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Evolution in Distributed Real-time & Embedded (DRE) Systems

Standalone real-time & 
embedded systems
• Stringent quality of service 

(QoS) demands
• e.g., latency, jitter, footprint

• Resource constrained

Standalone real-time & 
embedded systems
• Stringent quality of service 

(QoS) demands
• e.g., latency, jitter, footprint

• Resource constrained

The Past

This talk focuses on technologies for enhancing DRE system QoS, productivity, & quality

Enterprise distributed real-time & embedded 
(DRE) systems
• Network-centric “systems of systems”
• Stringent simultaneous QoS demands

• e.g., dependability, security, scalability, etc.
• Dynamic context

Enterprise distributed real-time & embedded 
(DRE) systems
• Network-centric “systems of systems”
• Stringent simultaneous QoS demands

• e.g., dependability, security, scalability, etc.
• Dynamic context

The Future
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Evolution of DRE Systems Development

Mission-critical DRE systems 
have historically been built 
directly atop hardware

• Tedious
• Error-prone
• Costly over lifecycles

Consequence: Small 
changes to legacy 
software often have 
big (negative) impact 
on DRE system QoS 
& maintenance

Technology Problems
• Legacy DRE systems 

often tend to be:
• Stovepiped
• Proprietary 
• Brittle & non-adaptive
• Expensive
• Vulnerable

Air
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Mission-critical DRE systems 
historically have been built 
directly atop hardware

• Tedious
• Error-prone
• Costly over lifecycles

•Middleware has effectively factored out 
many reusable services from traditional 
DRE application responsibility 
•Essential for product-line architectures

•Middleware is no longer the primary DRE 
system performance bottleneck

Technology Problems
• Legacy DRE systems 

often tend to be:
• Stovepiped
• Proprietary 
• Brittle & non-adaptive
• Expensive
• Vulnerable

Middleware

Middleware
Services

DRE 
Applications

Operating Sys
& Protocols

Hardware & 
Networks

Middleware

Middleware
Services

DRE 
Applications

Operating Sys
& Protocols

Hardware & 
Networks

Evolution of DRE Systems Development
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Where We Started: Object-Oriented Programming

• Object-oriented (OO) programming simplified software 
development through higher level abstractions & 
patterns, e.g.,

Well-written OO programs exhibit recurring structures that 
promote abstraction, flexibility, modularity, & elegance

– Decoupling interfaces & implementations

– Associating related data & operations

operation1()
operation2()
operation3()
operationn()

data

class X
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Next Step: Distributed Object Computing (DOC)

• Apply the Broker pattern to 
abstract away lower-level OS & 
protocol-specific details for 
network programming

• Create distributed systems which 
are easier to model & build using 
OO techniques

• Result: robust distributed systems 
built with distributed object 
computing (DOC) middleware

– e.g., CORBA, Java RMI, etc.

1 1
Proxy

service

Service

service

AbstractService

service

Client

We now have more robust software & more 
powerful distributed systems

operation() Object : 
Interface X

: Client

Middleware
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• Real-time CORBA adds 
quality of service (QoS) 
policies to classic CORBA to 
control:

www.omg.org

3. Memory Resources
•Request buffering

•These capabilities address 
some (but not all) DRE system 
development & QoS challenges

2. Network Resources
• Protocol policies
• Explicit binding

Protocol
Properties

Explicit Binding

Client Propagation & Server Declared Priority Models

Portable Priorities

Thread Pools

Static Scheduling 
Service

Standard
Synchonizers

1. Processor Resources
• Thread pools
• Priority models
• Portable priorities
• Standard synchronizers
• Static scheduling service

Request 
Buffering

Real-time CORBA defines interfaces & policies, but not implementations

Overview of Real-time CORBA Standard
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Application

Development &

Deployment

Object

Implementations

Language
Tools

Libraries

“Other”

Implementations

Applications

Drawbacks of DOC-based Middleware

• CORBA 2.x doesn’t specify how configuration 
& deployment of objects should be done to 
create complete applications

–Proprietary infrastructure & scripts are 
written by developers to enable this

• CORBA 2.x IDL doesn’t 
provide a way to group 
together related interfaces to 
offer a service family

