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Abstract 

Pointers are a dangerous feature provided by 
C/C++, and incorrect use of pointers is a common 
source of bugs and vulnerabilities. Most new 
languages lack pointers or severely restrict their 
capabilities. Nonetheless, many C/C++ programmers 
work with pointers safely, by maintaining an internal 
model of when memory accessed through pointers 
should be allocated and subsequently freed. This model 
is frequently not documented in the program. The 
Pointer Ownership Model (POM) can statically 
identify certain classes of errors involving dynamic 
memory in C/C++ programs. It works by requiring the 
developer to identify responsible pointers, whose 
objects must be explicitly freed before the pointers 
themselves may be destroyed. POM can be statically 
analyzed to ensure that the design is consistent and 
secure, and that the code correctly implements the 
design.  Consequently, POM can be used to identify, 
and eliminate many dynamic memory errors from C 
programs. 
 
 
1. Introduction  
 

Pointers are a powerful, but dangerous feature 
provided by the C and C++ programming languages, 
and incorrect use of pointers is a common source of 
bugs and security vulnerabilities. Most new languages 
lack pointers or severely restrict their capabilities, 
providing memory safety to eliminate these problems. 
Nonetheless, many C & C++ programs work with 
pointers safely. C pointers are still considered a 
powerful and useful feature of the language. 

 
Programmers who safely work with pointers 

maintain an internal model of when memory accessed 
through those pointers should be allocated and 
subsequently freed. Commonly-applied models include 
garbage collection, Resource Acquisition Is 
Initialization (RAII), and smart pointers. The chosen 
model is frequently not documented in the program, 
because the language lacks any mechanism for 
encoding this information.  

 
The pointer ownership model (POM) can statically 

identify certain classes of errors involving dynamic 
memory in C programs. The model works by requiring 

the developer to identify responsible pointers; these are 
the pointers whose objects must be explicitly freed 
before the pointers themselves may be destroyed. POM 
can be statically analyzed to ensure that the design is 
consistent and secure, and that the code correctly 
implements the design.  Consequently, POM can be 
used to identify, and eliminate many dynamic memory 
errors from C programs. 

 
The model is not perfect. It identifies several types 

of errors, including memory leaks, double-frees, and 
null dereferences. Out-of-bounds reads or writes to 
memory fall outside the current scope of the POM; 
hence it cannot detect buffer overflows.  It can identify 
some, but not all use-after-free errors. Finally, the 
model provides an escape clause for the developer: any 
pointer may be marked as Out-Of-Scope (OOS), which 
means that no checking is performed on it. This is 
useful for pointers to dynamic memory that are 
handled by other ownership models, such as garbage 
collection. 
 
2. Impact 

 
This project aims to improve software security at 

the coding level. This would not only improve software 
security in general, but also improves productivity. It 
has been shown that eliminating bugs during the 
coding phase is much cheaper than eliminating them 
during the testing phase, or, even worse, after the bugs 
appear in production code. As POM could be 
considered an extension to the C language, POM 
would enhance the expressiveness of the C language to 
address coding challenges. Also it would achieve 
effective evaluation for a degree of memory safety. 

 
The POM will employ several techniques that have 

been used by SEI research projects in the past. POM 
will require modification of a compiler (Clang/LLVM 
in particular). The Safe/Secure C/C++ system [1] and 
AIR Integers[2], jointly developed by Plum Hall and 
SCI both rely primarily on static analysis, with 
dynamic analysis as a backup. Likewise, the C++ 
Thread Role Analysis proposal and the Compiler 
Enhanced Buffer Overflow Elimination proposal are 
both ongoing research projects that again rely primarily 
on static analysis, with dynamic analysis as a backup. 
(In fact, the Compiler Enhanced Buffer Overflow 
Elimination proposal implements the same safety 



guarantees as Safe/Secure C/C++). All of these 
projects also involve enhancements and modifications 
to the LLVM compiler framework.  

Ultimately, we believe that adding a small judicious 
amount of annotations to a C program enables us to 
statically determine if the program is safe with regard 
to memory management. This means that the program 
need not be built or run. Such a strong guarantee will 
improve the maintainability of the program and 
consequently speed up software development. 

