analyze code with
no extra annotations or semantic information, they
must make heuristic guesses about code correctness,
and sometimes they guess wrongly.

Many other tools, such as Valgrind, provide
dynamic analysis. They do not suffer from false
positives, but they do not always find problems. To
analyze a program, they require the developer to
actually run the program, and if the program does not
misbehave while being analyzed, dynamic analysis
tools may not realize that it might misbehave when
given a different set of inputs. Dynamic analysis also
impedes performance, and so dynamic analysis tools
are useless on programs that are being used in
production; dynamic analyzers are typically only used
by QA testers.

There are several attempts to improve memory
management using models. The best known model for
pointer management is reference counting, which is
implemented in the C++11 standard library as the
shared_pointer<> template. Garbage collection is an
alternate model, which is used by the Java language,
and there are several C implementations; however
garbage collection is not part of standard C or C++.

Finally, the standard C++ auto_ptr<> template
provides a similar model to our pointer ownership
model; but it suffers from technical difficulties. The
saga of the auto_ptr serves as an important cautionary
tale when considering pointer ownership. In C++, the
auto_ptr encoded a pointer that automatically freed its
object upon its own destruction. It also supported
assignment, with the stipulation that assigning one
auto_ptr to another caused the first auto_ptr to be set to
NULL…an unusual form of assignment that prevents
‘perfect’ duplication of owning pointers. This made
auto_ptrs problematic particularly when used in
containers, because containers assumed that their

objects were fully copy-able, and auto_ptrs do not
support this contract. The common implementation of
the quick-sort algorithm would often fail with vectors
containing auto_ptrs, because it typically involves
assigning one single auto_ptr as a pivot and then
partitioning the vector’s remaining elements. Today the
auto_ptr template has been deprecated in favor of the
new unique_ptr<> template, which specifically forbids
assignment or copying.

How can the Pointer Ownership Model avoid the
mistakes that beset auto_ptr? We believe that POM can
avoid these problems for two reasons. First, unlike
auto_ptrs, POM is not required to strictly conform to
the C/C++ type system. Assignment can be performed
from one responsible pointer to another, or from a
responsible pointer to an irresponsible pointer; based
on the discretion of the developer. In contrast,
auto_ptrs were constrained by the type system in
certain cases. For example, assigning a variable to a
vector item element requires that the variable also be
an auto_ptr, causing the vector’s corresponding
auto_ptr to be set to null. Second, the POM adds
semantic information to working code, but does not
modify the code itself. As previously noted, assigning
a variable to a vector of auto_ptrs causes the vector to
be modified (because the corresponding vector item is
nulled out). Under POM, the vector is not changed,
although its item might be considered a zombie
pointer. A quick-sort algorithm that operates on a
vector of responsible pointers could use an
irresponsible pointer as a pivot, thus requiring no
changes to the algorithm code while still allowing
pointer responsibility to be correctly monitored.

Pointer models have been used to address other
problems, too. The CCured systemi used a model of
pointers, partially specified by the developer, to
identify insecure pointer arithmetic, and catch buffer
overflows. Likewise, the Safe/Secure C/C++ systemiiiii
uses both static and dynamic analysis to guarantee the
safety of pointer arithmetic and array I/O. This enables
the system to identify safe pointer usage at compile
time, and add run-time checks when safety cannot be
verified statically.

The POM is similar in that it performs safety
checks at compile time, and could add run-time checks
when necessary. Unlike traditional static analysis,
POM imposes on the developer a requirement of
providing some additional semantic information about
the pointers used by the program. This extra
information renders POM sound; any error it finds will
be true positives. POM will also be comprehensive,
finding all of the problems that are exposed by the
model.

To be more precise, POM requires developers to
specify a model for how memory is managed. After the

model is provided, POM can determine if the model is
incomplete or inconsistent, and it can also determine
whether the program complies with the model.