–Such “bundling” must be 
done by developers via 
CORBA idioms & patterns 

CORBA 2.x application development is unnecessarily tedious & error-prone

Interface

Design

IDL

Definitions

IDL
Compiler

Stubs
&

Skeletons



9

Solution: Component Middleware
• Creates a standard 
“virtual boundary” around 
application component
implementations that 
interact only via well-
defined interfaces

• Define standard 
container mechanisms 
needed to execute 
components in generic 
component servers 

• Specify the infrastructure 
needed to configure & 
deploy components 
throughout a distributed 
system

<ComponentAssemblyDescription id="a_HUDDisplay"> ...
<connection>

<name>GPS-RateGen</name> 
<internalEndPoint><portName>Refresh</portName><instance>a_GPS</instance></internalEndPoint>
<internalEndPoint><portName>Pulse</portName><instance>a_RateGen</instance></internalEndPoint>

</connection>
<connection>

<name>NavDisplay-GPS</name>
<internalEndPoint><portName>Refresh</portName><instance>a_NavDisplay</instance></internalEndPoint>
<internalEndPoint><portName>Ready</portName><instance>a_GPS</instance></internalEndPoint>

</connection> ...
</ComponentAssemblyDescription>

Container

…
…

…

…

…

Component middleware defines interfaces, policies, & some implementations
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Middleware

Middleware
Services

DRE Applications

Operating System
& Protocols

Hardware & 
Networks

DRE Systems: The Challenges Ahead

•Limit to how much application 
functionality can be refactored into 
reusable COTS middleware

•Middleware itself has become very 
hard to use & provision statically & 
dynamically

IntServ + Diffserv

RTOS + RT Java

RT/DP CORBA + DRTSJ

Load Balancer
FT CORBA

Network latency 
& bandwidth

Workload & 
Replicas

CPU & memory

Connections & 
priority bands

RT-CORBA

RT-CORBA
Services

RT-CORBA
Apps

J2ME

J2ME
Services

J2ME
Apps

DRTSJ

DRTSJ
Services

DRTSJ
Apps

•Component-based DRE systems are 
also very hard to deploy & configure

•There are many middleware platform 
technologies to choose from

Gigabit 
Ethernet

Gigabit 
Ethernet

Middleware alone cannot solve large-scale DRE system challenges!
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Middleware

Middleware
Services

DRE Applications

Operating System
& Protocols

Hardware & 
Networks

RT-CORBA

RT-CORBA
Services

RT-CORBA
Apps

J2ME

J2ME
Services

J2ME
Apps

DRTSJ

DRTSJ
Services

DRTSJ
Apps

Promising Solution: Model-based Software Development

• Develop, validate, & 
standardize generative 
software technologies that:

1. Model

2. Analyze

3. Synthesize &

4. Provision

multiple layers of middleware & 
application components that 
require simultaneous control of 
multiple QoS properties end-to-
end

• Partial specialization is 
essential for inter-/intra-layer 
optimization & advanced 
product-line architectures

Goal is to enhance developer productivity & software quality by providing 
higher-level languages & tools for middleware/application developers & users

<CONFIGURATION_PASS>
<HOME>
<…> 

<COMPONENT>
<ID> <…></ID>
<EVENT_SUPPLIER>
<…events this

component supplies…>
</EVENT_SUPPLIER>
</COMPONENT>
</HOME>

</CONFIGURATION_PASS>

<CONFIGURATION_PASS>
<HOME>
<…> 

<COMPONENT>
<ID> <…></ID>
<EVENT_SUPPLIER>
<…events this

component supplies…>
</EVENT_SUPPLIER>
</COMPONENT>
</HOME>

</CONFIGURATION_PASS>

Gigabit 
Ethernet

Gigabit 
Ethernet
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Technology Evolution (1/4)

Level of A
bstraction

Programming Languages 
& Platforms

Model-Driven Engineering (MDE)

• State chart

• Data & process flow

• Petri NetsTra
nsla

tio
n

Large 
Semantic 
Gap

Tra
nsla

tio
n

Tra
nsla

tio
n

CodeCodeCodeCodeCodeCodeModelModel

ModelModelModelModelModel

Generated
Code 

Model

Platform

Machine code
Assembly
C/Fortran

Hardware

Operating
Systems
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Technology Evolution (2/4)

Programming Languages 
& Platforms

Level of A
bstraction

C++/JavaClass Libraries
Frameworks
Components

Machine code
Assembly
C/Fortran

Hardware

Operating
Systems

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Domain Specific
Framework

Platform
Frameworks

Framework
Pattern Language

Platform

Application Code

•Newer 3rd-generation languages & 
platforms have raised abstraction level 
significantly

•“Horizontal” platform reuse 
alleviates the need to redevelop 
common services

•There are two problems, however:

•Platform complexity evolved faster 
than 3rd-generation languages

•Much application/platform code still 
(unnecessarily) written manually
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Semi-automated

Domain-independent 
modeling languages

• State Charts
• Interaction Diagrams

• Activity Diagrams

Technology Evolution (3/4)

Programming Languages 
& Platforms

Level of A
bstraction

Saturation!!!! 

