
Meeting the Challenges of Meeting the Challenges of
UltraUltra--LargeLarge--Scale Scale

Distributed RealDistributed Real--time & Embedded time & Embedded
(DRE) Systems (DRE) Systems

Wednesday, May 30, 2007Wednesday, May 30, 2007, WPDRTS, Long Beach, CA, WPDRTS, Long Beach, CA

Dr. Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Vanderbilt University
Nashville, Tennessee

Institute for Software
Integrated Systems

2

Evolution in Distributed Real-time & Embedded (DRE) Systems

Standalone real-time &
embedded systems
• Stringent quality of service

(QoS) demands
• e.g., latency, jitter, footprint

• Resource constrained

Standalone real-time &
embedded systems
• Stringent quality of service

(QoS) demands
• e.g., latency, jitter, footprint

• Resource constrained

The Past

This talk focuses on technologies for enhancing DRE system QoS, productivity, & quality

Enterprise distributed real-time & embedded
(DRE) systems
• Network-centric “systems of systems”
• Stringent simultaneous QoS demands

• e.g., dependability, security, scalability, etc.
• Dynamic context

Enterprise distributed real-time & embedded
(DRE) systems
• Network-centric “systems of systems”
• Stringent simultaneous QoS demands

• e.g., dependability, security, scalability, etc.
• Dynamic context

The Future

3

Evolution of DRE Systems Development

Mission-critical DRE systems
have historically been built
directly atop hardware

• Tedious
• Error-prone
• Costly over lifecycles

Consequence: Small
changes to legacy
software often have
big (negative) impact
on DRE system QoS
& maintenance

Technology Problems
• Legacy DRE systems

often tend to be:
• Stovepiped
• Proprietary
• Brittle & non-adaptive
• Expensive
• Vulnerable

Air
Frame

AP

Nav HUD

GPS IFF

FLIR

Cyclic
Exec

CLI

SS7

SM CM

RX TX

IP

RTOS

4

Mission-critical DRE systems
historically have been built
directly atop hardware

• Tedious
• Error-prone
• Costly over lifecycles

•Middleware has effectively factored out
many reusable services from traditional
DRE application responsibility
•Essential for product-line architectures

•Middleware is no longer the primary DRE
system performance bottleneck

Technology Problems
• Legacy DRE systems

often tend to be:
• Stovepiped
• Proprietary
• Brittle & non-adaptive
• Expensive
• Vulnerable

Middleware

Middleware
Services

DRE
Applications

Operating Sys
& Protocols

Hardware &
Networks

Middleware

Middleware
Services

DRE
Applications

Operating Sys
& Protocols

Hardware &
Networks

Evolution of DRE Systems Development

5

Where We Started: Object-Oriented Programming

• Object-oriented (OO) programming simplified software
development through higher level abstractions &
patterns, e.g.,

Well-written OO programs exhibit recurring structures that
promote abstraction, flexibility, modularity, & elegance

– Decoupling interfaces & implementations

– Associating related data & operations

operation1()
operation2()
operation3()
operationn()

data

class X

6

Next Step: Distributed Object Computing (DOC)

• Apply the Broker pattern to
abstract away lower-level OS &
protocol-specific details for
network programming

• Create distributed systems which
are easier to model & build using
OO techniques

• Result: robust distributed systems
built with distributed object
computing (DOC) middleware

– e.g., CORBA, Java RMI, etc.

1 1
Proxy

service

Service

service

AbstractService

service

Client

We now have more robust software & more
powerful distributed systems

operation() Object :
Interface X

: Client

Middleware

7

• Real-time CORBA adds
quality of service (QoS)
policies to classic CORBA to
control:

www.omg.org

3. Memory Resources
•Request buffering

•These capabilities address
some (but not all) DRE system
development & QoS challenges

2. Network Resources
• Protocol policies
• Explicit binding

Protocol
Properties

Explicit Binding

Client Propagation & Server Declared Priority Models

Portable Priorities

Thread Pools

Static Scheduling
Service

Standard
Synchonizers

1. Processor Resources
• Thread pools
• Priority models
• Portable priorities
• Standard synchronizers
• Static scheduling service

