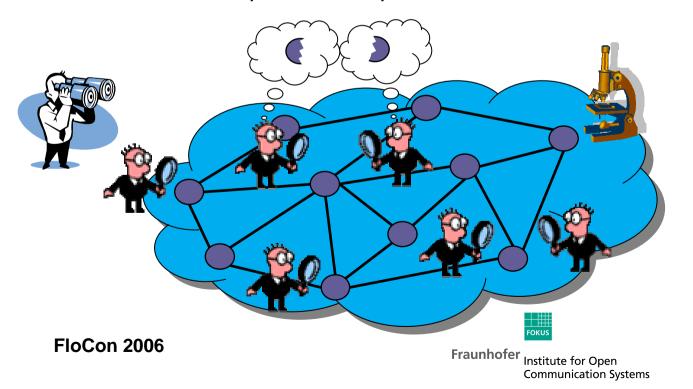
IPFIX/PSAMP: What Future Standards Can Offer to Network Security


Fraunhofer Institute for Open **Communication Systems**

Tanja Zseby, Elisa Boschi, Thomas Hirsch, Lutz Mark zseby@fokus.fhq.de

Measurement Requirements for Network Security

Goal: Detect deviations from normal traffic behavior

- Measurement requirements
 - Network-wide: get information from multiple observation points
 - Flexible: change viewpoints
 - Shareable: provide comparable and shareable results

Existing Solutions

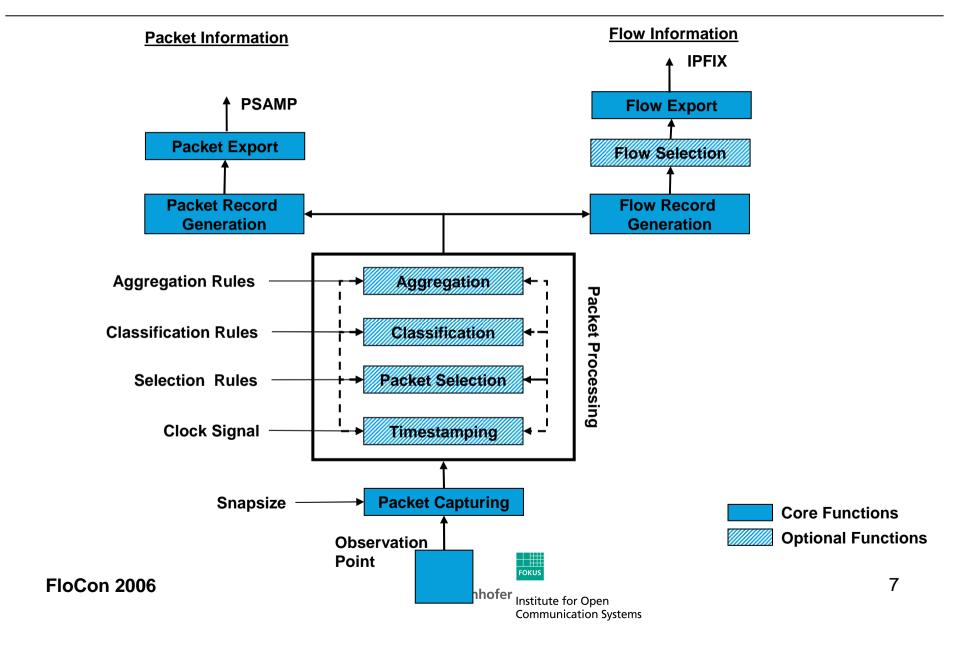
- Specialized Hardware
 - + Extra resources to capture flow and packet data
 - + Detailed post-incident analysis possible
 - Huge amount of measurement data → high analysis effort
 - Network installation required → operators distrust new devices
 - High costs → prevent network-wide deployment
- SNMP
 - Useful, but too coarse grained information
- Proprietary measurement tools
 - > 400 different tools (academia, research, operators, etc.) > www.ist-mome.org
 - Require additional devices → prevent network-wide deployment
 - Different input/output formats → hard to share and compare
- Cisco NetFlow
 - + Integrated in routers → network-wide deployment
 - Fixed flow definition, no packet data → limited flexibility
 - High resource consumption → Router performance degradation
 - UDP transport → potential data loss, no congestion control

IETF Standardization Efforts: IPFIX

IPFIX - IP Flow Information EXport

- Protocol for flow information export
 - Exports flow data from routers and probes (IPv4, IPv6)
 - Works on top of UDP, TCP or SCTP
 - Similar to Cisco NetFlow but much more flexible
- Upcoming IETF Standard
 - Active IETF working group
 - Protocol draft in last call
 - First Implementations exist
- Target Applications [RFC3917]
 - Usage-based Accounting
 - Traffic Profiling
 - Traffic Engineering
 - Attack/Intrusion Detection
 - QoS Monitoring

