Identifying Anomalous Traffic Using Delta Traffic

Tsuyoshi KONDOH and Keisuke ISHIBASHI Information Sharing Platform Labs. NTT

Flocon2008, January 7–10, 2008, Savannah GA

<u>Outline</u>

- Background and Motivation
 - Identifying anomalous traffic is the missing piece.
- Our Technique: DELTAA
 - Concepts
 - 1. Extract anomalous traffic as the delta of normal and anomalous time periods.
 - 2. Auto-aggregate extracted anomalous traffic.
 - Operation of our technique
 - Show the step by step operation of our technique.
- Evaluation
 - Evaluation using synthesized DDoS traffic.
- Summary

Background and Motivation

Time series of total traffic by bps

- Many techniques for detecting anomalous volume change have been proposed (NBAD, Holt-winters in MRTG, ... etc.).
- Some tools to mitigate damage from anomalous traffic. (e.g. drop/rate limit at router, detour to Cisco Guard, etc.)
- However, accurate mitigation needs accurate ACLs (ACL set).
- But, Generating accurate ACL set requires manual drill down by operator.
 - It's too costly.

Our Technique: DELTAA

- **DELTAA** outputs ACL set for filtering or rate limiting to mitigate the damage from anomalous traffic.
 - DELTAA: Delta Traffic Automatic Aggregator
- Three concepts of DELTAA:
 - 1. Reveal anomalous traffic using delta traffic, between normal and anomalous periods.
 - 2. Aggregate delta traffic and generate optimized ACL set on single dimensions.
 - Dimension means source IP address, destination IP address, protocol or port numbers.
 - 3. Generate multi-dimensional ACL set by integrating each single dimensional ACL set.

<u>Concept #1:</u> (1) Definition of "Normal" and "Anomalous" Traffic

Throughout this presentation, I use the following definitions.

- 1. Anomalous traffic: Traffic that causes a change in traffic volume (bps/pps/fps).
 - BitTorrent and server intrusion are out of scope because they always exist or do not cause a change in traffic volume.
- 2. Normal period: Period when traffic volume is normal.
- 3. Anomalous period: Period when traffic volume is anomalous.

<u>Concept #1 :</u> (2) Reveal Anomalous Traffic

- Make two assumptions
 - 1. traffic of normal period = normal traffic
 - 2. traffic of anomalous period = normal traffic + anomalous traffic
- anomalous traffic = traffic of anomalous period traffic of normal period

Concept #2:

Auto-aggregate Delta Traffic

- Our technique expresses anomalous traffic with some number of ranges.
 - For example source IP address ranges.
 - The ranges should be optimal for filtering.

Criteria of "Goodness"

- We introduce three criteria of identification.
 - Coverage ratio: (1 FNR) Maximize filtered anomalous traffic
 - 2. Collateral (damage) ratio: (FPR) Minimize filtered (normal) legitimate traffic
 - 3. Number of ACLs:

ACL entry budget is limited, so fewer ACLs is better.

• These three criteria have a trade-off relationship with each other.

Evaluation Formula for Goodness

To decide the best ACL set, we introduce this formula:

coverage: *cov*, collateral ratio: *coll*, no. of ACLs: *n* rate = $\frac{(\beta - \alpha) + \alpha \cdot cov - \beta \cdot coll}{n^{\gamma}}$ (α, β, γ : weighting coefficients)

 By tuning the weighting coefficients, we can reflect network policies or customer requirements.

Step by Step Explanation of Our Technique

• Following seven pages show the step by step operation of our technique including above two concepts and concept #3.

Step 1: (1) Counting Up

Count traffic of both normal and anomalous periods for each source IP address.

Step 1: (2) Making Delta Traffic

Make delta traffic by subtracting traffic of normal period from that of anomalous period.

Step 2: (1) Deciding ACL Set as IP Address Ranges

- When using anomalous traffic information only, collateral damage cannot be avoided.
 - Causes miss-filtering of normal traffic.
- So, we need to use information on both normal and anomalous traffic.

Step 2: (2) Building Tree of Normal and Anomalous Traffic

Making Traffic Tree

- Build up from individual source IP addresses (depth=32).
- Each node has information about coverage and collateral ratio.
 - Collateral ratio: normal traffic of the node ÷ total normal traffic
 - Coverage ratio: anomalous traffic of the node ÷ total anomalous traffic
- Make parent nodes by merging child node information.

Step 3: Selecting Best Node Set from Traffic Tree

- 1. To reduce search space, delete unnecessary nodes.
 - Unnecessary node: node which having little coverage ratio (little anomalous traffic) or little difference from its descendant nodes.
- 2. Search best node combination by applying the formula for all nonoverlap node combinations in a brute force way.
 - Best node combination = Best ACL set for source IP dimension

Concept #3 Generate Multi-Dimensional ACL Set

- Generate single dimensional ACL set in parallel.
 - 'source IP', 'destination IP', 'protocol', 'source port' and 'destination port'

DELTAA

outputs best

- Make candidates of multi-dimensional ACL sets as a product sets of each dimension.
 Finally,
- Count anomalous/normal traffic for every candidates.
- Select best combination of candidates in terms of goodness score.