Request
Buffering

Real-time CORBA defines interfaces & policies, but not implementations

Overview of Real-time CORBA Standard

8

Application

Development &

Deployment

Object

Implementations

Language
Tools

Libraries

“Other”

Implementations

Applications

Drawbacks of DOC-based Middleware

• CORBA 2.x doesn’t specify how configuration
& deployment of objects should be done to
create complete applications

–Proprietary infrastructure & scripts are
written by developers to enable this

• CORBA 2.x IDL doesn’t
provide a way to group
together related interfaces to
offer a service family

–Such “bundling” must be
done by developers via
CORBA idioms & patterns

CORBA 2.x application development is unnecessarily tedious & error-prone

Interface

Design

IDL

Definitions

IDL
Compiler

Stubs
&

Skeletons

9

Solution: Component Middleware
• Creates a standard
“virtual boundary” around
application component
implementations that
interact only via well-
defined interfaces

• Define standard
container mechanisms
needed to execute
components in generic
component servers

• Specify the infrastructure
needed to configure &
deploy components
throughout a distributed
system

<ComponentAssemblyDescription id="a_HUDDisplay"> ...
<connection>

<name>GPS-RateGen</name>
<internalEndPoint><portName>Refresh</portName><instance>a_GPS</instance></internalEndPoint>
<internalEndPoint><portName>Pulse</portName><instance>a_RateGen</instance></internalEndPoint>

</connection>
<connection>

<name>NavDisplay-GPS</name>
<internalEndPoint><portName>Refresh</portName><instance>a_NavDisplay</instance></internalEndPoint>
<internalEndPoint><portName>Ready</portName><instance>a_GPS</instance></internalEndPoint>

</connection> ...
</ComponentAssemblyDescription>

Container

…
…

…

…

…

Component middleware defines interfaces, policies, & some implementations

10

Middleware

Middleware
Services

DRE Applications

Operating System
& Protocols

Hardware &
Networks

DRE Systems: The Challenges Ahead

•Limit to how much application
functionality can be refactored into
reusable COTS middleware

•Middleware itself has become very
hard to use & provision statically &
dynamically

IntServ + Diffserv

RTOS + RT Java

RT/DP CORBA + DRTSJ

Load Balancer
FT CORBA

Network latency
& bandwidth

Workload &
Replicas

CPU & memory

Connections &
priority bands

RT-CORBA

RT-CORBA
Services

RT-CORBA
Apps

J2ME

J2ME
Services

J2ME
Apps

DRTSJ

DRTSJ
Services

DRTSJ
Apps

•Component-based DRE systems are
also very hard to deploy & configure

•There are many middleware platform
technologies to choose from

Gigabit
Ethernet

Gigabit
Ethernet

Middleware alone cannot solve large-scale DRE system challenges!

11

Middleware

Middleware
Services

DRE Applications

Operating System
& Protocols

Hardware &
Networks

RT-CORBA

RT-CORBA
Services

RT-CORBA
Apps

J2ME

J2ME
Services

J2ME
Apps

DRTSJ

DRTSJ
Services

DRTSJ
Apps

Promising Solution: Model-based Software Development

• Develop, validate, &
standardize generative
software technologies that:

1. Model

2. Analyze

3. Synthesize &

4. Provision

multiple layers of middleware &
application components that
require simultaneous control of
multiple QoS properties end-to-
end

• Partial specialization is
essential for inter-/intra-layer
optimization & advanced
product-line architectures

Goal is to enhance developer productivity & software quality by providing
higher-level languages & tools for middleware/application developers & users

<CONFIGURATION_PASS>
<HOME>
<…>

<COMPONENT>
<ID> <…></ID>
<EVENT_SUPPLIER>
<…events this

component supplies…>
</EVENT_SUPPLIER>
</COMPONENT>
</HOME>

</CONFIGURATION_PASS>

<CONFIGURATION_PASS>
<HOME>
<…>

<COMPONENT>
<ID> <…></ID>
<EVENT_SUPPLIER>
<…events this

component supplies…>
</EVENT_SUPPLIER>
</COMPONENT>
</HOME>

</CONFIGURATION_PASS>

Gigabit
Ethernet

Gigabit
Ethernet

12

Technology Evolution (1/4)