 
3. Related Work 

 
POM is related, and partially inspired, by several 

earlier research projects. Many software tools, both 
proprietary and open-source, employ pure static 
analysis to find memory-related errors, including both 
Fortify SCA and Coverity Prevent. These tools suffer 
from false positives; because they analyze code with 
no extra annotations or semantic information, they 
must make heuristic guesses about code correctness, 
and sometimes they guess wrongly.  

Many other tools, such as Valgrind, provide 
dynamic analysis. They do not suffer from false 
positives, but they do not always find problems. To 
analyze a program, they require the developer to 
actually run the program, and if the program does not 
misbehave while being analyzed, dynamic analysis 
tools may not realize that it might misbehave when 
given a different set of inputs. Dynamic analysis also 
impedes performance, and so dynamic analysis tools 
are useless on programs that are being used in 
production; dynamic analyzers are typically only used 
by QA testers. 

There are several attempts to improve memory 
management using models. The best known model for 
pointer management is reference counting, which is 
implemented in the C++11 standard library as the 
shared_pointer<> template.  Garbage collection is an 
alternate model, which is used by the Java language, 
and there are several C implementations; however 
garbage collection is not part of standard C or C++.  

Finally, the standard C++ auto_ptr<> template 
provides a similar model to our pointer ownership 
model; but it suffers from technical difficulties. The 
saga of the auto_ptr serves as an important cautionary 
tale when considering pointer ownership. In C++, the 
auto_ptr encoded a pointer that automatically freed its 
object upon its own destruction. It also supported 
assignment, with the stipulation that assigning one 
auto_ptr to another caused the first auto_ptr to be set to 
NULL…an unusual form of assignment that prevents 
‘perfect’ duplication of owning pointers. This made 
auto_ptrs problematic particularly when used in 
containers, because containers assumed that their 

objects were fully copy-able, and auto_ptrs do not 
support this contract.  The common implementation of 
the quick-sort algorithm would often fail with vectors 
containing auto_ptrs, because it typically involves 
assigning one single auto_ptr as a pivot and then 
partitioning the vector’s remaining elements. Today the 
auto_ptr template has been deprecated in favor of the 
new unique_ptr<> template, which specifically forbids 
assignment or copying. 

How can the Pointer Ownership Model avoid the 
mistakes that beset auto_ptr? We believe that POM can 
avoid these problems for two reasons. First, unlike 
auto_ptrs, POM is not required to strictly conform to 
the C/C++ type system. Assignment can be performed 
from one responsible pointer to another, or from a 
responsible pointer to an irresponsible pointer; based 
on the discretion of the developer. In contrast, 
auto_ptrs were constrained by the type system in 
certain cases. For example, assigning a variable to a 
vector item element requires that the variable also be 
an auto_ptr, causing the vector’s corresponding 
auto_ptr to be set to null. Second, the POM adds 
semantic information to working code, but does not 
modify the code itself.  As previously noted, assigning 
a variable to a vector of auto_ptrs causes the vector to 
be modified (because the corresponding vector item is 
nulled out).  Under POM, the vector is not changed, 
although its item might be considered a zombie 
pointer. A quick-sort algorithm that operates on a 
vector of responsible pointers could use an 
irresponsible pointer as a pivot, thus requiring no 
changes to the algorithm code while still allowing 
pointer responsibility to be correctly monitored. 

Pointer models have been used to address other 
problems, too. The CCured systemi used a model of 
pointers, partially specified by the developer, to 
identify insecure pointer arithmetic, and catch buffer 
overflows. Likewise, the Safe/Secure C/C++ systemiiiii 
uses both static and dynamic analysis to guarantee the 
safety of pointer arithmetic and array I/O. This enables 
the system to identify safe pointer usage at compile 
time, and add run-time checks when safety cannot be 
verified statically. 

The POM is similar in that it performs safety 
checks at compile time, and could add run-time checks 
when necessary. Unlike traditional static analysis, 
POM imposes on the developer a requirement of 
providing some additional semantic information about 
the pointers used by the program. This extra 
information renders POM sound; any error it finds will 
be true positives. POM will also be comprehensive, 
finding all of the problems that are exposed by the 
model.  

To be more precise, POM requires developers to 
specify a model for how memory is managed. After the 



model is provided, POM can determine if the model is 
incomplete or inconsistent, and it can also determine 
whether the program complies with the model. 

