

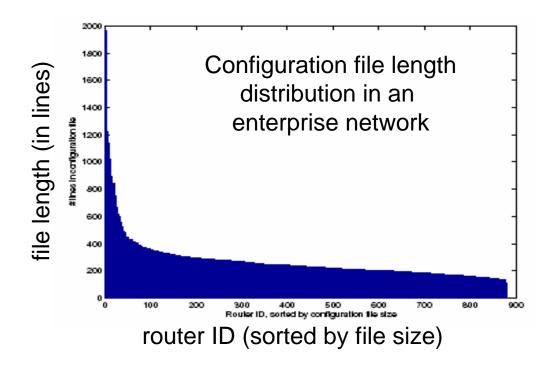
Zurich Research Laboratory

Automating the configuration of flow monitoring probes

Xenofontas (Fontas) Dimitropoulos (xed@zurich.ibm.com) Andreas Kind (ank@zurich.ibm.com)

IBM | Dec 07 | Systems Department

www.zurich.ibm.com

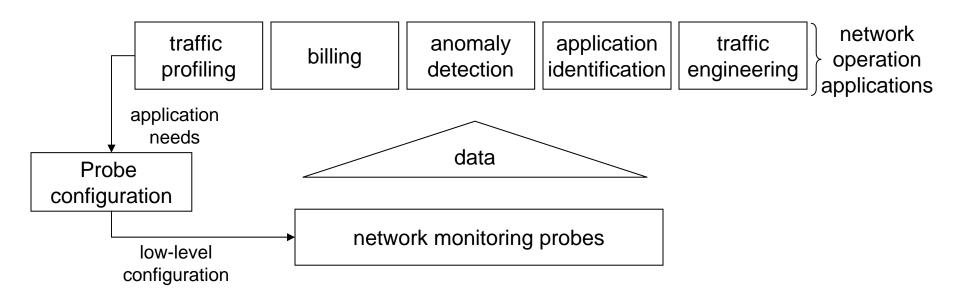

Outline

- Background and motivation.
- Probe configuration architecture:
 - Requirements and goals.
 - Design.
 - Implementation.
- Future work and conclusions.

Network configuration

- Network elements are typically configured with low-level commands, e.g., Cisco IOS commands.
- Network administrators manage numerous network elements with lengthy configuration files.
- Network configuration is an error-prone and time-consuming process.
- Configuration errors can be costly, e.g.:
 - network outages
 - violations of SLAs

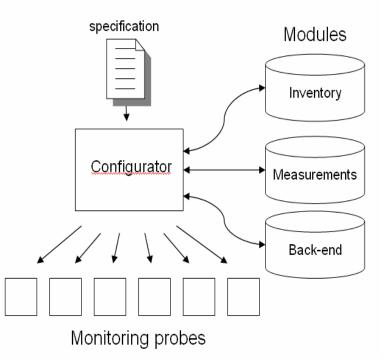
Source of figure: 100x100 project



Probe configuration

- The configuration of monitoring probes is part of the more general network configuration problem.
- Monitoring probes are gradually becoming more intelligent, for example, using advanced sampling and data aggregation techniques. Consequently, their configuration becomes more involved.
- Flexible Netflow (FNF) and IPFIX provide numerous configuration options that were not available earlier:
 - FNF has 58 different configuration commands.
 - FNF provides 65 different fields, arbitrary combinations of which can be used in the definition of flow key and non-key fields.
- Certain network operation applications need to dynamically change configuration to:
 - adapt to changing traffic conditions.
 - investigate on-going network anomalies.

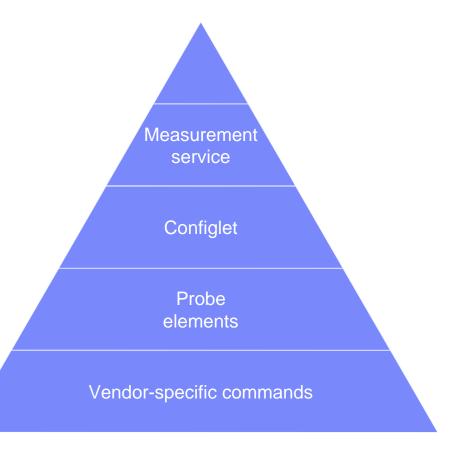
Configuration requirements



- Probe configuration should:
 - 1. take into account application needs.
 - 2. be aware of the available monitoring probes.
 - 3. generate low-level configuration commands.
 - 4. configure or update the configuration of probes.

Probe configuration architecture

- Three modules:
 - the measurements module describes different measurements, i.e., application needs.
 - the inventory module describes the monitoring probes of a network.
 - the back-end module provides necessary information for generating low-level commands.
- The specification identifies application needs.
- The configurator:
 - uses the modules and specification to generate low-level commands.
 - configures the probes


Design goals for simplifying configuration

- 1. Abstraction: hide low-level configuration commands.
- 2. Objective-oriented configuration expression:
 - express configuration in terms of measurement objectives.
 - focus on measurements instead of devices.
- 3. Network-wide configuration: configure a network instead of configuring individual devices.
- 4. Re-usability: make parts of configuration network-independent.
- 5. Extensibility: easily introduce support for new commands, measurements, etc.

