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Outline

• Data
• Graphical Displays

• Detecting Trends
• Anomaly Detection
• Roadmap
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Data

• Snort
– Signature-based alerts
– Pre-processor alerts

• Origin
– Multiple networks of varying size

• Volume
– ~30-50 million alerts per month

• Ancillary Information
– Country code
– Netblock
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IDS Data: challenges

• No new attacks
– Only matches known signatures

• Lack of context
– Don’t know what we are not seeing

• Non-standardized signature rule sets
– No administrative control

• Missing Data
– Uncertainty: Sensor failure vs. no intrusion attempts
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TCP Destination Port Changes
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Share of New Source IP Addresses
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Signature Class Transition

Transition probabilities highlight sequential patterns in data.
• Current State

– Source IP records alert on
Destination IP

• Transition probability
– Percent chance for next

class of alert recorded

• Most source/dest combos
involve only one signature
class

• Small transition probability
for
– Privilege Escalation
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Daily Transition Probabilities

Transition probabilities can be monitored over time to
identify consistent sequences.

Reconnaissance to Suspicious Activity
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Trend Detection

• Current month vs.
previous month
– Across organizations
– % changes

• Time Series
– Fit trend line

– Arbitrary time period

– Seasonal Components
– Regression with ARMA

errors
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Anomaly Detection

• Goal: Identify data points which
deviate from overall pattern of
data

• Our current implementation
(Figure of Merit)
– Evaluate hours

– Record # alerts, # source IP
addresses, # destination IP
addresses, # signatures

• For each hour, we want
measure of how deviant it was.
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Mahalanobis distance: 2D case

Euclidean Distance (based on circle)

Mahalanobis Distance (based on ellipse)• Compute distance metric
between each hour and the
average hour

• When measuring Euclidean
(Mahalanobis) Distance, all
points along circle (ellipse) are
same distance from the center
– Points on larger circle/ellipse

are greater distance from
center

• Shape of the ellipse
– Function of correlation

between variables

• Generalizes to n dimensions
(Ellipsoid)

Data is for Illustration Only
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Analysis Roadmap

• Incorporate flow data
• Automating trend detection

– Time series analysis

• Clustering
– Group sources by similar activity patterns

– Temporal correlation
– Targeting similarities

– Signature usage

– Look for evidence of possible coordination