 
4. Design 

 
The Pointer Ownership Model seeks to provide 

sound static analysis by using additional semantic 
information. Some of this information can be inferred 
from the source code, while some information must be 
explicitly provided by the developer. In particular, the 
model categorizes pointers into responsible pointers 
and irresponsible pointers. A responsible pointer is a 
pointer that is responsible for freeing its pointed-to 
object, and irresponsible pointer is not responsible for 
freeing whatever object it points to. Every object on 
the heap must be referenced by exactly one responsible 
pointer.  Consequently, responsible pointers form trees 
of heap objects, with the tree roots living outside the 
heap. 

Irresponsible pointers can point anywhere, but 
cannot free anything. A pointer variable is always 
responsible or irresponsible; it cannot change 
responsibility throughout its lifetime. 

Ownership of an object can be transferred between 
responsible pointers, but when doing so, one of the 
pointers must relinquish responsibility for the object, 
as only one pointer may be responsible for freeing the 
object. Any responsible pointer that relinquishes 
responsibility for an object becomes a ‘zombie’ 
pointer; a compliant program will never use the value 
of any zombie pointer. Ideally, a responsible pointer’s 
lifetime ends shortly after it becomes a zombie pointer. 

Responsible pointers do not always point to objects 
they must free. Any responsible pointer can be in one 
of four states: good, null, uninitialized, and zombie. A 
good pointer is one that must be freed and only a good 
pointer may be dereferenced. A null pointer has the 
null value. It may be freed, but need not be freed; the 
standard guarantees that explicitly freeing a null 
pointer does nothing. An uninitialized pointer is one 
that does not hold a valid value; often because it is 
uninitialized. Finally, a zombie pointer can be a 
formerly good pointer that relinquished responsibility 
of an object to another good pointer. Or it could be a 
pointer that was passed to free(), and therefore no 

longer points to valid memory. Zombie pointers must 
not be dereferenced. 

The POM project consists of two tools: an advisor 
and a verifier, as shown in Figure 1. The advisor 
examines a source code file and builds a model of 
pointer ownership, possibly with the help of the 
developer. (A sufficiently advanced developer could 
bypass the advisor entirely and build the model from 
scratch, but the purpose of the advisor is to save the 
developer from this work.) The verifier takes a 
compilation unit and a model and indicates if the 
model is complete and the code complies with it. The 
verifier can output errors if the model is incomplete 
(for instance, it doesn’t indicate any responsibility for 
some pointer), or the model is inconsistent (it may say 
that a certain pointer is both responsible and 
irresponsible), or if the program violates the model (by 
trying to free an irresponsible pointer, for example.) 

To analyze a compilation unit, the verifier requires 
that the model indicate the responsibility status of all 
pointers referenced by the compilation unit. However, 
pointers in the program that are not referenced by that 
compilation unit need not be specified. The model can 
be built alongside the verification of individual 
compilation units. As such, POM does analysis on the 
level of the compilation unit, rather than whole 
program analysis. 

 
Figure 1. POM Implementation 
 

4.1 Specification 
 
All declared pointers can be in one of several 

subtypes, as listed in Table 1.

 

 



 

 

 

Table 1 Pointer Subtypes 

Type Definition Examples 
Unknown Hasn't been assimilated into POM yet  

Out Of Scope (OOS) POM doesn't apply to this pointer; it 
is handled some other way. 

• Reference-counting 
• Garbage collection 
• Circular linked list 
• FILE pointers (could be 

considered distinct resources 
under a model similar to POM 

Irresponsible Not responsible for cleaning up 
memory it points to 

Any pointer pointing into the stack or 
data segment 

Responsible Responsible for cleaning up memory 
it points to 

Any pointer that gets the result of a call 
to malloc() 

 
These pointer subtypes are subject to the following 

rules: 
 
• A POM-compliant program shall not have any 

unknown pointers. 
• An OOS pointer shall not be assigned the 

value of a responsible pointer. 
• An irresponsible pointer should never be a 

producer argument or producer return value. 
Example: 
char* irp = INITIALIZE_IRRESPONSIBLE; 
irp = malloc(5); // bad, malloc’s return is a producer 
 