Level of A
bstraction

Programming Languages
& Platforms

Model-Driven Engineering (MDE)

• State chart

• Data & process flow

• Petri NetsTra
nsla

tio
n

Large
Semantic
Gap

Tra
nsla

tio
n

Tra
nsla

tio
n

CodeCodeCodeCodeCodeCodeModelModel

ModelModelModelModelModel

Generated
Code

Model

Platform

Machine code
Assembly
C/Fortran

Hardware

Operating
Systems

13

Technology Evolution (2/4)

Programming Languages
& Platforms

Level of A
bstraction

C++/JavaClass Libraries
Frameworks
Components

Machine code
Assembly
C/Fortran

Hardware

Operating
Systems

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Domain Specific
Framework

Platform
Frameworks

Framework
Pattern Language

Platform

Application Code

•Newer 3rd-generation languages &
platforms have raised abstraction level
significantly

•“Horizontal” platform reuse
alleviates the need to redevelop
common services

•There are two problems, however:

•Platform complexity evolved faster
than 3rd-generation languages

•Much application/platform code still
(unnecessarily) written manually

14

Semi-automated

Domain-independent
modeling languages

• State Charts
• Interaction Diagrams

• Activity Diagrams

Technology Evolution (3/4)

Programming Languages
& Platforms

Level of A
bstraction

Saturation!!!!

Model-Driven Engineering (MDE)

Domain-specific
modeling languages

• ESML

• PICML

• Mathematica
• Excel

• MetamodelsManual
translation

C++/JavaClass Libraries
Frameworks
Components

Machine code
Assembly
C/Fortran

Hardware

Operating
Systems

15

Technology Evolution (3/4)

Programming Languages
& Platforms

Level of A
bstraction

Model-Driven Engineering (MDE)

Domain-specific
modeling languages

• ESML

• PICML

• Mathematica
• Excel

• MetamodelsManual
translation

• OMG is standardizing MDE via MIC
PSIG

• mic.omg.org

Semi-automated

Domain-independent
modeling languages

• State Charts
• Interaction Diagrams

• Activity Diagrams

16

Technology Evolution (3/4)

Programming Languages
& Platforms

Level of A
bstraction

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model-Driven Engineering (MDE)

Domain-specific
modeling languages

• ESML

• PICML

• Mathematica
• Excel

• MetamodelsManual
translation

C++/JavaClass Libraries
Frameworks
Components

Machine code
Assembly
C/Fortran

Hardware

Operating
Systems

• OMG is standardizing MDE via MIC
PSIG

• mic.omg.org

Semi-automated

Domain-independent
modeling languages

• State Charts
• Interaction Diagrams

• Activity Diagrams

17

Technology Evolution (4/4)

Programming Languages
& Platforms

Needs Automation

Needs
Automation

Research is needed to automate
DSMLs & model translators

Level of A
bstraction

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Domain-specific
modeling languages

• ESML

• PICML

• Mathematica
• Excel

• MetamodelsNeeds
Automation

Domain-independent
modeling languages

• State Charts
• Interaction Diagrams

• Activity Diagrams
C++/JavaClass Libraries

Frameworks
Components

Machine code
Assembly
C/Fortran

Hardware

Operating
Systems

Model-Driven Engineering (MDE)

See February 2006 IEEE Computer special issue on MDE techniques & tools

18

• CADENA

• Integrated environment for static
analysis using model-checking

• VEST

• DSML developed in GME

• Pre-defined component Libraries

• Aspect checks

• Prescriptive aspect library

• ESML

• DSML developed w/GME

• Targets PRiSM (Boeing’s Bold-
stroke component model)

• Ptolemy II

• Modeling, simulation, and design
of concurrent systems

• Allows defining systems based on
Models of Computation

cadena.projects.cis.ksu.edu

www.cs.virginia.edu/~stankovic/vest.html

www.isis.vanderbilt.edu/projects/mobies

ptolemy.eecs.berkeley.edu

Relevant Academic Work

19

www.softwarefactories.com

• Software Factories go beyond “models as documentation” by

• Using highly-tuned DSL & XML as source artifacts &
• Capturing life cycle metadata to support high-fidelity model

transformation, code generation & other forms of automation

www.eclipse.org/gmf/

• The Graphical Modeling Framework (GMF) forms
a generative bridge between EMF & GEF, which
linkes diagram definitions to domain models as
input to generation of visual editors