4. Design

The Pointer Ownership Model seeks to provide

sound static analysis by using additional semantic
information. Some of this information can be inferred
from the source code, while some information must be
explicitly provided by the developer. In particular, the
model categorizes pointers into responsible pointers
and irresponsible pointers. A responsible pointer is a
pointer that is responsible for freeing its pointed-to
object, and irresponsible pointer is not responsible for
freeing whatever object it points to. Every object on
the heap must be referenced by exactly one responsible
pointer. Consequently, responsible pointers form trees
of heap objects, with the tree roots living outside the
heap.

Irresponsible pointers can point anywhere, but
cannot free anything. A pointer variable is always
responsible or irresponsible; it cannot change
responsibility throughout its lifetime.

Ownership of an object can be transferred between
responsible pointers, but when doing so, one of the
pointers must relinquish responsibility for the object,
as only one pointer may be responsible for freeing the
object. Any responsible pointer that relinquishes
responsibility for an object becomes a ‘zombie’
pointer; a compliant program will never use the value
of any zombie pointer. Ideally, a responsible pointer’s
lifetime ends shortly after it becomes a zombie pointer.

Responsible pointers do not always point to objects
they must free. Any responsible pointer can be in one
of four states: good, null, uninitialized, and zombie. A
good pointer is one that must be freed and only a good
pointer may be dereferenced. A null pointer has the
null value. It may be freed, but need not be freed; the
standard guarantees that explicitly freeing a null
pointer does nothing. An uninitialized pointer is one
that does not hold a valid value; often because it is
uninitialized. Finally, a zombie pointer can be a
formerly good pointer that relinquished responsibility
of an object to another good pointer. Or it could be a
pointer that was passed to free(), and therefore no

longer points to valid memory. Zombie pointers must
not be dereferenced.

The POM project consists of two tools: an advisor
and a verifier, as shown in Figure 1. The advisor
examines a source code file and builds a model of
pointer ownership, possibly with the help of the
developer. (A sufficiently advanced developer could
bypass the advisor entirely and build the model from
scratch, but the purpose of the advisor is to save the
developer from this work.) The verifier takes a
compilation unit and a model and indicates if the
model is complete and the code complies with it. The
verifier can output errors if the model is incomplete
(for instance, it doesn’t indicate any responsibility for
some pointer), or the model is inconsistent (it may say
that a certain pointer is both responsible and
irresponsible), or if the program violates the model (by
trying to free an irresponsible pointer, for example.)

To analyze a compilation unit, the verifier requires
that the model indicate the responsibility status of all
pointers referenced by the compilation unit. However,
pointers in the program that are not referenced by that
compilation unit need not be specified. The model can
be built alongside the verification of individual
compilation units. As such, POM does analysis on the
level of the compilation unit, rather than whole
program analysis.

Figure 1. POM Implementation

4.1 Specification

All declared pointers can be in one of several

subtypes, as listed in Table 1.

Table 1 Pointer Subtypes

Type Definition Examples
Unknown Hasn't been assimilated into POM yet

Out Of Scope (OOS) POM doesn't apply to this pointer; it
is handled some other way.

• Reference-counting
• Garbage collection
• Circular linked list
• FILE pointers (could be

considered distinct resources
under a model similar to POM

Irresponsible Not responsible for cleaning up
memory it points to

Any pointer pointing into the stack or
data segment

Responsible Responsible for cleaning up memory
it points to

Any pointer that gets the result of a call
to malloc()

These pointer subtypes are subject to the following

rules:

• A POM-compliant program shall not have any

unknown pointers.
• An OOS pointer shall not be assigned the

value of a responsible pointer.
• An irresponsible pointer should never be a

producer argument or producer return value.
Example:
char* irp = INITIALIZE_IRRESPONSIBLE;
irp = malloc(5); // bad, malloc’s return is a producer

• An irresponsible pointer should never be a

consumer argument.
Example:
char* irp = INITIALIZE_IRRESPONSIBLE;
free(irp); // bad, free consumes its argument