• An irresponsible pointer should never be a 

consumer argument. 
Example: 
char* irp = INITIALIZE_IRRESPONSIBLE; 
free(irp); // bad, free consumes its argument 
 
• An irresponsible pointer should never by 

copied over to a responsible pointer. 
Example: 
char* rp; // responsible 
char* irp = INITIALIZE_IRRESPONSIBLE; 
rp = irp; // bad 
memcpy( &rp, &irp, sizeof( rp)); // bad 
 
• A responsible pointer should never get 

assigned a value from pointer arithmetic 
Example: 
char *rp1 = ...; // responsible 
char *rp2; // responsible 
rp1 = rp2 + 1; // bad 
 

• A responsible pointer should never get 
assigned a value created by & 

Example: 
char *rp1 = ...; // responsible 
char *rp2; // responsible 
rp1 = &rp2; // bad  
  
 In other words a responsible pointer can be 

assigned only the following: 
o  a producer return value (or be 

supplied as a producer argument) 
Example: 
char *rp1; // responsible 
char *rp2; // responsible 
rp1 = malloc(5);  // ok 
getline( &rp2, 80, stdin); // ok 
 

o  another responsible pointer 
Example: 
char *rp1 = ...; // responsible 
char *rp2; // responsible 
char *rp3; // responsible 
rp1 = rp2; // ok 
memcpy( &rp3, &rp1, sizeof( rp3)); // ok 
 

o Null 
Example: 
char *rp; // responsible 
rp = NULL; // ok 
 
Responsible pointers can be in one or more of the 

following states. The state may not always be known, 
in which case the pointer can occupy multiple states, 
and be resolved later. 

 



• Uninitialized (which includes any invalid 
value) 

Example: 
char *ptr; // uninitialized 
char *ptr2 = ptr;  // also uninitialized 
memcpy( &ptr2, &ptr, sizeof( ptr)); // still uninitialized 
 

o An uninitialized responsible pointer's 
value shall never be copied to an 
irresponsible pointer 

Example: 
char *rp; // responsible 
char *rp2; // responsible 
char *irp; // iresponsible 
irp = rp; // bad 
rp2 = rp; // ok 
 

o An uninitialized responsible pointer 
shall never be consumed 

Example: 
char *rp; // responsible 
free( rp); // bad 
 

o An uninitialized responsible pointer 
shall never be dereferenced 

Example: 
char *rp; // responsible 
*rp = '\0'; // bad 
 
• Null 

o A responsible null pointer shall never 
be dereferenced 

Example: 
char *rp = NULL; // responsible 
*rp = '\0'; // bad 
 
• Good (that is, the pointer points to memory it 

must free, and no other responsible pointer 
points to this memory) 

Example: 
char *ptr = new char[5]; // good 
char *ptr2 = malloc(5);  // good or null 
if (ptr2 == NULL) abort(); 
// if we get here, ptr2 is good 
 
o A good pointer shall never be overwritten 

Example: 
char *rp = new char[5]; // responsible 
rp = new char[7]; // bad 
 
o A responsible pointer shall never go out of 

scope while good 
Example: 
{ 
  char *rp = malloc(5); // responsible or null 
}  // bad, memory might be leaked  
 

struct foo_s { 
  char* c; // responsible 
} *s; 
s = new struct foo_s; 
s->c = new char[3]; 
// ... 
delete s; // bad, s->c's memory lost 
 
• Zombie (the pointer value has either been 

assigned to another responsible pointer, or 
freed) 

Example: 
free( ptr); // zombie 
ptr = ptr2; // ptr2 now zombie, ptr now good 
 

o A zombie pointer's value shall never 
be read 

Example: 
char *rp = malloc( 5); // responsible, good or null 
free( rp); // zombie or null 
char *rp2 = rp; // bad 
 

o A zombie pointer shall never be 
consumed 

Example: 
char *rp = malloc(5); // responsible, good 
free(rp); // zombie 
free(rp); // bad (double free) 
 

o A zombie pointer shall never be 
dereferenced 

Example: 
char *rp = malloc(5); // responsible, good 
free(rp); // zombie 
rp[0] = '\0'; // bad 
 
The subtypes of pointer variables never changes; 

once a responsible pointer, always a responsible 
pointer. However, the state of responsible pointers can 
change in the following ways: 