Evaluation and Results: Test Data Set

- Normal traffic: publicly available traffic data, captured on transpacific line (100 Mbps)
- Anomalous traffic: injected synthesized DDoS attack traffic
 - Mimic large DDoS attack
 - We choose source/destination IP addresses that have large normal traffic, because simple identification would cause collateral.
 - Destination: Popular server appeared in normal traffic
 - Source: Choose IP address block (/16) from which volume of normal traffic to the destination is largest.
- Test how well our technique can extract the injected anomalous traffic.

Evaluation and Results: Results (1)

• Results: We get four ACLs (Four ACLs are one set.)

Time series of traffic with output ACLs displayed in separate colors

Evaluation and Results: Results (2) OUTPUT

basetime_len= anomtime_len= base_total_bps= anom_total_bps= diff_total_bps=	60.0 (sec) : (11 60.0 (sec) : (11 89,121,539.5 137,729,812.7 48,608,273.2	68362060.0 - 11683 68362180.0 - 11683 +54.5 %	362120.0) 362240.0)		basic i	nformation
1-D_OUTPUT: PRO 1-D_OUTPUT: SRO 1-D_OUTPUT: DS 1-D_OUTPUT: SRO 119.170. 119.170. 119.170. 119.170. 119.170. 134.45.1	DTOCOL= 6 C_PORT= high T_PORT= high C_IP 0.0/17 128.0/18 192.0/19 240.0/20 T_IP 82.70/32	coverage= 100 coverage= 100 coverage= 100 coverage= 96 cove cove cove cove cove cove	0.42 collatera 0.27 collatera 0.09 collatera 0.43 collatera 0.43 collatera 0.43 collatera 0.43 erage= 51.43 0.	l= 95.52 s l= 33.42 l= 96.40 l= 0.00 collatera collatera collatera l= 2.17 collatera	ingle di ide = 0.00 = 0.00 = 0.00 = 0.00	imensional entification results
MULTI-DIMENSIO	N_FLOW_OUTP	PUT coverage= 96	6.43 collatera	l= 0.00		
flowID_0: cov= 51.4	43 col= 0.00:	119.170.0.0/17	134.45.182.7	70/32 6	high	high
flowID_1: cov= 25.7	72 col= 0.00:	119.170.128.0/18	134.45.182.7	70/32 6	high	high
flowID_2: cov= 12.8	36 col= 0.00:	119.170.192.0/19	134.45.182.7	70/32 6	high	high
flowID_3: cov= 6.4	43 col= 0.00:	119.170.240.0/20	134.45.182.7	70/32 6	high	high
↑ coverag	e ↑ collateral:	↑ src_ip	↑ dst_ip	protocl	scr_port	dst_port 19

Evaluation and Results (3): Destination IP Tree

1-D_OUTPUT: DST_IP 134.45.182.70/32 coverage= 102.93 collateral= 2.17 coverage= 102.93 collateral= 2.17

Copyright NTT Information Sharing Platform Laboratories, 2008

Evaluation and Results (4): Source IP Tree

1-D_(OUTPUT: SRC_IP	coverage= 96.43 collateral= 0.00
(1)	119.170.0.0/17	coverage= 51.43 collateral= 0.00
(2)	119.170.128.0/18	coverage= 25.72 collateral= 0.00
(3)	119.170.192.0/19	coverage= 12.86 collateral= 0.00
(4)	119.170.240.0/20	coverage= 6.43 collateral= 0.00

<u>Summary</u>

- Introduced three criteria of optimal ACL set.
 - for mitigating DDoS attacks on router
- Proposed DELTAA technique: Optimizes trade-off among the these criteria, using normal and anomalous traffic.
- Presented an example of applying DELTAA to extract injected anomalous traffic.
 - Evaluation results using prototype and synthesized data set.

Thank you.

Any questions are welcome.

tsuyoshi.kondoh [at] lab.ntt.co.jp ishibashi.keisuke [at] lab.ntt.co.jp

This study was supported by the Ministry of Internal Affairs and Communications of Japan.

Q: Will Calculation Complexity Be Explosion?

- The way of making single dimensional tree and compressing way is similar to Estan's way in [Automatically].
- So, number of nodes on compressed tree is limited,
- We can Search all non-overlap node combinations in a brute force way within realistic time and resource.

[Automatically]: C. Estan, S. Savage and G. Varghese, "Automatically Inferring Patterns of Resource Consumption in Network Traffic," *SIGCOMM, August 2003.*

Copyright NTT Information Sharing Platform Laboratories, 2008