• An irresponsible pointer should never by

copied over to a responsible pointer.
Example:
char* rp; // responsible
char* irp = INITIALIZE_IRRESPONSIBLE;
rp = irp; // bad
memcpy(&rp, &irp, sizeof(rp)); // bad

• A responsible pointer should never get

assigned a value from pointer arithmetic
Example:
char *rp1 = ...; // responsible
char *rp2; // responsible
rp1 = rp2 + 1; // bad

• A responsible pointer should never get
assigned a value created by &

Example:
char *rp1 = ...; // responsible
char *rp2; // responsible
rp1 = &rp2; // bad

 In other words a responsible pointer can be

assigned only the following:
o a producer return value (or be

supplied as a producer argument)
Example:
char *rp1; // responsible
char *rp2; // responsible
rp1 = malloc(5); // ok
getline(&rp2, 80, stdin); // ok

o another responsible pointer
Example:
char *rp1 = ...; // responsible
char *rp2; // responsible
char *rp3; // responsible
rp1 = rp2; // ok
memcpy(&rp3, &rp1, sizeof(rp3)); // ok

o Null
Example:
char *rp; // responsible
rp = NULL; // ok

Responsible pointers can be in one or more of the

following states. The state may not always be known,
in which case the pointer can occupy multiple states,
and be resolved later.

• Uninitialized (which includes any invalid
value)

Example:
char *ptr; // uninitialized
char *ptr2 = ptr; // also uninitialized
memcpy(&ptr2, &ptr, sizeof(ptr)); // still uninitialized

o An uninitialized responsible pointer's
value shall never be copied to an
irresponsible pointer

Example:
char *rp; // responsible
char *rp2; // responsible
char *irp; // iresponsible
irp = rp; // bad
rp2 = rp; // ok

o An uninitialized responsible pointer
shall never be consumed

Example:
char *rp; // responsible
free(rp); // bad

o An uninitialized responsible pointer
shall never be dereferenced

Example:
char *rp; // responsible
*rp = '\0'; // bad

• Null

o A responsible null pointer shall never
be dereferenced

Example:
char *rp = NULL; // responsible
*rp = '\0'; // bad

• Good (that is, the pointer points to memory it

must free, and no other responsible pointer
points to this memory)

Example:
char *ptr = new char[5]; // good
char *ptr2 = malloc(5); // good or null
if (ptr2 == NULL) abort();
// if we get here, ptr2 is good

o A good pointer shall never be overwritten

Example:
char *rp = new char[5]; // responsible
rp = new char[7]; // bad

o A responsible pointer shall never go out of

scope while good
Example:
{
 char *rp = malloc(5); // responsible or null
} // bad, memory might be leaked

struct foo_s {
 char* c; // responsible
} *s;
s = new struct foo_s;
s->c = new char[3];
// ...
delete s; // bad, s->c's memory lost

• Zombie (the pointer value has either been

assigned to another responsible pointer, or
freed)

Example:
free(ptr); // zombie
ptr = ptr2; // ptr2 now zombie, ptr now good

o A zombie pointer's value shall never
be read

Example:
char *rp = malloc(5); // responsible, good or null
free(rp); // zombie or null
char *rp2 = rp; // bad

o A zombie pointer shall never be
consumed

Example:
char *rp = malloc(5); // responsible, good
free(rp); // zombie
free(rp); // bad (double free)

o A zombie pointer shall never be
dereferenced

Example:
char *rp = malloc(5); // responsible, good
free(rp); // zombie
rp[0] = '\0'; // bad

The subtypes of pointer variables never changes;

once a responsible pointer, always a responsible
pointer. However, the state of responsible pointers can
change in the following ways:

• Assignment (this includes any read of one

responsible pointer and write of the value into
another responsible pointer)

 Example:
char *rp1 = ...; // responsible
char *rp2;
rp2 = rp1; // rp1 gets rp1's state.
// If rp1 was good, it is now a zombie
memcpy(&rp1, &rp2, sizeof(rp1));
// rp1 gets rp2's state.
// if rp2 was good, it is now a zombie

