Impact of Packet Sampling on **Anomaly Detection Metrics**

Daniela Brauckhoff*, Bernhard Tellenbach*, Arno Wagner*, Anukool Lakhina **, Martin May* *ETH Zurich, ** Boston University

© ETH Zürich

Motivation

- The general opinion about sampling:
 - With sampling valuable information lost about anomalies
 - But sampling needs to be used anyway...
 - Cannot get unsampled netflow from some routers

Interesting questions arise:

- *How much* information is actually lost?
- Are all anomalies equally affected by sampling?
- Are all *detection metrics* equally affected by sampling?
- At which *sampling rate* is a certain anomaly still detectable?
- Can we estimate the *original anomaly size* from a sampled view?

Data & Experiments

- A week-long dataset of *unsampled Netflow records* from a backbone router of a national ISP
- Known Blaster outbreak in our data
- **Goal:** Study impact of packet sampling on Blaster worm
 - Focus on visibility of Blaster worm
 - Focus on anomaly detection metrics
 - Bytes, Packets, Flows, Traffic Features, ...

Entropy as a Detection Metric [LCD:SIGCOMM05]

The Power of Entropy

Worm scan dwarfed in volume metrics...

WIRTHING MI

But stands out in feature entropy, which also reveals its structure

Which AD metrics to look at?

00:00 00:00

15.0

14.0

08/08 08/09 08/10

0

Flow counts

22

NIN BURNER

250

Flow destination IP entropy

08/13 08/14 00:00 00:00

Methodology: Packet Sampling

- Determine the *packet size* (bytes) and *timestamps* for individual packets in the flow trace
- Each packet of a flow is recorded in it's own flow record with
 - packet_size = flow_size/num_packets (average packet size)
 - timestamp randomly chosen within flow bounds
- Randomly sample every 10th, 100th, 250th, and 1000th packet
 - Not exactly what Cisco does, but pretty close...

Timeseries of Detection Metrics

m

NIN BURNER

Methodology: Determine the Baseline

- AD algorithms measure distance from (predicted) baseline to (actual) observed metrics
- Each AD method uses it's own handcrafted algorithm to determine the baseline model
- Since we know the anomaly very well we can construct an *"ideal baseline"* by removing all blaster packets from the observed trace
 - Heuristic: blaster packet = packet with destination port 135, protocol TCP, and length of 40, 44, 48 bytes
- One baseline per metric and *sampling rate*

WIRTHING D

Methodology: Measure anomaly distance

 Absolute difference between trace y and baseline ŷ

UTRI HINDROW

- $abs = y \hat{y}$
- Absolute difference normalized to the baseline ŷ
 - $rel = (y \hat{y}) / \hat{y}$

Absolute distance

Anomaly Distance vs Sampling Rate

Q: What do these distance measures tell us? A: In this scenario entropy is less disturbed by sampling...

Thursday, November 16, 2006

NIN BURNER BURNER

Relative distance

Scaling the Blaster Worm

- Identification of Blaster packets based on heuristic
 - dst port, packet size, tcp
- *Amplification* of the Blaster worm
 - Insertion of new packets with same src IP, and dst IP randomly selected from SWITCH IP range
- Attenuation of the Blaster worm
 - Randomly throwing out of some of the Blaster packets (e.g., select each packet with probability of 50%)

Relative Distance for Scaled Blaster

Q: What do these scaled distance measures tell us? A: For faster and slower Blaster-like worms, entropy is less disturbed by sampling than flow counts...

UT REAL PROPERTY OF

Conclusion and Future Work

- What did we learn?
 - Some metrics are more resilient to sampling than others
 - Flow DST IP entropy is most resilient to sampling for Blaster-type anomalies (in our traces)
- What still needs to be studied...
 - Other types of anomalies, anomaly intensities
 - Other distance metrics (considering a metrics' variance)
 - Different bin sizes
 - Further anomaly metrics
 - Anomaly detectability at different sampling rates

Questions?

11000

Daniela Brauckhoff ETH Zurich, Switzerland brauckhoff@tik.ee.ethz.ch

김물

NIN BURNER

Baselines for AD Metrics (unsampled)

NI REAL PROPERTY AND INCOME.

Volume Time Series

m

김물

No REALIZED COM

Contraction of the second

Entropy Time Series

m

Anomaly Distance vs Sampling Rate

Absolute distance

NI NI HI HI HI MI MI