

Zurich Research Laboratory

Simplifying the configuration of flow monitoring probes

Xenofontas (Fontas) Dimitropoulos (xed@zurich.ibm.com) Andreas Kind (ank@zurich.ibm.com)

IBM | Dec 07 | Systems Department

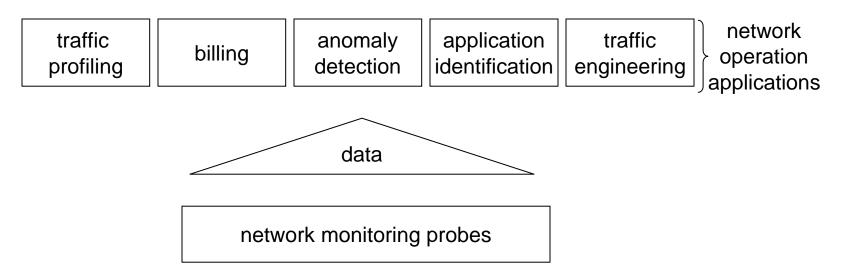
www.zurich.ibm.com

Outline

- Background and motivation.
- Probe configuration architecture:
 - Requirements and goals.
 - Design.
 - Implementation.
- Future work and conclusions.

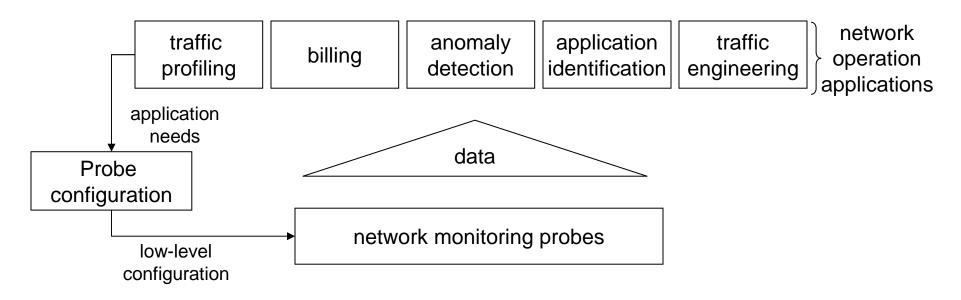
Network configuration

- Network elements are typically configured with low-level commands, e.g., Cisco IOS commands.
- Network administrators manage numerous network elements with lengthy configuration files.
- Network configuration is an error-prone and time-consuming process.
- Configuration errors can be costly, e.g.:
 - network outages
 - violations of SLAs



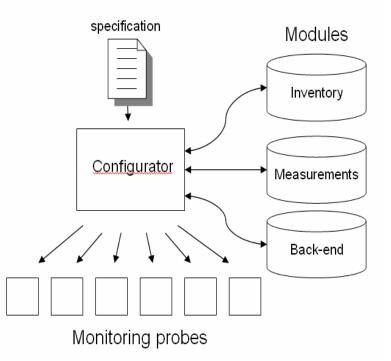
Probe configuration

- The configuration of monitoring probes is part of the more general network configuration problem.
- Monitoring probes are gradually becoming more intelligent, for example, using advanced sampling and data aggregation techniques. Consequently, their configuration becomes more involved.
- Flexible Netflow (FNF) and IPFIX provide numerous configuration options that were not available earlier:
 - FNF has 58 different configuration commands.
 - FNF provides 65 different fields, arbitrary combinations of which can be used in the definition of flow key and non-key fields.
- Certain network operation applications need to dynamically change configuration to:
 - adapt to changing traffic conditions.
 - investigate on-going network anomalies.



Configuration requirements

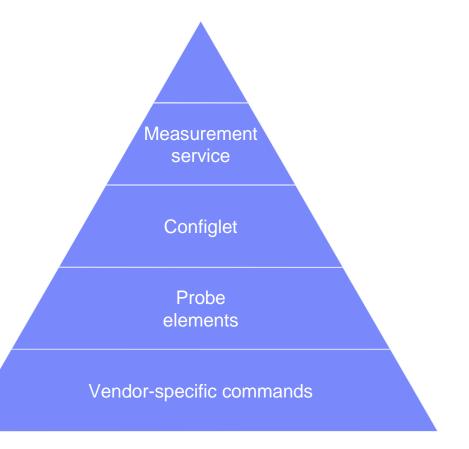
Configuration requirements



- Probe configuration should:
 - 1. take into account application needs.
 - 2. be aware of the available monitoring probes.
 - 3. generate low-level configuration commands.
 - 4. configure or update the configuration of probes.

Probe configuration architecture

- Three modules:
 - the measurements module describes different measurements, i.e., application needs.
 - the inventory module describes the monitoring probes of a network.
 - the back-end module provides necessary information for generating low-level commands.
- The specification identifies application needs.
- The configurator:
 - uses the modules and specification to generate low-level commands.
 - configures the probes


Design goals for simplifying configuration

- 1. Abstraction: hide low-level configuration commands.
- 2. Objective-oriented configuration expression:
 - express configuration in terms of measurement objectives.
 - focus on measurements instead of devices.
- 3. Network-wide configuration: configure a network instead of configuring individual devices.
- 4. Re-usability: make parts of configuration network-independent.
- 5. Extensibility: easily introduce support for new commands, measurements, etc.