• GMF provides this framework, in addition to tools
for select domain models that illustrate its
capabilities

• openArchitectureWare (oAW) is a modular MDA/MDE generator
framework implemented in Java

• It supports parsing of arbitrary models & a language family to check &
transform models, as well as generate code based on them

www.openarchitectureware.org

Relevant Commercial Work

20

Key ULS solution space challenges
• Enormous accidental & inherent
complexities

• Continuous evolution & change
• Highly heterogeneous platform, language, &
tool environments

New Challenges: Ultra-Large-Scale (ULS) Systems

Key ULS problem space challenges
• Highly dynamic & distributed
development & operational
environments

• Stringent simultaneous quality of
service (QoS) demands

• Very diverse & complex network-
centric application domains

Mapping problem space requirements
to solution space artifacts is very hard

21

Key R&D Challenges for ULS Systems

LogicalLogical
ViewView

PhysicalPhysical
ViewView

DevelopmentDevelopment
ViewView

ProcessProcess
ViewView

Use CaseUse Case
ViewView

Developers & users of ULS systems face
challenges in multiple dimensions

Of course, developers of today’s large-scale network-centric systems
also face these challenges, but they can often “brute force” solutions…

22

LogicalLogical
ViewView

Determining units of
abstraction for system

(de)composition,
reuse, & validation

• Popular technologies & tools provide
inadequate support for

– Expressing design intent more clearly using
domain concepts

– Checking pre-/post-conditions & invariants

– Specifying & analyzing dependencies

Key R&D Challenges for ULS Systems

23

PhysicalPhysical
ViewView

Integrating/deploying diverse new &
reusable application components in a

networked environment to ensure end-
to-end QoS requirements

• Popular technologies & tools
provide inadequate support for

– Configuring & customizing
components for application
requirements & run-time
environments

– Automated deployment, i.e.,
mapping of components onto
nodes in target environments

Key R&D Challenges for ULS Systems

24

ProcessProcess
ViewView

Devising execution architectures,
concurrency models, & communication

styles that ensure multi-dimensional QoS &
correctness of new/reusable components

• Popular technologies & tools provide
inadequate support for

– Identifying & reducing performance
& robustness risks early in ULS
system lifecycles

– Satisfying multiple (often
conflicting) QoS demands

• e.g., secure, real-time, reliable

– Satisfying QoS demands in face of
fluctuating/insufficient resources

• e.g., mobile ad hoc networks
(MANETs)

Key R&D Challenges for ULS Systems

25

DevelopmentDevelopment
ViewView

(De)composing systems
into separate, reusable

modules (e.g., packages,
subsystems, libraries) that

achieve/preserve QoS
properties

• Popular technologies & tools provide inadequate
support for avoiding

– Cyclic dependencies, which make unit testing &
reuse hard

– Excessive link-time dependencies, which bloat size
of executables

– Excessive compile-time dependencies, where
small changes trigger massive recompiles

Key R&D Challenges for ULS Systems

26

Capturing functional & QoS
requirements of systems &
reconciling them with other

views during evolution

• Popular technologies & tools provide inadequate support for

– Ensuring semantic consistency & traceability between requirements & software
artifacts

– Visualizing software architectures, designs, & implementations from multiple views

– Effective collaboration between users & distributed development teams

Use CaseUse Case
ViewView

Key R&D Challenges for ULS Systems

27

Key R&D Challenges for ULS Systems

LogicalLogical
ViewView

PhysicalPhysical
ViewView

DevelopmentDevelopment
ViewView

ProcessProcess
ViewView

Use CaseUse Case
ViewView

Developers & users of ULS systems face
challenges in multiple dimensions

Solving these challenges requires much more than simply
retrofitting our current tools, platforms, & processes!