IPFIX Details


- Template-based approach
 - Template Records: define structure of Data Records
 - Data Records: contain parameter values
 - Option Template Records: provide additional information for Collectors
- Push-Model
 - Flow records pushed from exporter to collector
 - Trigger not defined in IPFIX
 - Measurement configuration out of scope
 - Flow termination criteria currently used, but others possible
- Information Elements (IEs)
 - Base sets of IEs defined in IPFIX-INFO, PSAMP-INFO
 - Attributes that can appear in IPFIX records
 - Vendor-specific IEs can be defined

IETF Standardization Efforts: PSAMP

PSAMP - Packet Sampling

- Exporting packet information with IPFIX
 - IEs for reporting packet header and payload
 - PSAMP IEs defined in draft-ietf-psamp-info-04.txt
 - PSAMP Framework in draft-ietf-psamp-framework-10.txt
- Packet selection methods
 - Filtering: deterministic selection based on packet content
 - Sampling: random or deterministic selection
 - PSAMP Schemes in draft-ietf-psamp-sample-tech-07.txt

IPFIX/PSAMP Measurement Model

What IPFIX/PSAMP can offer to NW Security

- Network-wide measurements
 - Measurement results from routers
 - No extra devices required
 - Different transport protocols (e.g. for congestion control)
- Highly flexible measurement definition
 - Arbitrary packet and flow information, highly flexible flow definition
 - Data selection techniques
 - Extensible information model
- Comparable and shareable data
 - Standardized data format
 - Different aggregation levels and sampling to enhance privacy
 - Secure data exchange (e.g. among domains)

IPFIX applicability statement: draft-ietf-ipfix-as-10.txt

Reporting Flow Statistics with IPFIX

That's what IPFIX was designed for!

- Very flexible flow definition
 - Any set of packets with "common properties" defined by flow keys
 - Packet header fields (e.g. destination IP address)
 - Packet properties (e.g. number of MPLS labels)
 - Packet treatment (e.g. output IF)
 - Information elements usable as flow keys defined in IPFIX-INFO
 - All IPv4 header fields (except checksum)
 - Main IPv6 header fields (addresses, next header, flow label, etc.)
 - Main transport header fields (UDP, TCP ports, sequence num., ICMP types)
 - Some sub IP header fields (MAC addresses, MPLS labels, etc.)
 - Flow termination criteria (currently used)
 - Idle timeout (no activity)
 - Active timeout (active, but max lifetime expired)
 - End of Flow detected (e.g. TCP FIN observed)
 - Forced end (external event, e.g. shut down of the Metering Process)
 - Cache full (lack of resources)

Reporting Flow Statistics with IPFIX

- Variety of information elements to report flow characteristics
 - Counters (e.g. bytes, packets, delta and total counters)
 - Timestamps (flow start, end, duration)
 - Statistics (min/max pktlength, min/max TTL, TCP flags, options)
 - Others (e.g. flow end reason)
- Per-flow TCP Flag counters
 - Recently introduced in IPFIX-INFO
 - E.g. tcpSynTotalCount, tcpFinTotalCount
 - Useful for detection of claim&hold attacks (e.g. SYN flood)

Bi-directional Flows

- Reporting both directions of a communication is useful for NW security
 - Connection status: incomplete connections can indicate attacks
 - Check request/response pairs (DNS, etc.)
- BUT: IPFIX currently reports each direction as separate flows How to report bi-directional flows?
- With standard IPFIX (without extensions)
 - Approach 1: Two records with record adjacency
 - unidirectional flow records adjacent to each other, collector reassembles
 - + extremely simple
 - maintaining right

or or properties

now records (for each direction) carry individual uniflow properties (references keys by commonPropertiesID)

- + more efficient
- additional resources for managing commonPropertiesID (at exporting and collecting process)
- three records required (instead of two)
- With IPFIX extension
 - Definition of new IEs for reverse direction
 - Re-use existing IEs and use special vendor ID to separate forward and backward direction
- Approaches currently discussed in draft-trammell-ipfix-biflow-02.txt → best method will be selected

Packet Captures

- IPFIX: only header information
 - Define each packet as separate flow
 - IP, transport header, and some sub IP information per packet
 - Flow keys reported for each packet → inefficient
- IPFIX improved export
 - Sharing flow key information among data records
 - → Methods discussed in reduced redundancy draft
- With PSAMP
 - Header: ipHeaderPacketSection
 - Payload: ipPayloadPacketSection
 - Sub IP: dataLinkFrameSection, mplsLabelStackSection, etc.
- Data reduction
 - Aggregation of flows
 - Packet selection methods PSAMP