Model-Driven Engineering (MDE)

Domain-specific
modeling languages

• ESML

• PICML

• Mathematica
• Excel

• MetamodelsManual 
translation

C++/JavaClass Libraries
Frameworks
Components

Machine code
Assembly
C/Fortran

Hardware

Operating
Systems
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Technology Evolution (3/4)

Programming Languages 
& Platforms

Level of A
bstraction

Model-Driven Engineering (MDE)

Domain-specific
modeling languages

• ESML

• PICML

• Mathematica
• Excel

• MetamodelsManual 
translation

• OMG is standardizing MDE via MIC 
PSIG

• mic.omg.org

Semi-automated

Domain-independent 
modeling languages

• State Charts
• Interaction Diagrams

• Activity Diagrams
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Technology Evolution (3/4)

Programming Languages 
& Platforms

Level of A
bstraction

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model-Driven Engineering (MDE)

Domain-specific
modeling languages

• ESML

• PICML

• Mathematica
• Excel

• MetamodelsManual 
translation

C++/JavaClass Libraries
Frameworks
Components

Machine code
Assembly
C/Fortran

Hardware

Operating
Systems

• OMG is standardizing MDE via MIC 
PSIG

• mic.omg.org

Semi-automated

Domain-independent 
modeling languages

• State Charts
• Interaction Diagrams

• Activity Diagrams
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Technology Evolution (4/4)

Programming Languages 
& Platforms

Needs Automation 

Needs 
Automation 

Research is needed to automate 
DSMLs & model translators

Level of A
bstraction

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Domain-specific 
modeling languages

• ESML

• PICML

• Mathematica
• Excel

• MetamodelsNeeds 
Automation

Domain-independent 
modeling languages

• State Charts
• Interaction Diagrams

• Activity Diagrams
C++/JavaClass Libraries

Frameworks
Components

Machine code
Assembly
C/Fortran

Hardware

Operating
Systems

Model-Driven Engineering (MDE)

See February 2006 IEEE Computer special issue on MDE techniques & tools
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• CADENA

• Integrated environment for static 
analysis using model-checking

• VEST

• DSML developed in GME 

• Pre-defined component Libraries

• Aspect checks

• Prescriptive aspect library

• ESML

• DSML developed w/GME

• Targets PRiSM (Boeing’s Bold-
stroke component model)

• Ptolemy II

• Modeling, simulation, and design 
of concurrent systems

• Allows defining systems based on 
Models of Computation

cadena.projects.cis.ksu.edu

www.cs.virginia.edu/~stankovic/vest.html

www.isis.vanderbilt.edu/projects/mobies

ptolemy.eecs.berkeley.edu

Relevant Academic Work
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www.softwarefactories.com

• Software Factories go beyond “models as documentation” by

• Using highly-tuned DSL & XML as source artifacts &
• Capturing life cycle metadata to support high-fidelity model 

transformation, code generation & other forms of automation 

www.eclipse.org/gmf/

• The Graphical Modeling Framework (GMF) forms 
a generative bridge between EMF & GEF, which 
linkes diagram definitions to domain models as 
input to generation of visual editors

• GMF provides this framework, in addition to tools 
for select domain models that illustrate its 
capabilities

• openArchitectureWare (oAW) is a modular MDA/MDE generator 
framework implemented in Java

• It supports parsing of arbitrary models & a language family to check & 
transform models, as well as generate code based on them

www.openarchitectureware.org

Relevant Commercial Work
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Key ULS solution space challenges
• Enormous accidental & inherent 
complexities

• Continuous evolution & change
• Highly heterogeneous platform, language, & 
tool environments

New Challenges: Ultra-Large-Scale (ULS) Systems

Key ULS problem space challenges
• Highly dynamic & distributed 
development & operational 
environments