28

LogicalLogical
ViewView

PhysicalPhysical
ViewView

DevelopmentDevelopment
ViewView

ProcessProcess
ViewView

Use CaseUse Case
ViewView

Key R&D Challenges for ULS Systems

Developers & users of ULS systems face
challenges in multiple dimensions

29

Serialized Phasing is Common in ULS Systems

Application components
developed after infrastructure

is sufficiently mature

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

System
infrastructure
components

developed first

30

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

System integration &
testing is performed

after application
development is finished

Serialized Phasing is Common in ULS Systems

Integration
Surprises!!!

31

Complexities of Serialized Phasing

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

Still in development

Ready for testing
Complexities

• System infrastructure cannot be
tested adequately until applications
are done

32

Complexities of Serialized Phasing

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

End-to-end
performance of
critical path?

System bottleneck?

Complexities

• System infrastructure cannot be
tested adequately until applications
are done

• Entire system must be deployed &
configured (D&C) properly to meet
end-to-end QoS requirements

• Existing tools & platforms have poor
support for realistic “what if”
evaluation

QoS needs of components in ULS systems often unknown until late in lifecycle

33

Unresolved QoS Concerns with Serialized Phasing

Meet QoS
requirements?

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n Key QoS concerns

• Which D&C’s meet the QoS
requirements?

34

Unresolved QoS Concerns with Serialized Phasing

Performance
metrics?

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n Key QoS concerns

• Which D&C’s meet the QoS
requirements?

• What is the worse/average run-time
for various workloads under various
D&C’s & processing models?

35

Unresolved QoS Concerns with Serialized Phasing

System
overload?

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n Key QoS concerns

• Which D&C’s meet the QoS
requirements?

• What is the worse/average run-time
for various workloads under various
D&C’s & processing models?

• How much workload can the system
handle until its end-to-end QoS
requirements are compromised?

It can take a long time (years) to address QoS concerns with serialized phasing

36

Related ULS System Development Problems

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

Release X Release X+1

New hardware,
networks, operating

systems, middleware,
application

components, etc.

37

Related ULS System Development Problems

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

Release X Release X+1

Evolution
Surprises!!!

New hardware,
networks, operating

systems, middleware,
application

components, etc.

38

Promising Approach for ULS System Challenges:
System Execution Modeling (SEM) Tools

Tools to express & validate design
rules

• Help applications & developers
adhere to system specifications at
design-time

Tools to ensure design rule
conformance

• Help properly deploy & configure
applications to enforce design rules
throughout system lifecycle

Tools to conduct “what if” analysis

• Help analyze QoS concerns prior to
completing the entire system, i.e.,
before system integration phase

SEM tools should be applied continuously when developing software elements

39

SEM Tool Example: Component Deployment & Configuration

SW Deployer
Deployment

InfrastructureDeployment
Tools (generic)

Deployment
Interfaces

Infrastructure
Interfaces

Shipping

SW
Creator2

A2A1

Deployment
requirements

Implementations

SW
Creator

1

Deployment & configuration (D&C) Goals

• Promote component reuse

• Build complex applications by assembling
existing components

• Automate configuration of common services

• Declaratively inject QoS policies into
applications

• Dynamically deploy components to target
heterogeneous domains

• Optimize systems via global component
configuration & deployment settings

40

Specification & Implementation
• Defining, partitioning, & implementing app functionality as
standalone components

Packaging
• Bundling a suite of software binary modules & metadata
representing app components

Installation
• Populating a repository with packages required by app

Configuration
• Configuring packages with appropriate parameters to satisfy
functional & systemic requirements of an application without
constraining to physical resources

Planning
• Making deployment decisions to identify nodes in target
environment where packages will be deployed

Preparation
• Moving binaries to identified entities of target environment

Launching
• Triggering installed binaries & bringing app to ready state

QoS Assurance & Adaptation
• Runtime (re)configuration & resource management to
maintain end-to-end QoS

Example D&C specifications
include

• OMG Lightweight CORBA
Component Model (CCM) &

• IBM Service Component
Architecture (SCA)

SEM Tool Example: Component Deployment & Configuration

41

Challenge 1: The Packaging Aspect

•Application components are bundled
together into assemblies

•Different assemblies tailored to
deliver different end-to-end QoS
and/or using different algorithms can
be part of a package