• Producer Return Value (this makes pointer

good (or null, under some circumstances))
 Example:
char *rp1; // responsible
rp1 = malloc(5); // rp1 is now good or null

char *rp2; // responsible
rp2 = new char[5]; // rp2 is now good

• Producer Argument (this makes pointer good

(sometimes only if pointer was null)
Example:
char *rp = NULL; // responsible, null
getline(&rp, 80, stdin); // rp now good

• Consumer Argument (this makes pointer a

zombie if and only if it was good)
Example:
char *rp = ...; // responsible, good
free(r); // rp now zombie

• Null check (A pointer that may be in several

states can be disambiguated by a null check)
Example:
char *rp = malloc(5); // responsible, good or null
if (rp == NULL) {
 // rp is now null
 abort(); // or any noreturn function
} else {
 // rp is now good
}
// rp is now good

Like pointers, functions can be annotated when

they take pointer arguments or when they return a
pointer. Functions can be annotated with the following:

• Noreturn functions (These are functions that
never return to their caller. They always exit
via abort(), exit(), _Exit(), longjmp(), goto, or
by invoking another noreturn function. The
C11 _Noreturn keyword denotes noreturn
functions.

Example:
void panic(const char *s) { // noreturn function
 printf("Error: %s\n", s);
 abort();
}

• Producer return functions (These are functions

that return a pointer to a responsible object.)
Example:
malloc // null or good value
strdup // null or good value
operator new // good value (never null)

o Any producer return function must
have its return value assigned to a
responsible pointer

Example:
malloc(5); // bad, return value discarded

• Consumer arguments (These are arguments to

certain functions. They either free the

pointer's data, or give it to some other
responsible pointer.)

Example:
free // arg 0: null or good -> zombie

o A consumer argument must always
be provided by a responsible pointer

Example:
char *rptr = ...; // responsible, good
free(ptr[3]) // bad

• Producer arguments (These are arguments to

certain functions. They are of type 'pointer to
pointer to x', and the functions generally
allocate memory and fill the argument with a
pointer to the newly allocated memory.)

Example:
getline // only if arg 0 is a pointer to null
// (otherwise, no allocation done)

o Any producer argument must be a
pointer to a responsible pointer
object.

• Irresponsible pointer arguments (A function

that does not produce or consume a pointer
argument effectively treats that argument as
'irresponsible'. It is permissible to pass any
pointer (responsible or not) to such a
function.)

Example:
strcpy() // both arguments irresponsible

• Forced-Irresponsible pointer arguments (A

function that takes a pointer-to-pointer
argument and modifies it, without modifying
the memory or consuming it.)

o A responsible pointer must not be

passed as a forced-irresponsible
pointer argument.

Example:
void fn(char** x) { // x points into a string
 (*x)++;
}

Because pointers can also be used in other C

objects, we must extend our notions of responsibility to
other objects. Here are the properties for structs and
C++ classes:

• A struct is responsible if it contains any

responsible pointers, or it contains any other
responsible objects.

• A responsible object is good if all of its
responsible pointers are good or null.

• A responsible object is a zombie if none of its
responsible pointers are good. (Unlike
pointers, objects can first exist in a zombie
state when its responsible pointers are
uninitialized).

• A responsible object is inconsistent if it is
neither good nor zombie.

o Any function that modifies the state

of an object must not exit with the
object in an inconsistent state.

Example:
typedef struct foo_s {
 char *rptr1; // responsible
 char *rptr2; // responsible
} foo_t;

void f1(foo_t* foo) { // assumed to be good
 free(rptr1);
} // bad, rptr2 still good, foo inconsistent

void f2(foo_t* foo) { // assumed to be good
 free(rptr1);
 free(rptr2);
} // ok

Here are the properties for unions:

• A union that contains a pointer may have that

pointer be out-of-scope, irresponsible or
responsible. (The rules for pointers in unions
are the same as for structs. However, since all
elements in a union share memory, reading or
writing to a union member reads or writes to
the pointer. A union with a responsible
pointer thus has two extra rules.