• Stringent simultaneous quality of 
service (QoS) demands

• Very diverse & complex network-
centric application domains

Mapping problem space requirements
to solution space artifacts is very hard
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Key R&D Challenges for ULS Systems

LogicalLogical
ViewView

PhysicalPhysical
ViewView

DevelopmentDevelopment
ViewView

ProcessProcess
ViewView

Use CaseUse Case
ViewView

Developers & users of ULS systems face 
challenges in multiple dimensions

Of course, developers of today’s large-scale network-centric systems 
also face these challenges, but they can often “brute force” solutions…
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LogicalLogical
ViewView

Determining units of 
abstraction for system 

(de)composition, 
reuse, & validation

• Popular technologies & tools provide 
inadequate support for 

– Expressing design intent more clearly using 
domain concepts

– Checking pre-/post-conditions & invariants

– Specifying & analyzing dependencies

Key R&D Challenges for ULS Systems
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PhysicalPhysical
ViewView

Integrating/deploying diverse new & 
reusable application components in a 

networked environment to ensure end-
to-end QoS requirements

• Popular technologies & tools 
provide inadequate support for

– Configuring & customizing 
components for application 
requirements & run-time 
environments

– Automated deployment, i.e., 
mapping of components onto 
nodes in target environments

Key R&D Challenges for ULS Systems



24

ProcessProcess
ViewView

Devising execution architectures, 
concurrency models, & communication 

styles that ensure multi-dimensional QoS & 
correctness of new/reusable components

• Popular technologies & tools provide 
inadequate support for

– Identifying & reducing performance 
& robustness risks early in ULS 
system lifecycles

– Satisfying multiple (often 
conflicting) QoS demands 

• e.g., secure, real-time, reliable

– Satisfying QoS demands in face of 
fluctuating/insufficient resources

• e.g., mobile ad hoc networks 
(MANETs)

Key R&D Challenges for ULS Systems
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DevelopmentDevelopment
ViewView

(De)composing systems 
into separate, reusable 

modules (e.g., packages, 
subsystems, libraries) that 

achieve/preserve QoS 
properties

• Popular technologies & tools provide inadequate 
support for avoiding

– Cyclic dependencies, which make unit testing & 
reuse hard

– Excessive link-time dependencies, which bloat size 
of executables

– Excessive compile-time dependencies, where 
small changes trigger massive recompiles

Key R&D Challenges for ULS Systems
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Capturing functional & QoS 
requirements of systems & 
reconciling them with other 

views during evolution

• Popular technologies & tools provide inadequate support for

– Ensuring semantic consistency & traceability between requirements & software 
artifacts

– Visualizing software architectures, designs, & implementations from multiple views

– Effective collaboration between users & distributed development teams

Use CaseUse Case
ViewView

Key R&D Challenges for ULS Systems
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Key R&D Challenges for ULS Systems

LogicalLogical
ViewView

PhysicalPhysical
ViewView

DevelopmentDevelopment
ViewView

ProcessProcess
ViewView

Use CaseUse Case
ViewView

Developers & users of ULS systems face 
challenges in multiple dimensions

Solving these challenges requires much more than simply 
retrofitting our current tools, platforms, & processes!
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LogicalLogical
ViewView

PhysicalPhysical
ViewView

DevelopmentDevelopment
ViewView

ProcessProcess
ViewView

Use CaseUse Case
ViewView

Key R&D Challenges for ULS Systems

Developers & users of ULS systems face 
challenges in multiple dimensions
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Serialized Phasing is Common in ULS Systems

Application components 
developed after infrastructure 

is sufficiently mature

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

System 
infrastructure 
components 

developed first
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Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

System integration & 
testing is performed  

after application 
development is finished

Serialized Phasing is Common in ULS Systems

Integration 
Surprises!!!
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Complexities of Serialized Phasing

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

Still in development

Ready for testing
Complexities

• System infrastructure cannot be 
tested adequately until applications 
are done
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Complexities of Serialized Phasing

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

End-to-end 
performance of 
critical path?

System bottleneck?

Complexities

• System infrastructure cannot be 
tested adequately until applications 
are done

• Entire system must be deployed & 
configured (D&C) properly to meet 
end-to-end QoS requirements 

• Existing tools & platforms have poor  
support for realistic “what if”
evaluation

QoS needs of components in ULS systems often unknown until late in lifecycle



33

Unresolved QoS Concerns with Serialized Phasing

Meet QoS 
requirements?