 
• Assignment  (this includes any read of one 

responsible pointer and write of the value into 
another responsible pointer) 

 Example: 
char *rp1 = ...; // responsible 
char *rp2; 
rp2 = rp1; // rp1 gets rp1's state. 
//  If rp1 was good, it is now a zombie 
memcpy( &rp1, &rp2, sizeof( rp1)); 
// rp1 gets rp2's state. 
// if rp2 was good, it is now a zombie 
 
• Producer Return Value (this makes pointer 

good (or null, under some circumstances)) 
 Example: 
char *rp1; // responsible 
rp1 = malloc(5); // rp1 is now good or null 



char *rp2; // responsible 
rp2 = new char[5]; // rp2 is now good 
 
• Producer Argument (this makes pointer good 

(sometimes only if pointer was null) 
Example: 
char *rp = NULL; // responsible, null 
getline( &rp, 80, stdin); // rp now good 
 
• Consumer Argument (this makes pointer a 

zombie if and only if it was good) 
Example: 
char *rp = ...; // responsible, good 
free(r); // rp now zombie 
 
• Null check (A pointer that may be in several 

states can be disambiguated by a null check) 
Example: 
char *rp = malloc(5); // responsible, good or null 
if (rp == NULL) { 
  // rp is now null 
  abort(); // or any noreturn function 
} else { 
  // rp is now good 
} 
// rp is now good 
 
Like pointers, functions can be annotated when 

they take pointer arguments or when they return a 
pointer. Functions can be annotated with the following: 

• Noreturn functions (These are functions that 
never return to their caller. They always exit 
via abort(), exit(), _Exit(), longjmp(), goto, or 
by invoking another noreturn function. The 
C11 _Noreturn keyword denotes noreturn 
functions. 

Example: 
void panic(const char *s) { // noreturn function 
  printf("Error: %s\n", s); 
  abort(); 
} 
 
• Producer return functions (These are functions 

that return a pointer to a responsible object. ) 
Example: 
malloc // null or good value 
strdup // null or good value 
operator new  // good value (never null) 
 

o Any producer return function must 
have its return value assigned to a 
responsible pointer 

Example: 
malloc(5); // bad, return value discarded 
 
• Consumer arguments (These are arguments to 

certain functions. They either free the 

pointer's data, or give it to some other 
responsible pointer.) 

Example: 
free // arg 0: null or good -> zombie 
 

o A consumer argument must always 
be provided by a responsible pointer 

Example: 
char *rptr = ...; // responsible, good 
free(ptr[3]) // bad 
 
• Producer arguments (These are arguments to 

certain functions. They are of type 'pointer to 
pointer to x', and the functions generally 
allocate memory and fill the argument with a 
pointer to the newly allocated memory.) 

Example: 
getline  // only if arg 0 is a pointer to null 
// (otherwise, no allocation done) 
 

o Any producer argument must be a 
pointer to a responsible pointer 
object. 

 
• Irresponsible pointer arguments (A function 

that does not produce or consume a pointer 
argument effectively treats that argument as 
'irresponsible'. It is permissible to pass any 
pointer (responsible or not) to such a 
function.) 

Example: 
strcpy() // both arguments irresponsible 
 
• Forced-Irresponsible pointer arguments (A 

function that takes a pointer-to-pointer 
argument and modifies it, without modifying 
the memory or consuming it.) 

 
o A responsible pointer must not be 

passed as a forced-irresponsible 
pointer argument. 

Example: 
void fn(char** x) { // x points into a string 
  (*x)++; 
} 
 
Because pointers can also be used in other C 

objects, we must extend our notions of responsibility to 
other objects. Here are the properties for structs and 
C++ classes: 

 
• A struct is responsible if it contains any 

responsible pointers, or it contains any other 
responsible objects. 

• A responsible object is good if all of its 
responsible pointers are good or null. 



• A responsible object is a zombie if none of its 
responsible pointers are good. (Unlike 
pointers, objects can first exist in a zombie 
state when its responsible pointers are 
uninitialized). 

• A responsible object is inconsistent if it is 
neither good nor zombie. 

 
o  Any function that modifies the state 

of an object must not exit with the 
object in an inconsistent state. 