Example:
#define SIZE (siezof(char*))

typedef struct foo_u {
 char *rptr; // responsible
 char other[SIZE]; // any other data
} foo_t;

o Reading any element in a union with
a responsible pointer in a good state
converts the pointer to a zombie.
(This assumes that the pointer's value
was read and assigned elsewhere
somehow)

Example:
char string[SIZE];
foo_t foo;
memcpy(&foo.string, foo.other, SIZE);
// foo.rptr: good -> zombie

o Writing any element in a union with
a responsible pointer sets the pointer
state to uninit (its pointer value is
invalid)

Example:
foo_t foo;
foo.rptr = NULL;
foo.other[0] = 'a'; // foo.rptr is invalid

Here are the properties for arrays:

• An array of irresponsible pointers needs no

monitoring (other than the standard rules wrt
irresponsible pointers).

• An array of responsible pointers is like any
other responsible object, but with one wrinkle:
a size value. The size value indicates the
number of responsible pointers in the array. It
might be set to the index of the last element or
one past the last element. It might also be an
irresponsible pointer that points to the high
element or one past the array.

• It is acceptable for this number to be less than
the array bounds; the array may have several
unused & uninitialized values beyond the size.
(This means we do not prevent buffer
overflow on the array.)

o Any responsible array must have a
'size' variable declared in the same
scope as the array that indicates the
number of pointers to be used in the
array.

Example:
void f() {
 int *array = malloc(10 * sizeof(int)); // responsible
 int size = 8;
 for (int i = 0; i < size; i++) {
 array[i] = malloc(sizeof(int));
 }
} // ok

Typecasts are easily handled by POM. There is no

problem with typecasting a pointer (responsible or
irresponsible) to a pointer of different type. Likewise,
there is no issue with converting an irresponsible, or
out-of-scope pointer to an integer or some other
representation (such as a char array), or vice versa. A
responsible pointer can be converted to an integer, this
could be considered an implicit assignment to an
irresponsible pointer and then conversion to int.

4.2 Producers and Consumers

A function that produces a responsible object
(which may just be a responsible pointer) is a producer

function. Examples of producers include malloc(),
calloc() and various special functions like strdup().

Some functions take as an argument a pointer to a

pointer, if not NULL, they allocate space for an object
and set the pointer to the produced space. (Example:
getline() from GNU glibc.) In other words, a producer
function can produce a pointer in one of its arguments,
not just in its return value.

A function that frees a responsible object is a

consumer function. The most well-known example of
such functions is free().

It is possible for a function to consume multiple

responsible objects. It is also possible for a function to
produce one argument (or return value) and consume
an argument. A function can produce an object via its
return value, but it cannot consume an object via return
value, only via arguments.

A producer function need not even invoke malloc().

For example, a producer function could split a
responsible pointer from a responsible object and
return the pointer. The following is a producer function
because it returns a pointer that must be subsequently
freed.

 typedef struct foo_s {
 char *a; // responsible
 char *b; // irresponsible
 } foo_t;

 // producer function
 char *function(struct foo_t* foo) {
 char *tmp = foo->a;
 foo->a = NULL;
 return tmp;
 }

The following function consumes its second

argument, because its second argument no longer
needs to be explicitly freed; it is incorporated into a
responsible object.

 // consumer function
 void function2(struct foo_t* foo, char *a) {
 if (foo->a != NULL) {
 // handle error, what to do with current foo->a?
 }
 foo->a = a;
 }

The behavior of the realloc() function depends on

its size argument. It requires a responsible pointer (that
is good or null), so the pointer argument is consumed.
It also returns the pointer successfully reallocated, or a

pointer to the new internal copy (if it had to copy), or
NULL if it failed to copy. So it also has a producer
return value. Some implementations treat a call to
realloc() with a size of 0 as a call to free(), but this is
nonstandard behavior. The C11 standard declares that
specifying 0 as the size is an obsolete feature, so we
will ignore this case.