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n Key QoS concerns

• Which D&C’s meet the QoS 
requirements? 
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Unresolved QoS Concerns with Serialized Phasing

Performance 
metrics?

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n Key QoS concerns

• Which D&C’s meet the QoS 
requirements? 

• What is the worse/average run-time 
for various workloads under various 
D&C’s & processing models?
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Unresolved QoS Concerns with Serialized Phasing

System 
overload?

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n Key QoS concerns

• Which D&C’s meet the QoS 
requirements? 

• What is the worse/average run-time 
for various workloads under various 
D&C’s & processing models?

• How much workload can the system 
handle until its end-to-end QoS 
requirements are compromised?

It can take a long time (years) to address QoS concerns with serialized phasing
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Related ULS System Development Problems

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

Release X Release X+1

New hardware, 
networks, operating 

systems, middleware, 
application 

components, etc.
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Related ULS System Development Problems

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

Release X Release X+1

Evolution 
Surprises!!!

New hardware, 
networks, operating 

systems, middleware, 
application 

components, etc.
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Promising Approach for ULS System Challenges: 
System Execution Modeling (SEM) Tools

Tools to express & validate design 
rules

• Help applications & developers 
adhere to system specifications at 
design-time

Tools to ensure design rule 
conformance

• Help properly deploy & configure 
applications to enforce design rules
throughout system lifecycle

Tools to conduct “what if” analysis

• Help analyze QoS concerns prior to 
completing the entire system, i.e., 
before system integration phase

SEM tools should be applied continuously when developing software elements
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SEM Tool Example: Component Deployment & Configuration

SW Deployer
Deployment

InfrastructureDeployment 
Tools (generic)

Deployment
Interfaces

Infrastructure
Interfaces

Shipping

SW
Creator2

A2A1

Deployment
requirements

Implementations

SW 
Creator

1

Deployment & configuration (D&C) Goals

• Promote component reuse

• Build complex applications by assembling 
existing components

• Automate configuration of common services 

• Declaratively inject QoS policies into 
applications

• Dynamically deploy components to target 
heterogeneous domains 

• Optimize systems via global component 
configuration & deployment settings



40

Specification & Implementation
• Defining, partitioning, & implementing app functionality as 
standalone components

Packaging
• Bundling a suite of software binary modules & metadata 
representing app components

Installation
• Populating a repository with packages required by app

Configuration
• Configuring packages with appropriate parameters to satisfy 
functional & systemic requirements of an application without 
constraining to physical resources 

Planning
• Making deployment decisions to identify nodes in target 
environment where packages will be deployed

Preparation
• Moving binaries to identified entities of target environment

Launching
• Triggering installed binaries & bringing app to ready state

QoS Assurance & Adaptation
• Runtime (re)configuration & resource management to 
maintain end-to-end QoS

Example D&C specifications 
include 

• OMG Lightweight CORBA 
Component Model (CCM) & 

• IBM Service Component 
Architecture (SCA)

SEM Tool Example: Component Deployment & Configuration
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Challenge 1: The Packaging Aspect 

•Application components are bundled 
together into assemblies

•Different assemblies tailored to 
deliver different end-to-end QoS 
and/or using different algorithms can 
be part of a package 

•ULS systems will require enormous # 
(105-107) of components 

•Packages describing assemblies can 
be scripted via XML descriptors
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Packaging Aspect Problems (1/2)

Ad hoc techniques for ensuring component 
syntactic & semantic compatibility

Distribution & 
deployment done in 
ad hoc manner

Inherent Complexities

Container

…
…

…

…

…

…

Ad hoc means to 
determine pub/sub 
mechanisms
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<!– Associate components with impls -->
<assemblyImpl>

<instance xmi:id="Sensor">
<name>Sensor Subcomponent</name>
<package href="Sensor.cpd"/>

</instance>
<instance xmi:id="Planner">
<name>Planner Subcomponent</name>
<package href="Planner.cpd"/>

</instance>
<instance xmi:id="Effector">
<name>Effector Subcomponent</name>
<package href="Effector.cpd"/>

</instance>
</assemblyImpl>

Packaging Aspect Problems (2/2)

XML file in 
excess of 3,000 
lines, even for 
medium sized 
scenarios

Existing practices 
involve handcrafting 
XML descriptors

Modifications to the 
assemblies requires 
modifying XML file

Accidental Complexities
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SEM Tool Approach for Packaging Aspect 

• Capture dependencies visually

• Define semantic constraints using 
constraints

• e.g., Object Constraint Language 
(OCL)

• Generate domain-specific artifacts 
from models

• e.g., metadata, code, simulations, 
etc.