Example: 
typedef struct foo_s { 
  char *rptr1;  // responsible 
  char *rptr2;  // responsible 
} foo_t; 
 
void f1(foo_t* foo) { // assumed to be good 
  free( rptr1); 
} // bad, rptr2 still good, foo inconsistent 
 
void f2(foo_t* foo) { // assumed to be good 
  free( rptr1); 
  free( rptr2); 
} // ok 
 
Here are the properties for unions: 
 
• A union that contains a pointer may have that 

pointer be out-of-scope, irresponsible or 
responsible. (The rules for pointers in unions 
are the same as for structs. However, since all 
elements in a union share memory, reading or 
writing to a union member reads or writes to 
the pointer. A union with a responsible 
pointer thus has two extra rules. 

Example: 
#define SIZE (siezof(char*)) 
 
typedef struct foo_u { 
  char *rptr;         // responsible 
  char other[SIZE];   // any other data 
} foo_t; 
 

o Reading any element in a union with 
a responsible pointer in a good state 
converts the pointer to a zombie. 
(This assumes that the pointer's value 
was read and assigned elsewhere 
somehow) 

Example: 
char string[SIZE]; 
foo_t foo; 
memcpy( &foo.string, foo.other, SIZE); 
// foo.rptr: good -> zombie 
 

o Writing any element in a union with 
a responsible pointer sets the pointer 
state to uninit (its pointer value is 
invalid) 

Example: 
foo_t foo; 
foo.rptr = NULL; 
foo.other[0] = 'a'; // foo.rptr is invalid 
 
Here are the properties for arrays: 
 
• An array of irresponsible pointers needs no 

monitoring (other than the standard rules wrt 
irresponsible pointers). 

• An array of responsible pointers is like any 
other responsible object, but with one wrinkle: 
a size value. The size value indicates the 
number of responsible pointers in the array. It 
might be set to the index of the last element or 
one past the last element. It might also be an 
irresponsible pointer that points to the high 
element or one past the array. 

• It is acceptable for this number to be less than 
the array bounds; the array may have several 
unused & uninitialized values beyond the size. 
(This means we do not prevent buffer 
overflow on the array.) 

o Any responsible array must have a 
'size' variable declared in the same 
scope as the array that indicates the 
number of pointers to be used in the 
array. 

Example: 
void f() { 
  int *array = malloc(10 * sizeof( int)); // responsible 
  int size = 8; 
  for (int i = 0; i < size; i++) { 
    array[i] = malloc(sizeof( int)); 
  } 
} // ok 
 
Typecasts are easily handled by POM. There is no 

problem with typecasting a pointer (responsible or 
irresponsible) to a pointer of different type. Likewise, 
there is no issue with converting an irresponsible, or 
out-of-scope pointer to an integer or some other 
representation (such as a char array), or vice versa. A 
responsible pointer can be converted to an integer, this 
could be considered an implicit assignment to an 
irresponsible pointer and then conversion to int. 

 
4.2 Producers and Consumers 
 

A function that produces a responsible object 
(which may just be a responsible pointer) is a producer 



function. Examples of producers include  malloc(), 
calloc() and various special functions like strdup(). 

 
Some functions take as an argument a pointer to a 

pointer, if not NULL, they allocate space for an object 
and set the pointer to the produced space. (Example: 
getline() from GNU glibc.)  In other words, a producer 
function can produce a pointer in one of its arguments, 
not just in its return value. 

 
A function that frees a responsible object is a 

consumer function. The most well-known example of 
such functions is free(). 

 
It is possible for a function to consume multiple 

responsible objects. It is also possible for a function to 
produce one argument (or return value) and consume 
an argument. A function can produce an object via its 
return value, but it cannot consume an object via return 
value, only via arguments. 

 
A producer function need not even invoke malloc(). 

For example, a producer function could split a 
responsible pointer from a responsible object and 
return the pointer. The following is a producer function 
because it returns a pointer that must be subsequently 
freed. 

 
    typedef struct foo_s { 
      char *a;  // responsible 
      char *b;  // irresponsible 
    } foo_t; 
 
    // producer function 
    char *function(struct foo_t* foo) { 
      char *tmp = foo->a; 
      foo->a = NULL; 
      return tmp; 
    } 
 
The following function consumes its second 

argument, because its second argument no longer 
needs to be explicitly freed; it is incorporated into a 
responsible object. 