4.3 Analysis

For each function declaration, we need to know if

the function returns a responsible pointer; that is, is it a
producer? Also we need to know if the function
produces any argument pointer-to-pointer. Finally we
need to know if the function consumes any argument
pointer.

We can use static analysis to answer these

questions for a function whose definition is available.
But if a function's definition is not available, we
require some notation to answer these questions.

The main() function must not produce or consume

any arguments.

To analyze a function body properly, we must

inspect its definition. We must view all of the variables
available to the function. That includes arguments,
local variables, and static variables. Does the function
produce or consume any of them?

A responsible pointer can be in multiple states at

once. We always assume that the states a pointer is in
can be determined statically. For any two states, it is
easy to use branching to create a pointer that could be
in both states. Consider this example:

char *rptr; /* uninitialized */
bool flag = /* ... */
if (flag) {
 rptr = new char[...];
}
/* rptr now good or uninitialized */

This can cause trouble later on; there is no way to

distinguish good responsible pointers from
uninitialized pointers. To be safe, this code must use
the flag variable to determine if the pointer is good, and
determining flag's value statically might be impossible.

We can handle this code statically by allowing rptr

to be either good or initialized and indicate an error if
either state causes an inconsistency later in the code.
This means that this code will always yield an error:
either when rptr is freed (because it may have been
uninitialized) or when rptr leaks (it may have been

good). The code can always be brought to compliance
with POM by initializing rptr to NULL:

char *rptr = NULL;
bool flag = /* ... */
if (flag) {
 rptr = new char[...];
}
...
free(rptr); // was good or NULL

Besides using control flow to create multiple states,

malloc() & other producers can make pointers that are
either good or null. No other combinations of states are
typically possible without control flow. But because of
control flow, we must assume any combination of
states is possible. So a responsible pointer's state
should be expressed as a list of booleans (or a bit-
vector), one for each possible state.

However, this does mean that this safe code snippet

does not abide by POM:

char *rptr; /* uninitialized */
bool flag = /* ... */
if (flag) {
 rptr = new char[...];
}
// ...
if (flag) {
 free(rptr);
}

4.4 Remaining Issues

POM has several unresolved issues. These can be
tackled in future implementations using a waterfall
model of development. That is, future designs for POM
can tackle these issues, with only minor extensions to
the current design:

• How should POM handle a circular linked

list? By POM’s model, either every pointer in
the list is responsible, or every pointer is
irresponsible. Irresponsible pointers renders
the list useless for managing the elements, but
responsible pointers would prevent any
responsible pointer from pointing to the list
from outside it.

o One solution would be to have one
pointer be explicitly irresponsible,
but this would be difficult to enforce.
If the list contains one special
‘sentinel’ element, then POM could
simply declare that the pointer to the
sentinel element is irresponsible

while all other pointers are
responsible.

• Can a responsible pointer be created from an
integer or other non-pointer representation?
An initial implementation can simply disallow
this possibility; later we can investigate
programs that require this capability.

• Such a list would not be considered compliant
with POM, as every pointer is responsible, but
no

• How should C++ code be handled in POM?
(The current design ignores C++, focusing on
C. C++ is more complex but no new
fundamental approaches are required.)

• Is there any way to limit the lifetime of an
irresponsible pointer? Irresponsible pointers
that refer to freed memory are still an
unsolved problem.

• Are there any functions that require an
irresponsible non-constant pointer argument
(because it is modified by pointer arithmetic,
for example?) Should POM consider this
capability?

Example:
void f(char** ptr) { // ptr must be irresponsible
 (*ptr)++;
}

• Would the model be damaged if the zombie

and invalid responsible pointer states were
merged into one?

• How should POM annotate functions that may
duplicate a responsible pointer? One such
function would be memcpy() if it is given
memory which contains a pointer.

