Design for Large-Scale Collection System Using Flow Mediators

Atsushi Kobayashi, Tsuyoshi Kondoh, and Keisuke Ishibashi NTT Information Sharing Laboratories

Outline

Introduction

Why do we need a large-scale collection system?What is Flow Mediator?

Requirements

- □ I tried to explore the possibility of a large-scale collection system for large networks.
- Heuristic method of designing traffic collection system

Estimate number of flow records after aggregation or sampling

□ Adjust several parameters based on this result

Summary

Introduction

- Traffic volumes in ISP networks are becoming huge in the last few years.
 - The number of exported flow records is becoming so huge that a single collector cannot handle them.
- A smaller sampling rate makes small flows invisible.
 - Even if traffic grows, network operators would like to maintain the same sampling rate as much as possible.
- Aggregated flow records from router make port number or IP address invisible.
 - □ Exporting 5-tuple flow records from router is better.

The demand for a large-scale traffic-collection system is growing.

What is Flow Mediator?

Flow Mediator† is a device that "mediates" flow records and has the following functions:

Network

- □ collects Flow Records from various exporters
- □ stores original flow records
- aggregates flow records flexibly
- distributes appropriate flow records for collectors/analyzers

Customer

Flow mediator ought to be useful for making large-scale collection system.

+ draft-kobayashi-ipfix-mediator-model-01.txt

Network

You can easily make Flow Mediation code

- Net::Flow perl module is available on CPAN.
 - http://search.cpan.org/~akoba/Net-Flow-0.02/
 - The module can encode and decode NetFlow/IPFIX packets.
 - The encoding and decoding functions have a similar IF.

Requirements

- Make traffic-collection system to meet following requirements
 - Requirement 1: measure traffic flow of entire networks
 - measure traffic matrices PoP by PoP and router by router
 - Requirement 2: store received 5-tuple flow records from router
 - When traffic incident happens, allow inspection of traffic.
 - Requirement 3: design scalable architecture to accommodate large ISP traffic volume

Goal

- Explore heuristic method of designing collection system for introduction into actual network.
- Proposed collection system needs to accommodate following network model.
 - □ Total traffic volume 500 Gb/s, 100 Mp/s
 - Edge Router 20/PoP×10 PoP = 200
 - NetFlow is enabled on IngressIF of Edge router.

Hierarchical Collection System

- Mediators are allocated in each PoP.
 - They store all flow records, aggregate them, and export them to next collector.

Visualize Traffic Matrices

Top collector can visualize Router/PoP/AS Traffic Matrixes.

Nail is the name of our traffic matrix visualizer.

Color indicates traffic volume of Source/ Destination pair.

Heuristic Design Method

- Suitable values of several parameters are decided by the following steps.
 - Step 0: measure performance limit of flow mediator and top collector.
 - Step 1: reveal relation between number of flow records and packet sampling
 - □ Step 2: reveal relation between number of flow records and aggregation that depends on several factors.
 - Aggregation methods (BGP Next-Hop, Prefix, host)
 - Aggregation interval time (20 s, 60 s, 90 s...)
 - □ Step 3: select suitable value within performance limit.
 - Large sampling rate is preferable.
 - Small granularity of aggregation is preferable.

Consideration Points

List several considerations, as follows.

Maximum performances of the top collector and mediators are 5 Kf/s and 10 Kf/s.

Step 1: estimate flow records after sampling

- Estimate number of flow records based on density function of packets per flow .
 - \square # of packets per flow: *x*
 - □ Packets per flow density function: $F(x)^{1.000000}$
 - \Box Sampling rate: 1/r
 - \Box Total number of unsampled flow: f_{all}

$$f_{sampled} = \sum_{x=1}^{\infty} \left(1 - \left(1 - \frac{1}{r} \right)^x \right) \times F(x) \times f_{all}$$

Extraction $0.5x^{-1.73}$ Roughly estimate as follows. probability $0.5x^{-1.73}$ 100 Mpps ÷ 20 packets = 5 Mf/s

Approximate # of flows when total traffic volume is 500 Gb/s.

Sampling rate	1/100	1/1000	1/10000
f _{sampled}	305 kf/s	43 kf/s	5.2 kf/s

Too many flow records without mediator

Even if sampling rate is 1/10,000 packets, the number of flow records exceeds performance limit.

Step 2: flow records after aggregation

- What is the # of flow records after aggregation?
- Mediator aggregates unsampled flow records at 20-second interval.
 - Aggregation efficiency: Prefix > HOST > Pair Prefix > Pair HOST > Bi-Flow
 - The prefix length "/24" is uniformly applied to Prefix Aggregation.
 - Bi-flow is aggregated from two flow directions.

Step 2: Flow records after aggregation, sampling

 Each aggregation method becomes ineffective gradually.
 Bi-flow becomes ineffective immediately.

sensitive to sampling rate.

Sampling rate 1/128

Sampling rate 1/1024

Step 2: Which factor influences aggregation?

- Aggregation ratio depends on several factors.
 Traffic Volume through observation point.
 - □ Sampling rate
 - □ Aggregation interval time

I guess that the aggregation ratio depends on the number of flow records received in interval time.

Received Flows	3450	3562	
Aggregation Interval Time (s)	10	300	
Sampling rate (1/r)	1	128	
DST_HOST Aggregation ratio	45%	43%	
DST_PREFIX Aggregation ratio	30%	32%	

Step 2: Which factor influences aggregation?

I plotted all experimental data into one graph.
 Three MAWI traffic data samples have different volumes.
 Aggregation Interval time : 5 – 300s

□ Sampling rate : 1/1 – 1/1024

Aggregation ratio depends on number of received flow records.

Step 2: Formulation of Aggregation Ratio

- Aggregation ratio (R) can be estimated from number of flow records (f_r), as follows.
 - □ DST Host aggregation: $R_{dsthost} = 1.80 \times f_r^{-0.18}$ □ DST Prefix aggregation: $R_{dstprefix} = 2.34 \times f_r^{-0.26}$
- After all, the aggregation ratio depends on the # of unique hosts or prefixes versus # of flows.

Step 3: Selection of Suitable Values

• I selected suitable value within performance limit.

		Sampling Rate	1/100	1/1000	1/10000
# of received flow records in top collector $(=\sum f_e)$	DST_HOST aggregation	Interval time = 60s	45 kf/s	9.0 kf/s	1.6 kf/s
	DST_Prefix aggregation	Interval time = 60s	21 kf/s	4.7 kf/s	0.94 kf/s
	DST_HOST aggregation	Interval time = 300s	34 kf/s	7.0 kf/s	1.2 kf/s
	DST_Prefix aggregation	Interval time = 300s	12 kf/s	3.0 kf/s	0.62 kf/s

# of received flow	—	—	30 kf/s	4.4 kf/s	0.6 kf/s
records in					
mediator (f_r)					

Example of collection system

Sampling Rate: 1/1000

Jan 8, 2008

Aggregation Interval time: 60 s

Conclusion

- To make large scale traffic collection system, flow mediator is efficient.
- Revealed relation between number of flow records and several factors:
 - □ Traffic volume
 - □ Sampling rate
 - □ Aggregation method
 - □ Aggregation interval time
- Demonstrated that traffic collection system using mediator can be introduced into actual large-scale networks.

Thank you for your attention.

This study was supported by the Ministry of Internal Affairs and Communications of Japan.

Jan 8, 2008

FloCon 2008