•ULS systems will require enormous #
(105-107) of components

•Packages describing assemblies can
be scripted via XML descriptors

42

Packaging Aspect Problems (1/2)

Ad hoc techniques for ensuring component
syntactic & semantic compatibility

Distribution &
deployment done in
ad hoc manner

Inherent Complexities

Container

…
…

…

…

…

…

Ad hoc means to
determine pub/sub
mechanisms

43

<!– Associate components with impls -->
<assemblyImpl>

<instance xmi:id="Sensor">
<name>Sensor Subcomponent</name>
<package href="Sensor.cpd"/>

</instance>
<instance xmi:id="Planner">
<name>Planner Subcomponent</name>
<package href="Planner.cpd"/>

</instance>
<instance xmi:id="Effector">
<name>Effector Subcomponent</name>
<package href="Effector.cpd"/>

</instance>
</assemblyImpl>

Packaging Aspect Problems (2/2)

XML file in
excess of 3,000
lines, even for
medium sized
scenarios

Existing practices
involve handcrafting
XML descriptors

Modifications to the
assemblies requires
modifying XML file

Accidental Complexities

44

SEM Tool Approach for Packaging Aspect

• Capture dependencies visually

• Define semantic constraints using
constraints

• e.g., Object Constraint Language
(OCL)

• Generate domain-specific artifacts
from models

• e.g., metadata, code, simulations,
etc.

• Uses Generic Modeling Environment
(GME) to meta-model & program

Approach:
• Develop the Platform-

Independent Component
Modeling Language (PICML)
to address complexities of
assembly packaging

PICML helps to capture & validate design rules for assemblies

45

Example Metadata Generated by PICML

Based on OMG (D&C)
specification (ptc/05-01-07)

Component
Packaging

Application
Assembly

Component
DLLs

Component &
Home Properties

Component
Interface

Descriptors
(.ccd)

Packaging
Tools

Component
Packages

(*.cpk)

Component &
Home Properties

Component
Package

Descriptors
(.cpd)

Implementation
Artifact

Descriptors
(.iad)

Assembly
Tools

Component
Implementation

Descriptor
(*.cid)

• Component Interface Descriptor (.ccd)

–Describes the interface, ports, properties of a single
component

• Implementation Artifact Descriptor (.iad)

–Describes the implementation artifacts (e.g., DLLs, OS, etc.)
of one component

• Component Package Descriptor (.cpd)

–Describes multiple alternative implementations of a single
component

• Package Configuration Descriptor (.pcd)

–Describes a configuration of a component package

• Top-level Package Descriptor (package.tpd)

–Describes the top-level component package in a package
(.cpk)

• Component Implementation Descriptor (.cid)

–Describes a specific implementation of a component
interface

–Implementation can be either monolithic- or assembly-based

–Contains sub-component instantiations in case of assembly
based implementations

–Contains inter-connection information between components

• Component Packages (.cpk)

–A component package can contain a single component

–A component package can also contain an assembly

www.cs.wustl.edu/~schmidt/PDF/RTAS-PICML.pdf

46

Example Output from PICML Model

<monolithicImpl> [...]
<deployRequirement>
<name>Planner</name>
<resourceType>Planner</resourceType>
<property><name>vendor</name>
<value>
<type> <kind>tk_string</kind> </type>
<value> <string>My Planner Vendor</string>

</value>
</property>

</deployRequirement> [... Requires VxWorks ...]
</monolithicImpl>

• Describes a specific
implementation of a
component interface

• Describes component
interconnections

A Component
Implementation
Descriptor (*.cid) file

<connection> <name>Effector</name>
<internalEndpoint>

<portName>Ready</portName>
<instance href="#Planner"/>

</internalEndpoint>
<internalEndpoint>

<portName>Refresh</portName>
<instance href="#Effector"/>

</internalEndpoint>
</connection>

PICML supports better expression of domain intent & “correct-by-construction”