• Uses Generic Modeling Environment 
(GME) to meta-model & program

Approach:
• Develop the Platform-

Independent Component 
Modeling Language (PICML) 
to address complexities of 
assembly packaging

PICML helps to capture & validate design rules for assemblies
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Example Metadata Generated by PICML

Based on OMG (D&C) 
specification (ptc/05-01-07)

Component
Packaging

Application
Assembly

Component
DLLs

Component &
Home Properties

Component
Interface

Descriptors
(.ccd)

Packaging
Tools

Component
Packages

(*.cpk)

Component &
Home Properties

Component
Package

Descriptors
(.cpd)

Implementation
Artifact

Descriptors
(.iad)

Assembly
Tools

Component
Implementation

Descriptor
(*.cid)

• Component Interface Descriptor (.ccd) 

–Describes the interface, ports, properties of a single 
component

• Implementation Artifact Descriptor (.iad)

–Describes the implementation artifacts (e.g., DLLs, OS, etc.) 
of one component

• Component Package Descriptor (.cpd)

–Describes multiple alternative implementations of a single 
component

• Package Configuration Descriptor (.pcd)

–Describes a configuration of a component package

• Top-level Package Descriptor (package.tpd)

–Describes the top-level component package in a package 
(.cpk)

• Component Implementation Descriptor (.cid)

–Describes a specific implementation of a component 
interface

–Implementation can be either monolithic- or assembly-based

–Contains sub-component instantiations in case of assembly 
based implementations

–Contains inter-connection information between components

• Component Packages (.cpk)

–A component package can contain a single component

–A component package can also contain an assembly

www.cs.wustl.edu/~schmidt/PDF/RTAS-PICML.pdf
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Example Output from PICML Model

<monolithicImpl> [...]
<deployRequirement>
<name>Planner</name>
<resourceType>Planner</resourceType>
<property><name>vendor</name>
<value>
<type> <kind>tk_string</kind> </type>
<value> <string>My Planner Vendor</string>    

</value>
</property>

</deployRequirement> [... Requires VxWorks ...]
</monolithicImpl>

• Describes a specific 
implementation of a 
component interface

• Describes component 
interconnections

A Component 
Implementation 
Descriptor (*.cid) file

<connection> <name>Effector</name>
<internalEndpoint> 

<portName>Ready</portName>
<instance href="#Planner"/>

</internalEndpoint>
<internalEndpoint> 

<portName>Refresh</portName>
<instance href="#Effector"/>

</internalEndpoint>
</connection>

PICML supports better expression of domain intent & “correct-by-construction”
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Challenge 2: The Configuration Aspect

ULS systems are characterized by a large configuration space 
that maps known variations in the application requirements space

to known variations in the software solution space
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Challenge 2: The Configuration Aspect

ULS systems are characterized by a large configuration space 
that maps known variations in the application requirements space

to known variations in the software solution space

Hook for the 
concurrency 
strategy

Hook for 
the request 
demuxing
strategy

Hook for 
marshaling 
strategy

Hook for the 
connection 
management 
strategy

Hook for the 
underlying 
transport 
strategy

Hook for the event 
demuxing strategy
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Configuration Aspect Problems
Middleware developers

• Documentation & capability 
synchronization

• Semantic constraints, design rules, 
& QoS evaluation of specific 
configurations

XML Configuration Files

XML Property Files

CIAO/CCM provides ~500 
configuration options

Application developers

• Must understand middleware 
constraints, rules, & semantics

• Increases accidental complexity

• Different middleware uses different 
configuration mechanisms

• e.g.
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SEM Tool Approach for Configuration Aspect 

Approach:

•Develop an Options Configuration Modeling Language (OCML) to 
encode design rules & ensure semantic consistency of option 
configurations

•OCML is used by

–Middleware developers to 
design the configuration model

–Application developers to 
configure the middleware for a 
specific application

•OCML metamodel is platform-
independent

•OCML models are platform-
specific

OCML helps to ensure design conformance
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Applying OCML to CIAO+TAO
• Middleware developers specify 

• Configuration space 
• Constraints

• OCML generates config model

/**

* Return the last time the client sent a request associated    

* session, as the number of ms since midnight, Jan 1, 1970

* GMT.  Actions your application takes, such as get or set
* value associated with session, do not affect access time.

