
SATURN 2013

© 2013 Carnegie Mellon University

eMontage: An Architecture for
Rapid Integration of
Situational Awareness Data at
the Edge

Soumya Simanta
Gene Cahill
Ed Morris

Presenter
Presentation Notes
1. Business Context2. Architecturally Significant Requirements (functional, nonfunctional)3. Architectural Overview Diagram4. Deep dive on selected components5. Selected architectural decisions with rationale6. Lessons learned and best practices (about patterns or technology)7. Take-away messages

2SATURN 2013
© 2013 Carnegie Mellon University

Motivation – Situational Awareness

First responders and others operating in the “last mile” of crisis and
hostile environments are already making use of handheld mobile
devices in the field to support their missions.

Rapid Incorporation of New Data Sources
• Many data sources (real-time, historical, …)
• Data is fragmented across different apps on the mobile device

Minimized Information Overload
• Edge users are under high cognitive load
• Information required is a function of user’s context and therefore dynamic

Simple Use
• Users are under high stress
• Small screen devices

Resource Constrained Hostile Environment

Presenter
Presentation Notes
Our goal is to provide better situational awareness to these users by allowing: Rapid incorporation of data sources. Minimized information overloadSimple user interfaceResource constrained Hostile Environment

3SATURN 2013
© 2013 Carnegie Mellon University

Hostile Environments Characteristics

Wimpy edge nodes
• Limited resources (CPU, battery and memory) on mobile nodes
• Example: Expensive computations on a smartphone may drain the battery fast

Limited or no end-to-end network connectivity
• Implicit assumption of WAN connectivity is not always valid
• Example: No access to internet during a disaster, DoS attack

High cognitive load
• Application latency and fidelity become important
• Example: A slow application will increase the cognitive load on the user

Bounded elasticity
• Upper bound on number of consumers known in advance
• Example: Fixed number of first responders in a location

Dynamic environment
• Static deployment topologies cannot be assumed; Survivability essential
• Example: An automobile with a server may not be available

Presenter
Presentation Notes
Wimpy edge nodesExample: Expensive computations on a smartphone may drain the battery fastLimited or no end-to-end network connectivityExample: No access to internet during a disaster, DoS attackDynamic environmentExample: An automobile with a server may not be available High cognitive loadExample: A slow application will increase the cognitive load on the userBounded elasticity Example: Fixed number of soldiers in a squad Characteristics of computation required in hostile environments- latency sensitive applications- compute sensitive applicationsenergy sensitive applicationsNeed for Survivability architecture

4SATURN 2013
© 2013 Carnegie Mellon University

Context Diagram

5SATURN 2013
© 2013 Carnegie Mellon University

Architecturally Significant Requirements
Extensibility
• Add new data source quickly with minimal impact on existing sources

Runtime Configurability
• Make data sources user configurable (e.g., using data filters) at runtime

Performance
• Minimize network bandwidth usage of the tactical network

Energy Efficiency
• Optimize energy consumption on mobile handheld devices

Usability
• Provide a responsive and unified user interface

Availability
• Support intermediate disconnections with remote data sources

Security
• Support existing security protocols and provide transport layer security

6SATURN 2013
© 2013 Carnegie Mellon University

Runtime C&C View

7SATURN 2013
© 2013 Carnegie Mellon University

Request Response Interaction

8SATURN 2013
© 2013 Carnegie Mellon University

Publish Subscribe Interaction

9SATURN 2013
© 2013 Carnegie Mellon University

Example Routes

10SATURN 2013
© 2013 Carnegie Mellon University

Extensibility – Adding New Data Sources
Problem • New data sources are available in the field

• Adding and validating them is time consuming

Assumptions • The data source has a remote API
• The data format is defined and stable

Solution • Minimize coupling between data sources by
encapsulating each data source

• Implement common connectors
(request/response and publish subscribe)

Future extensions Automate common tactical integration patterns to
provide an end-user programing interface

11SATURN 2013
© 2013 Carnegie Mellon University

Data Model

Data model is represented as objects (POJOs) shared between clients
and server
Data model changes must be synchronized between clients and servers
• Our assumption: data model is “relatively” stable

Data model can be created in the following ways
• Manual definition – works best in case of a simple data model
• Code generation – WSDL2Java to generate code
• Reuse existing library – Twitter4J is an existing Java implementation of

Twitter API

12SATURN 2013
© 2013 Carnegie Mellon University

Mashup Mechanism

Merging data across data models is a mechanism to relate data across
models.