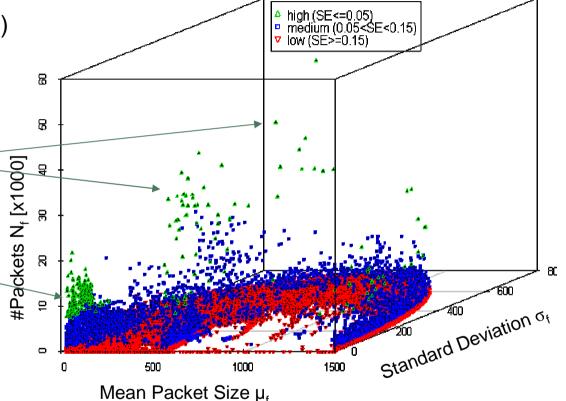
PSAMP Packet Selection Schemes

- PSAMP offers basic packet selection techniques
 - Filtering: deterministic selection based on packet content
 - Mask/match filter
 - Hash-based selection
 - Router state filter
 - Sampling: random or deterministic selection
 - Systematic count-based
 - Systematic time-based
 - Random n-out-of-N
 - Random uniform probabilistic
 - Random non-uniform probabilistic
 - Random non-uniform flow-state
- Packet selection possible at different points in measurement process
- Concatenation of selectors possible (e.g. for stratified sampling)
- Flow sampling
 - Allowed in IPFIX architecture
 - Currently not defined in PSAMP

Sampling Example: Achievable Accuracy

Example: Flow volume estimation

- PSAMP random n-out-of-N (5%)


- Sampling *before* classification

High accuracy for large flows

High accuracy for flows with small variation

$$SE_{rel} = \frac{\sqrt{\frac{N \cdot N_f}{n} \cdot \left(\sigma_{x_f}^2 + \mu_{x_f}^2\right) - \frac{N_f^2}{N} \cdot \mu_{x_f}^2}}{N_f \cdot \mu_{x_f}}$$

C/C/RN, Case B, f=5%, S24D24

→ Large flows detectable with very small effort

IPFIX Configuration

- Past: Configuration was out of scope for IPFIX
 - WG wanted to concentrate on protocol spec
 - Proprietary CLI configuration of IPFIX processes always possible
- Now: Several Proposals for IPFIX configuration
 - IPFIX MIB (draft-dietz-ipfix-mib-00.txt)
 - Monitoring IPFIX exporters and collectors (configuration, statistics)
 - Potentially configuration of IPFIX exporters and collectors
 - IPFIX XML configuration (draft-muenz-ipfix-configuration-00.txt)
 - Data model for configuration parameters of IPFIX devices
 - Configuration by Netconf, SOAP, etc.
 - NSIS proposal (draft-dressler-nsis-metering-nslp-04.txt)
 - Path-coupled dynamic configuration of Metering Entities
 - Metering NSIS Signaling Layer Protocol NSLP (M-NSLP),
 - Cooperation between NSIS and IPFIX required

Storage of Data

- Standardized format for storing IPFIX data
 - Post-incident analysis (forensics, research)
 - Sharing information (e.g. among providers)
 - Provide training data (traces with "normal" behavior)
- IPFIX file format draft (draft-trammell-ipfix-file-01.txt)
 - Collects Requirements
 - Extensibility (multiple record types, new fields, etc.)
 - Self-Description (interpretation without additional knowledge)
 - Data Integrity and Error Correction
 - Authentication and Confidentiality
 - Indexing and Searching
 - Anonymization
- Goal: propose an IPFIX file format
 - Evaluation of existing solutions (ARGUS, SiLK, etc.)
 - Collection of requirements

Support in Routers

IPFIX (Flow Export)

- First Implementations exist
- Cisco plans IPFIX compliance

Packet Export

- Resource limitation on routers prevent full packet export
- Packet export from sampled data possible
- Tradeoff between reported amount of information (#packets, snapsize) and required resources

Sampling Methods

- Cisco: random 1-in-K, systematic sampling
- Conformance to PSAMP if one PSAMP scheme is supported
- No information about support for further schemes

Conclusion

- IPFIX/PSAMP
 - Protocol to export flow and packet information
 - Upcoming standard
 - Can integrate data selection methods
- Provides measurement results
 - Network-wide
 - Flexible
 - Shareable
- → Powerful standards for network security
- FOKUS Open Source IPFIX library available at:

http://ants.fokus.fraunhofer.de/libipfix/

Thank you for your attention!

Fraunhofer Institute for Open Communication Systems