 
    // consumer function 
    void function2(struct foo_t* foo, char *a) { 
      if (foo->a != NULL) { 
        // handle error, what to do with current foo->a? 
      } 
      foo->a = a; 
    } 
 
The behavior of the realloc() function depends on 

its size argument. It requires a responsible pointer (that 
is good or null), so the pointer argument is consumed. 
It also returns the pointer successfully reallocated, or a 

pointer to the new internal copy (if it had to copy), or 
NULL if it failed to copy. So it also has a producer 
return value.  Some implementations treat a call to 
realloc() with a size of 0 as a call to free(), but this is 
nonstandard behavior. The C11 standard declares that 
specifying 0 as the size is an obsolete feature, so we 
will ignore this case. 

 
4.3 Analysis 

 
For each function declaration, we need to know if 

the function returns a responsible pointer; that is, is it a 
producer? Also we need to know if the function 
produces any argument pointer-to-pointer. Finally we 
need to know if the function consumes any argument 
pointer. 

 
We can use static analysis to answer these 

questions for a function whose definition is available. 
But if a function's definition is not available, we 
require some notation to answer these questions.  

 
The main() function must not produce or consume 

any arguments. 
 
To analyze a function body properly, we must 

inspect its definition. We must view all of the variables 
available to the function. That includes arguments, 
local variables, and static variables. Does the function 
produce or consume any of them? 

 
A responsible pointer can be in multiple states at 

once. We always assume that the states a pointer is in 
can be determined statically. For any two states, it is 
easy to use branching to create a pointer that could be 
in both states. Consider this example: 

 
char *rptr; /* uninitialized */ 
bool flag = /* ... */ 
if (flag) { 
  rptr = new char[...]; 
} 
/* rptr now good or uninitialized */ 
 
This can cause trouble later on; there is no way to 

distinguish good responsible pointers from 
uninitialized pointers. To be safe, this code must use 
the flag variable to determine if the pointer is good, and 
determining flag's value statically might be impossible. 

 
We can handle this code statically by allowing rptr 

to be either good or initialized and indicate an error if 
either state causes an inconsistency later in the code.  
This means that this code will always yield an error: 
either when rptr is freed (because it may have been 
uninitialized) or when rptr leaks (it may have been 



good). The code can always be brought to compliance 
with POM by initializing rptr to NULL: 

 
char *rptr = NULL; 
bool flag = /* ... */ 
if (flag) { 
  rptr = new char[...]; 
} 
... 
free(rptr); // was good or NULL 
 
Besides using control flow to create multiple states, 

malloc() & other producers can make pointers that are 
either good or null. No other combinations of states are 
typically possible without control flow. But because of 
control flow, we must assume any combination of 
states is possible. So a responsible pointer's state 
should be expressed as a list of booleans (or a bit-
vector), one for each possible state. 

 
However, this does mean that this safe code snippet 

does not abide by POM: 
 
char *rptr; /* uninitialized */ 
bool flag = /* ... */ 
if (flag) { 
  rptr = new char[...]; 
} 
// ... 
if (flag) { 
  free( rptr); 
} 
 

4.4 Remaining Issues 
 

POM has several unresolved issues. These can be 
tackled in future implementations using a waterfall 
model of development. That is, future designs for POM 
can tackle these issues, with only minor extensions to 
the current design: 

 
• How should POM handle a circular linked 

list? By POM’s model, either every pointer in 
the list is responsible, or every pointer is 
irresponsible. Irresponsible pointers renders 
the list useless for managing the elements, but 
responsible pointers would prevent any 
responsible pointer from pointing to the list 
from outside it. 

o One solution would be to have one 
pointer be explicitly irresponsible, 
but this would be difficult to enforce. 
If the list contains one special 
‘sentinel’ element, then POM could 
simply declare that the pointer to the 
sentinel element is irresponsible 

while all other pointers are 
responsible. 

• Can a responsible pointer be created from an 
integer or other non-pointer representation? 
An initial implementation can simply disallow 
this possibility; later we can investigate 
programs that require this capability. 