Configuration abstraction hierarchy

- 1st level: vendor-specific configuration commands.
- 2nd level: probe elements (pe), i.e., logical components of a probe, like interface, flow cache, exporter.
- 3rd level: configlet, i.e., a set of specific probe elements that realizes a measurement.
- 4th level: measurement services, i.e., a configlet with certain probe selection rules.

Back-end module

Specifies different probe
elements.

- A probe element specification:
 - is written in XML.
 - has a unique id.
 - identifies parameters and parameter default values.
 - determines the low-level vendor-specific commands.

Probe Element Exporter		
<pe id="generic_exporter"></pe>		
<params></params>		
<pre>>paramid='port'>90</pre>		
<param id="transport"/> udp		
<param id="destination"/> 192.0.0.1		
<param id="label"/> EXPORTER		
<template></template>		
<ios></ios>		
flow exporter \$label		
destination \$destination		
transport \$transport \$port		
<yaf></yaf>		
out \$destinationipfix \$transportipfix-port \$port		
<junos></junos>		

Inventory module

- Specifies network probes, i.e., lists the characteristics that can be useful for their configuration.
- Besides describing location, system, and interface information, it declares tags that can be used for grouping probes and for probe selection.

<probe id='trabant.zurich.ibm.com'> <address>9.4.68.154</address>

<location> <city>Zurich</city> <state>Central CH</state> <country>Switzerland</country> </location>

<system> <os>ios</os> <version>12.4</version> </system>

<interface id='FastEthernet0/0'> <capacity>100Mbits</capacity> <tag>internal</tag> </interface>

<interface id='FastEthernet0/1'> <capacity>100Mbits</capacity> <tag>customer</tag> </interface>

<tags> <tag>edge</tag> </tags>

</probe>

Measurements module

<!-- Monitor how much traffic is send --> <!-- between IP blocks. --> <msr id='traffic_matrix'>

<params> <!-- Default parameter values --> <param id='collector_address'>localhost</param> <param id='collector_port'>2055</param> <param id='collector_transport'>tcp</param> </params>

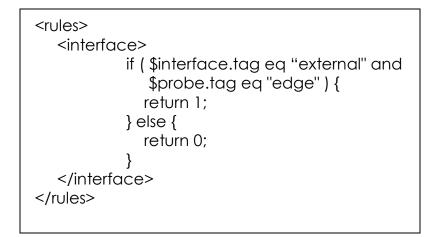
<!-- Probe element chain --> <configlet> </configlet>

<rules> </rules>

</msr>

Zurich	Research	Laboratory
--------	----------	------------

Γ



Measurements module

Probe element chain <configlet></configlet>		
<pe></pe>	<name>exporter</name> <params> <param id="label"/>TM_EXPORTER <param id="destination"/>\$collector_address <param id="port"/>\$collector_port <param id="transport"/>\$collector_transport </params>	
 <pe></pe>		
	<name>flow_cache</name> <params> <param id="label"/>TM_CACHE <param id="record"/>SRC_DST_PREFIX_REC <param id="export"/>TM_EXPORTER </params>	
<pe></pe>	<name>interface</name> <params> <param id="monitor"/>TM_CACHE <param id="interface"/>\$interface->id <param id="direction"/>output </params>	
 <th>>t></th>	>t>	

Measurements module

Input specification

Lists the measurements and the
probes in which to enable these
measurements.

 Is the user interface and can be generated through a GUI.

```
<!-- Probes to apply measurements on -->
<probe id='wassen.zurich.ibm.com'></probe>
<probe id='trabant.zurich.ibm.com'></probe>
<!-- Measurements -->
<msr id='traffic matrix'>
  <params> <!-- overwrite default values -->
   <param id='collector address'>9.4.68.204</param>
   <param id='collector_port'>2055</param>
   <param id='collector_transport'>udp</param>
  </params>
</msr>
<msr id='app monitoring'>
  <params> <!-- overwrite default values -->
   <param id='collector_address'>9.4.68.205</param>
   <param id='collector_port'>2055</param>
   <param id='collector transport'>udp</param>
  </params>
</msr>
```


Design goals for simplifying configuration

- 1. Abstraction: hide low-level configuration commands.
- 2. Objective-oriented configuration expression:
 - express configuration in terms of measurement objectives.
 - focus on measurements instead of devices.
- 3. Network-wide configuration: configure a network instead of configuring individual devices.
- 4. Re-usability: make parts of configuration network-independent.
- 5. Extensibility: easily introduce support for new commands, measurements, etc.

Conclusions

- Described an architecture for automating the configuration of flow monitoring probes.
 - Configuration abstraction.
 - Reuse configuration.
 - Extensibility.
- Future/on-going work:
 - Incorporate error-checking techniques.
 - Develop libraries for typical measurements.
 - Configuration optimization.
 - Use NetConf.