• Example: foreign keys in a relational database
In eMontage, we assume a large proportion of situational awareness
data has some form of geo-location associated with it
• use geo-location as the common key

All data is currently mashed up on a map-based interface.
• as long as two data elements from different data sources are referenced by

geo-location (latitude and longitude), they will always be displayed correctly
on a map

• the actual relating of information will happen with the user

13SATURN 2013
© 2013 Carnegie Mellon University

Example Data Sources

14SATURN 2013
© 2013 Carnegie Mellon University

Configurability- User-defined Runtime Filtering

Problem Information overload

Assumption The user knows what information they need in a
particular context (e.g., location, keywords, date
ranges)

Solution Provide mechanisms that allow users to reduce the
volume of information
• using rule-based filtering at runtime

Future extensions Provide “data discovery” mechanisms (e.g.,
visualizations, clusters, outliers) when the user
does not know what information they need

15SATURN 2013
© 2013 Carnegie Mellon University

Usability - Unified User Interface

Problem Data is fragmented across multiple applications
and databases

Assumption • Data is geo-coded
• A unified view provides more value compared to

isolated views of data from different sources

Solution Mashup of geo-code data viewed on a map allows
visual unification of data

Future extensions • Provide other non-map based visualizations
• Provide data join mechanisms

Presenter
Presentation Notes
Problem: Data fragmentation across multiple applicationsContext: Data Solution: Provide mechanisms to allow unification of dataTechnical Mechanism: Mashup of geo-code data on a unified user interface

16SATURN 2013
© 2013 Carnegie Mellon University

Performance - Minimized Bandwidth Utilization

Problem Bandwidth is a scare resource at the “last mile” of
edge

Assumption Possible to have an intermediary node in the
network

Solution Add an intermediary node
• Use filtering at the source (only send information

is required by the mobile nodes)
• Transform to a more bandwidth optimized format

(e.g., XML to JSON/Protocol Buffer)

Future extensions Use protocol transformation (use a SPDY instead
of HTTP)

Presenter
Presentation Notes
Observation – not all data is required by the mobile nodes. Less network activity and faster load times also mean that the mobile radio has to be active for shorter periods of time, which translates into longer battery life!

17SATURN 2013
© 2013 Carnegie Mellon University

Power Consumption - Offloading Expensive
Computation

Problem Mobile nodes have limited resources (CPU, battery
and memory)

Assumption Possible to have an intermediary node in the
network

Solution Perform expensive computation (e.g., XML parsing,
multiple network calls) on a proximate, relatively
resource rich node

Future extensions Use multi-node cloudlets to increase performance
and fault tolerance

