

Empirically Based Analysis: The DDoS Case

Jul 22nd, 2004

CERT[®] Analysis Center Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213-3890

The CERT Analysis Center is part of the Software Engineering Institute. The Software Engineering Institute is sponsored by the U.S. Department of Defense. © 2003 by Carnegie Mellon University

Introduction

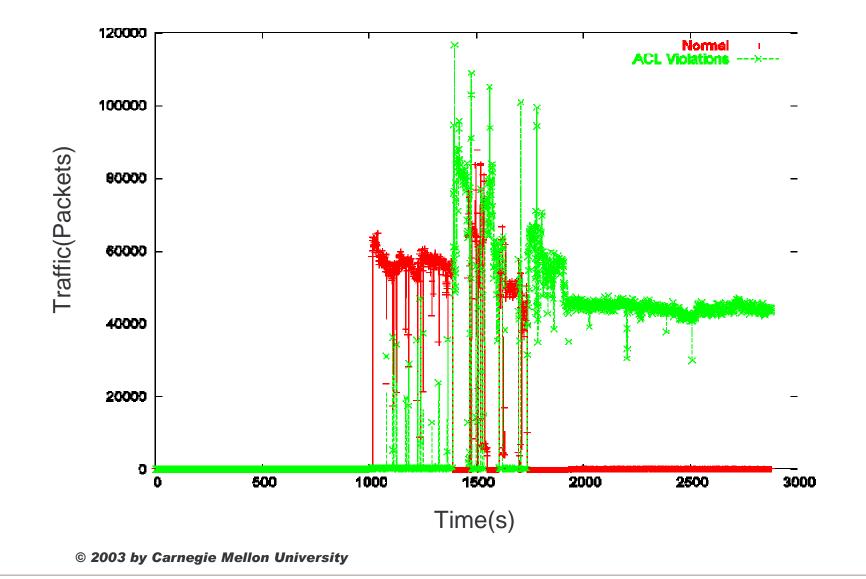
ØAccess to the dataset gives us a large enough record of traffic to test hypotheses in network security.

- ØGiven this, we select and evaluate various security measures against real traffic
 - Or a reasonable facsimile thereof

ØOne example: target resident DDoS Filters

Heavily constrain the problem
– not considering SYN floods, smurfing, reflection attacks...

Attacks like this



How Do We Test?

ØAny analysis opens a can of worms...err, "assumptions"

- The network constantly changes
- What is a representative host?

ØRerunning attacks is of debatable value

 Most of the legitimate traffic is dropped, that's what a DoS is for

ØWe want our results to be representative

• Test and summarize over multiple machines

ØWe want our results to be reproducible

• Depend heavily on SiLK structures and tools

ØTrained filters on 15 days of legitimate traffic

• Built a representation of IP address: volume relationship (via rwaddrcount)

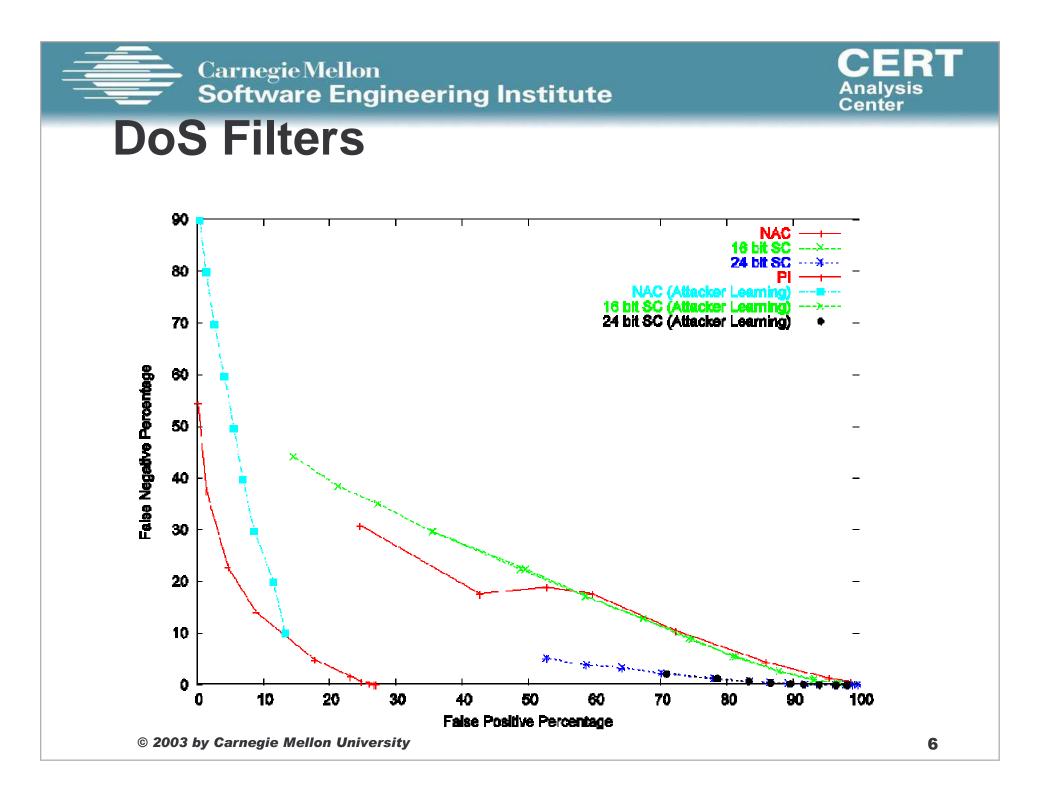
ØThen generated a simulated DoS

- Botnet IPs collected with rwset
- Normal traffic selected from another day

ØResulting traffic was then evaluated for failure rates

ØTested 2 types of filters:

- Clustering groups of adjacent IP addresses
- PI path marking approach



Initial Observations

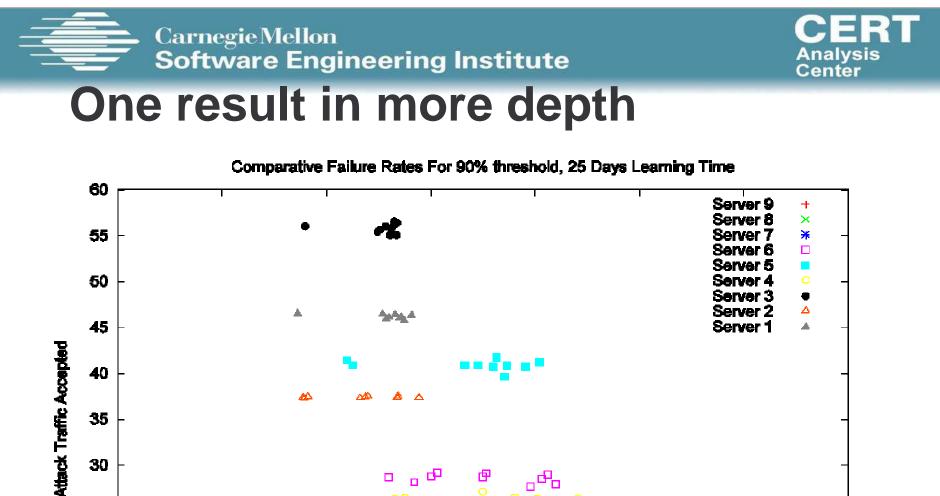
ØTwo groups

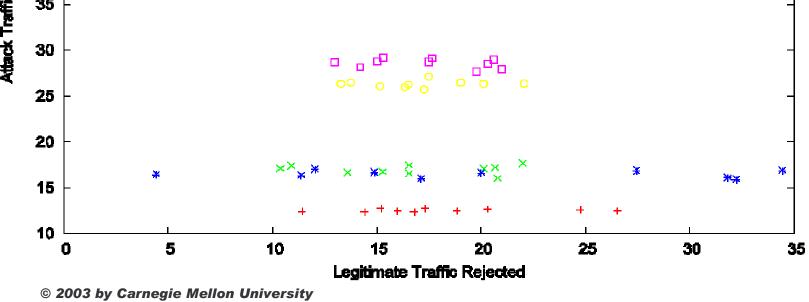
- One group assumes a magic DoS Detection Oracle
 - That's the group with better results

ØIn general, the filters don't do well

- Should we compare IP addresses, or packets?
- Is traffic different for different servers?

ØLet's look at one result in more depth





Carnegie Mellon Software Engineering Institute

Observations

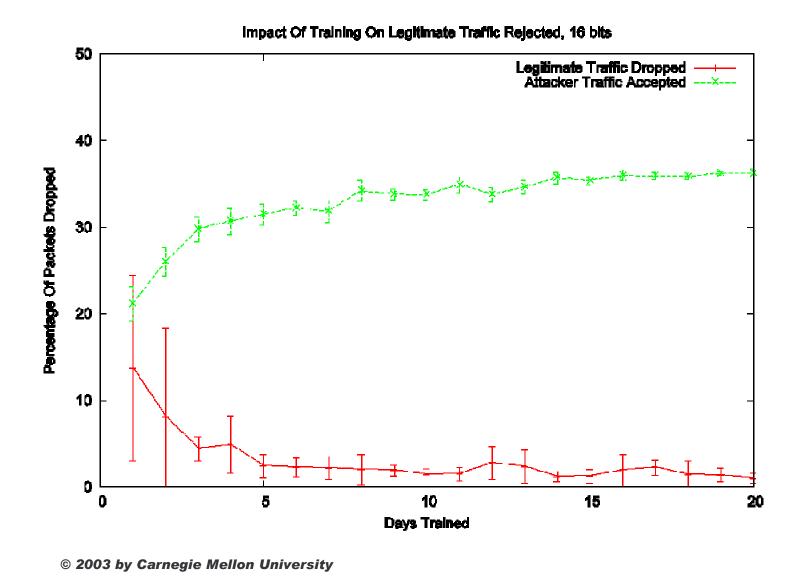
ØNormal traffic varies extensively

- Although it seems to vary more with "smaller" servers
- And it's better when you look at packet counts
 - Which makes sense, given the absurd number of scanners we see.

ØFalse negative rate (attackers accepted) seems to be related to server activity – the busier the higher.

Attackers don't vary as much

Learning Curves – 95% threshold



Other Observations

ØIn the majority of cases, packets are dropped because they've never been seen before

- Short learning curves effectively no change in false positive rate after a week of learning.
- Especially true for spoofed traffic

ØEntropy is lower than expected

• Filters that rely on spoof defense (HCF, PI) drop less than 10% of their packets because they detect a spoof

Further Work

ØExploiting our DoS attack traffic records further

- We know how the network reacts
- We know how the attack starts and ends
 - Which impacts learning curve for defenses that only profile the attack

ØFurther use of other network maps

• Skitter (used for PI), &c.

ØFormalization of the techniques used

- Developed a matrix based approach for the final iteration
- Tools are going to be available publicly

A Final Note

ØURL for the SiLK tools: http://silktools.sourceforge.net