*/

public long getLastAccessedTime() {

return (this.lastAccessedTime);
}

/**

* Update the accessed time information for this session. 
* Method is called by context when request comes in for a

* session, even if the application does not reference it.

*/

public void access() {
this.lastAccessedTime = this.thisAccessedTime;

}

www.cs.wustl.edu/~schmidt/PDF/RTAS-process.pdf
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Applying OCML to CIAO+TAO
• Middleware developers specify 

• Configuration space 
• Constraints

• OCML generates config model
• Application developers provide 

a model of desired options & 
their values, e.g.,
• Network resources
• Concurrency & connection 

management strategies

www.cs.wustl.edu/~schmidt/PDF/RTAS-process.pdf
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Applying OCML to CIAO+TAO
• Middleware developers specify 

• Configuration space 
• Constraints

• OCML generates config model
• Application developers provide 

a model of desired options & 
their values, e.g.,
• Network resources
• Concurrency & connection 

management strategies
• OCML constraint checker flags 

incompatible options & then
• Synthesizes XML descriptors 

for middleware configuration
• Generates documentation for 

middleware configuration
• Validates the configurations

OCML automates activities that are very tedious & error-prone to do manually
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Challenge 3: Planning Aspect

Determine current 
resource allocations 
on target platforms

Select the 
appropriate 
package to 
deploy on 
selected 
target

Select appropriate 
target platform to 
deploy packages

System integrators must make appropriate deployment decisions, 
identifying nodes in target environment where packages will be deployed
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Planning Aspect Problems

How do you 
determine 
current resource 
allocations?

How do you ensure that 
selected targets will 
deliver required QoS?

How do you correlate QoS 
requirements of packages 
to resource availability?

Ensuring deployment plans meet ULS system QoS requirements

How do you evaluate 
QoS of infrastructure 
before applications 
are completely built?
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SEM Tool Approach for Planning Aspect
Approach
• Develop Component Workload Emulator (CoWorkEr) Utilization Test Suite 

(CUTS) to allow architects & systems engineers to

1. Compose scenarios to 
exercise critical system paths 

2. Associate performance 
properties with scenarios & 
assign properties to 
components specific to paths

3. Configure workload generators 
to run experiments, generate 
deployment plans, & measure 
performance along critical 
paths

4. Analyze results to verify if 
deployment plan & 
configurations meet 
performance requirements

CUTS helps to conduct “what if” analysis on evolving systems

1 2

34

Component Interaction

Experimenter

Model
Experiment Associate

QoS
Characteristics

Synthesize
&

Execute

Feedback
Results

Test bed
Deployment

Plan
.cpp

Script 
files

IDL

CoWorkEr
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• Application components are 
represented as Component Workload 
Emulators (CoWorkErs)

• CoWorkErs can be interconnected by 
the PICML tool to form operational 
strings

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n
Emulating Computational Components in CUTS

www.cs.wustl.edu/~schmidt/PDF/CUTS.pdf
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• Workload Modeling Language (WML) MDE 
tool defines behavior of CoWorkErs via 
“work sequences”

• WML programs are translated into XML 
characterization files

• These files then configure CoWorkErs

Representing Computational Components in CUTS

Development Timeline
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www.cs.wustl.edu/~schmidt/PDF/QoSPML-WML.pdf
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Development Timeline
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• BenchmarkManagerWeb-interface (BMW)
MDE tool generates statistics showing 
performance of actions in each CoWorkEr

• Critical paths show end-to-end performance 
of mission-critical operational strings

Visualizing Critical Path Performance in CUTS

CUTS integrates nicely with continuous integration servers
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Concluding Remarks
• The emergence of ULS systems 

requires significant innovations & 
advances in tools & platforms

• Not all technologies provide the 
precision we’re accustomed to in 
legacy real-time systems

• Advances in Model-driven 
engineering (MDE) are needed to 
address ULS systems challenges 

• Significant MDE groundwork laid in 
recent DARPA programs

• Much more R&D 
needed for ULS 
systems

• e.g., recent 
Software 
Engineering 
Institute study

ULS systems report available at www.sei.cmu.edu/uls