Presenter
Presentation Notes
XML parsing, filtering unwanted data etc. Regular smartphone users know that watching a video or playing a game can quickly drain the battery, and we recently learnt that free apps are also power hungry, but even simple web browsing has an energy cost. Now, researchers at Stanford University and Deutsche Telekom have discovered that many popular sites, such Wikipedia, IMDB and even iPhone manufacturer Apple's homepage, are wasting energy due to bloated code. The researchers have also shown how to reduce this energy usage by almost 30 per cent, without affecting user experience.Stanford computer scientist Narendran Thiagarajan and colleagues used an Android phone hooked up to a multimeter to measure the energy used in downloading and rendering 25 popular websites. Simply loading the mobile version of Wikipedia over a 3G connection consumed just over 1 per cent of the phone's battery, while browsing to apple.com, which does not have a mobile version, used 1.4 per cent.The team then repeated the measurements with locally saved versions of the website, allowing them to separate out the energy required to render a page from that need to download it. Most modern websites use Javascript and CSS files to provide additional functions and styles that aren't possible using basic HTML, but the researchers discovered that many of the websites they looked at were loading large files that weren't being used in the page.For example, Wikipedia uses a custom file Javascript along with a generic library to collapse and expand the various sections on a page, but much of the library goes unused. By rewriting the site's Javascript to just perform the required function, Thiagarajan and colleagues were able to reduce the energy used from 15 to 9.5 Joules.Making similar changes to the CSS files and images, they were able to reduce the total energy used in loading Wikipedia from 35 to 25 Joules, a saving of 29 per cent. They say that as well as making websites fast and good looking, web designers should also take into account the energy used in loading the page - otherwise users might decide to go elsewhere. The team will present their work at the World Wide Web 2012 conference in Lyon, France, this week.

18SATURN 2013
© 2013 Carnegie Mellon University

Availability - Disconnected Operations

Problem Edge nodes may have to work in disconnected or
semi-connected mode (from enterprise/TOC
network)

Assumption • Possible to deploy a resource-rich node locally
(e.g., on an automobile)

• Real-time data is generated locally
• Possible to know in advance what data will be

required for a mission (e.g., maps by locations)

Solution Localize and cache data sources on a cloudlet.

Future extensions Use persistent distributed caching.
Adaptive pre-fetching to support intermittent
disconnections

19SATURN 2013
© 2013 Carnegie Mellon University

Architectural Alternatives

Native Mobile Client Only
• A native, mobile client app directly connected to backend data sources

Mobile Browser-Server
• A mobile browser client to a server that acts as an intermediary between

the mobile client and the backend data sources
Native Mobile Client-Server
• A native, mobile client app connected to an in intermediary server

Native Mobile Client Only Mobile Browser-Server Native Mobile Client-Server

20SATURN 2013
© 2013 Carnegie Mellon University

Native Mobile Client
Only

Mobile Browser-
Server

Native Mobile Client-
Server

Reuse of COTS Low High High

Protocol/Data format
transformation

No Yes Maybe

Intermediate filtering No Yes Yes

Bandwidth
optimization

No Yes Maybe

Disconnected
operations

No Yes Yes

Rich user interface Yes Yes Maybe

Energy efficiency No Yes Maybe

Fault Tolerance High Low Low

Caching No Yes Yes

Runtime modifiability Low High High

Architectural Alternatives

21SATURN 2013
© 2013 Carnegie Mellon University

Current and Future Work

More intuitive user interface
• Support other views of data
• Provide data exploration and discovery capabilities

Focus on performance
• Use caching
• Allow use of multiple processors/cores when possible

Add security mechanisms
• Use with Wave Relay radios
• Add transport and message level encryption

Integrate with edge analytics
• Build edge analytics techniques on top of current eMontage implementation

22SATURN 2013
© 2013 Carnegie Mellon University

Questions

23SATURN 2013
© 2013 Carnegie Mellon University

Copyright 2013 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense
under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation
of the Software Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.This
material has been approved for public release and unlimited distribution except as
restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed
in written or electronic form without requesting formal permission. Permission is required
for any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

DM-0000349

	eMontage: An Architecture for Rapid Integration of Situational Awareness Data at the Edge�
	Motivation – Situational Awareness
	Hostile Environments Characteristics
	Context Diagram
	Architecturally Significant Requirements
	Runtime C&C View
	Request Response Interaction
	Publish Subscribe Interaction
	Example Routes
	Extensibility – Adding New Data Sources
	Data Model
	Mashup Mechanism
	Example Data Sources
	Configurability- User-defined Runtime Filtering
	Usability - Unified User Interface
	Performance - Minimized Bandwidth Utilization
	Power Consumption - Offloading Expensive Computation
	Availability - Disconnected Operations
	Architectural Alternatives
	Architectural Alternatives
	Current and Future Work
	Questions
	Slide Number 23