• Such a list would not be considered compliant 
with POM, as every pointer is responsible, but 
no  

• How should C++ code be handled in POM? 
(The current design ignores C++, focusing on 
C. C++ is more complex but no new 
fundamental approaches are required.) 

• Is there any way to limit the lifetime of an 
irresponsible pointer?  Irresponsible pointers 
that refer to freed memory are still an 
unsolved problem. 

• Are there any functions that require an 
irresponsible non-constant pointer argument 
(because it is modified by pointer arithmetic, 
for example?) Should POM consider this 
capability? 

Example: 
void f(char** ptr) { // ptr must be irresponsible 
  (*ptr)++; 
} 
 
• Would the model be damaged if the zombie 

and invalid responsible pointer states were 
merged into one?  

• How should POM annotate functions that may 
duplicate a responsible pointer? One such 
function would be memcpy() if it is given 
memory which contains a pointer. 
 
 

5. Prototype 
 
A LENS-funded POM prototype has been 

developed as a proof-of-concept. The prototype is built 
using the C Intermediate Language (CIL), which is 
freely available at http://kerneis.github.com/cil/. CIL 
differs from the parsers used by typical compilers like 
GCC because it simplifies the C grammar. This makes 
syntax trees produced by CIL easier to analyze than 
trees built using traditional compiler front-ends, while 
simultaneously limiting its applicability.  Eventually 
we will also build an implementation using mainstream 
static-analysis and compiler technology such as 
Clang/LLVM. This has the advantage over CIL of 
being able to analyze a broad code base, as well as 
supporting future extension of POM to handle C++ 
programs.  For example, virtually all of the code in 

http://kerneis.github.com/cil/


Mac OS X 10.7 Lion and iOS 5 were built with Clang 
and llvm-gcc. 

 
6. Risks and Mitigations 

 
• Risk: Program uses different ownership model. 
• Mitigation: Notation needs ‘out-of-scope’ 

indicator to not check pointers that use a different 
ownership model. 

• Risk: Program uses nonstandard extensions to the 
C language, or relies on undefined or 
implementation-defined behavior 

• Mitigation: Nonstandard extensions won’t affect 
model, but will degrade accuracy of the 
implementation. 

• Risk: Program contains memory management bugs 
in non-analyzable code (such as assembly code or 
nonstandard extensions). 

• Mitigation: Notation needs a ‘trust-me’ indicator 
when the verifier cannot verify code safety. The 
developer must assume responsibility that any 
such code is secure. 

• Risk: Program intentionally fails to free memory; 
most likely because its platform typically frees the 
memory when the program exits. 

• Mitigation: Verifier needs an option to ignore 
memory leaks. 

• Risk: Notation is too complex or cumbersome 
• Mitigation:  

• Advisor should fill out model as much as 
possible by identifying responsible vs. 
irresponsible pointers. This minimizes 
developer involvement. 

• We need to measure notation complexity. 
(How much notation is required per 1000 
lines of code?) 

• Need to measure learning curve, that is, 
how much effort must a developer use 
before they discover a memory bug? 

 
 

7. Summary 
 
The Pointer Ownership Model can be used as a 

static analysis tool to verify the memory safety of C 
(and eventually C++) programs. It is based on a 
general strategy that states that judicious use of 

semantics added by a developer can greatly aid static 
analysis tools. Unaided, static analysis runs in to many 
limitations, such as the inability to recognize null 
pointer dereferences with a high accuracy. We believe 
that requiring developers to provide a small amount of 
carefully-chosen semantic information can be a great 
aid to static analysis, and POM is an example of this 
strategy, applied to dynamic memory management. 

 
Proper memory management is currently obtainable 

using various techniques, such as garbage collection or 
reference counting. All such strategies impose a 
performance penalty, and none are provided with most 
implementations of C. In contrast, C++ offers 
reference counting via the shared_ptr<> template, and 
many newer languages require the developer to use 
some high-level form of memory management. POM 
imposes no performance overhead at run-time, and 
only a minor penalty at compile-time to validate 
pointer usage. 

 
POM is designed to work with existing C code, and 

one of our goals is to demonstrate its effectiveness by 
using it on a large open-source program. It may require 
some additional annotations from a developer, but it 
requires no code changes (unless it detects memory 
bugs). Consequently, the cost for developers to test a 
program using POM should be minimal. 
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