5. Prototype

A LENS-funded POM prototype has been

developed as a proof-of-concept. The prototype is built
using the C Intermediate Language (CIL), which is
freely available at http://kerneis.github.com/cil/. CIL
differs from the parsers used by typical compilers like
GCC because it simplifies the C grammar. This makes
syntax trees produced by CIL easier to analyze than
trees built using traditional compiler front-ends, while
simultaneously limiting its applicability. Eventually
we will also build an implementation using mainstream
static-analysis and compiler technology such as
Clang/LLVM. This has the advantage over CIL of
being able to analyze a broad code base, as well as
supporting future extension of POM to handle C++
programs. For example, virtually all of the code in

http://kerneis.github.com/cil/

Mac OS X 10.7 Lion and iOS 5 were built with Clang
and llvm-gcc.

6. Risks and Mitigations

• Risk: Program uses different ownership model.
• Mitigation: Notation needs ‘out-of-scope’

indicator to not check pointers that use a different
ownership model.

• Risk: Program uses nonstandard extensions to the
C language, or relies on undefined or
implementation-defined behavior

• Mitigation: Nonstandard extensions won’t affect
model, but will degrade accuracy of the
implementation.

• Risk: Program contains memory management bugs
in non-analyzable code (such as assembly code or
nonstandard extensions).

• Mitigation: Notation needs a ‘trust-me’ indicator
when the verifier cannot verify code safety. The
developer must assume responsibility that any
such code is secure.

• Risk: Program intentionally fails to free memory;
most likely because its platform typically frees the
memory when the program exits.

• Mitigation: Verifier needs an option to ignore
memory leaks.

• Risk: Notation is too complex or cumbersome
• Mitigation:

• Advisor should fill out model as much as
possible by identifying responsible vs.
irresponsible pointers. This minimizes
developer involvement.

• We need to measure notation complexity.
(How much notation is required per 1000
lines of code?)

• Need to measure learning curve, that is,
how much effort must a developer use
before they discover a memory bug?

7. Summary

The Pointer Ownership Model can be used as a

static analysis tool to verify the memory safety of C
(and eventually C++) programs. It is based on a
general strategy that states that judicious use of

semantics added by a developer can greatly aid static
analysis tools. Unaided, static analysis runs in to many
limitations, such as the inability to recognize null
pointer dereferences with a high accuracy. We believe
that requiring developers to provide a small amount of
carefully-chosen semantic information can be a great
aid to static analysis, and POM is an example of this
strategy, applied to dynamic memory management.

Proper memory management is currently obtainable

using various techniques, such as garbage collection or
reference counting. All such strategies impose a
performance penalty, and none are provided with most
implementations of C. In contrast, C++ offers
reference counting via the shared_ptr<> template, and
many newer languages require the developer to use
some high-level form of memory management. POM
imposes no performance overhead at run-time, and
only a minor penalty at compile-time to validate
pointer usage.

POM is designed to work with existing C code, and

one of our goals is to demonstrate its effectiveness by
using it on a large open-source program. It may require
some additional annotations from a developer, but it
requires no code changes (unless it detects memory
bugs). Consequently, the cost for developers to test a
program using POM should be minimal.

8. References

[1] Thomas Plum and David Keaton, "Eliminating Buffer
Overflows, Using the Compiler or a Standalone Tool",
Workshop on Software Security Assurance Tools,
Techniques, and Metrics (SSATTM), Long Beach CA Nov
7-8 2005.
http://www.plumhall.com/ASE-SSATTM-plum+keaton-
proceedings.pdf

[2] R. B. Dannenberg, W. Dormann, D. Keaton, R. C.
Seacord, D. Svoboda, A. Volkovitsky, T. Wilson, and T.
Plum. "As-If Infinitely Ranged Integer Model." In
Proceedings of the 2010 IEEE 21st International Symposium
on Software Reliability Engineering (ISSRE '10),
Washington, DC, pp. 91-100. Los Alamitos, CA: IEEE
Computer Society, 2010.

 i [

http://www.plumhall.com/ASE-SSATTM-plum+keaton-proceedings.pdf
http://www.plumhall.com/ASE-SSATTM-plum+keaton-proceedings.pdf