Configuration abstraction hierarchy

- 1st level: vendor-specific configuration commands.
- 2nd level: probe elements (pe), i.e., logical components of a probe, like interface, flow cache, exporter.
- 3rd level: configlet, i.e., a set of specific probe elements that realizes a measurement.
- 4th level: measurement services, i.e., a configlet with certain probe selection rules.

Back-end module

Specifies different probe
elements.

- A probe element specification:
 - is written in XML.
 - has a unique id.
 - identifies parameters and parameter default values.
 - determines the low-level vendor-specific commands.

- Probe Element Exporter <pe id="generic_exporter"></pe>	
<params> <param id="port"/>90 <param id="transport"/>udp <param id="destination"/>192.0.0.1 <param id="label"/>EXPORTER </params>	
<template> <ios></ios></template>	
flow exporter \$label	
destination \$destination	
transport \$transport \$port 	
<yaf></yaf>	
out \$destinationipfix \$transportipfix-port \$port	
<junos> </junos>	

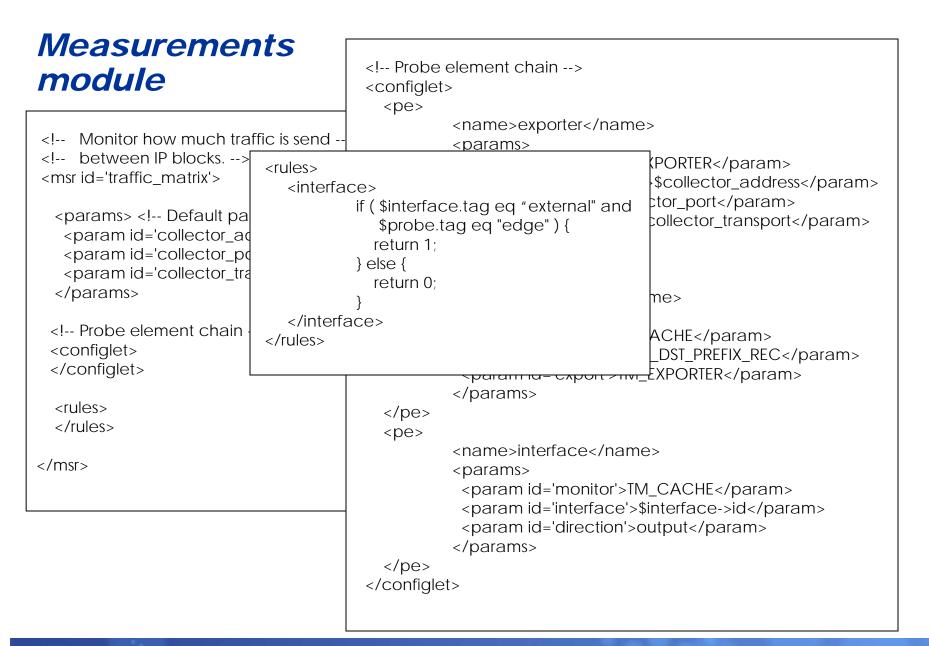
Inventory module

- Specifies network probes, i.e., lists the characteristics that can be useful for their configuration.
- Besides describing location, system, and interface information, it declares tags that can be used for grouping probes and for probe selection.

<probe id='trabant.zurich.ibm.com'> <address>9.4.68.154</address>

<location> <city>Zurich</city> <state>Central CH</state> <country>Switzerland</country> </location>

<system> <os>ios</os> <version>12.4</version> </system>


<interface id='FastEthernet0/0'> <capacity>100Mbits</capacity> <tag>internal</tag> </interface>

<interface id='FastEthernet0/1'> <capacity>100Mbits</capacity> <tag>customer</tag> </interface>

<tags> <tag>edge</tag> </tags>

</probe>

Input specification

- Lists the measurements and the probes in which to enable these measurements.
- Is the user interface and can be generated through a GUI.

```
<!-- Probes to apply measurements on -->
<probe id='wassen.zurich.ibm.com'></probe>
<probe id='trabant.zurich.ibm.com'></probe>
<!-- Measurements -->
<msr id='traffic matrix'>
  <params> <!-- overwrite default values -->
   <param id='collector_address'>9.4.68.204</param>
   <param id='collector_port'>2055</param>
   <param id='collector_transport'>udp</param>
  </params>
</msr>
<msr id='app_monitoring'>
  <params> <!-- overwrite default values -->
   <param id='collector_address'>9.4.68.205</param>
   <param id='collector_port'>2055</param>
   <param id='collector_transport'>udp</param>
  </params>
</msr>
```


Design goals for simplifying configuration

- 1. Abstraction: hide low-level configuration commands.
- 2. Objective-oriented configuration expression:
 - express configuration in terms of measurement objectives.
 - focus on measurements instead of devices.
- 3. Network-wide configuration: configure a network instead of configuring individual devices.
- 4. Re-usability: make parts of configuration network-independent.
- 5. Extensibility: easily introduce support for new commands, measurements, etc.

Conclusions

- Described an architecture for simplifying the configuration of flow monitoring probes:
 - abstract configuration of probes and hide low-level details.
 - focus on measurement services that satisfy the objectives of applications.
 - generate and set configuration automatically.
- Future work:
 - Incorporate error-checking techniques.
 - Develop libraries for typical measurements.
 - Use NetConf.
 - Configuration optimization.