47

Challenge 2: The Configuration Aspect

ULS systems are characterized by a large configuration space
that maps known variations in the application requirements space

to known variations in the software solution space

48

Challenge 2: The Configuration Aspect

ULS systems are characterized by a large configuration space
that maps known variations in the application requirements space

to known variations in the software solution space

Hook for the
concurrency
strategy

Hook for
the request
demuxing
strategy

Hook for
marshaling
strategy

Hook for the
connection
management
strategy

Hook for the
underlying
transport
strategy

Hook for the event
demuxing strategy

49

Configuration Aspect Problems
Middleware developers

• Documentation & capability
synchronization

• Semantic constraints, design rules,
& QoS evaluation of specific
configurations

XML Configuration Files

XML Property Files

CIAO/CCM provides ~500
configuration options

Application developers

• Must understand middleware
constraints, rules, & semantics

• Increases accidental complexity

• Different middleware uses different
configuration mechanisms

• e.g.

50

SEM Tool Approach for Configuration Aspect

Approach:

•Develop an Options Configuration Modeling Language (OCML) to
encode design rules & ensure semantic consistency of option
configurations

•OCML is used by

–Middleware developers to
design the configuration model

–Application developers to
configure the middleware for a
specific application

•OCML metamodel is platform-
independent

•OCML models are platform-
specific

OCML helps to ensure design conformance

51

Applying OCML to CIAO+TAO
• Middleware developers specify

• Configuration space
• Constraints

• OCML generates config model

/**

* Return the last time the client sent a request associated

* session, as the number of ms since midnight, Jan 1, 1970

* GMT. Actions your application takes, such as get or set
* value associated with session, do not affect access time.

*/

public long getLastAccessedTime() {

return (this.lastAccessedTime);
}

/**

* Update the accessed time information for this session.
* Method is called by context when request comes in for a

* session, even if the application does not reference it.

*/

public void access() {
this.lastAccessedTime = this.thisAccessedTime;

}

www.cs.wustl.edu/~schmidt/PDF/RTAS-process.pdf

52

Applying OCML to CIAO+TAO
• Middleware developers specify

• Configuration space
• Constraints

• OCML generates config model
• Application developers provide

a model of desired options &
their values, e.g.,
• Network resources
• Concurrency & connection

management strategies

www.cs.wustl.edu/~schmidt/PDF/RTAS-process.pdf

53www.cs.wustl.edu/~schmidt/PDF/RTAS-process.pdf

Applying OCML to CIAO+TAO
• Middleware developers specify

• Configuration space
• Constraints

• OCML generates config model
• Application developers provide

a model of desired options &
their values, e.g.,
• Network resources
• Concurrency & connection

management strategies
• OCML constraint checker flags

incompatible options & then
• Synthesizes XML descriptors

for middleware configuration
• Generates documentation for

middleware configuration
• Validates the configurations

OCML automates activities that are very tedious & error-prone to do manually

54

Challenge 3: Planning Aspect

Determine current
resource allocations
on target platforms

Select the
appropriate
package to
deploy on
selected
target

Select appropriate
target platform to
deploy packages

System integrators must make appropriate deployment decisions,
identifying nodes in target environment where packages will be deployed

55

Planning Aspect Problems

How do you
determine
current resource
allocations?

How do you ensure that
selected targets will
deliver required QoS?

How do you correlate QoS
requirements of packages
to resource availability?

Ensuring deployment plans meet ULS system QoS requirements

How do you evaluate
QoS of infrastructure
before applications
are completely built?

56

SEM Tool Approach for Planning Aspect
Approach
• Develop Component Workload Emulator (CoWorkEr) Utilization Test Suite

(CUTS) to allow architects & systems engineers to

1. Compose scenarios to
exercise critical system paths

2. Associate performance
properties with scenarios &
assign properties to
components specific to paths

3. Configure workload generators
to run experiments, generate
deployment plans, & measure
performance along critical
paths

4. Analyze results to verify if
deployment plan &
configurations meet
performance requirements

CUTS helps to conduct “what if” analysis on evolving systems

1 2

34

Component Interaction

Experimenter

Model
Experiment Associate

QoS
Characteristics

Synthesize
&

Execute

Feedback
Results

Test bed
Deployment

Plan
.cpp

Script
files

IDL

CoWorkEr

57

• Application components are
represented as Component Workload
Emulators (CoWorkErs)

• CoWorkErs can be interconnected by
the PICML tool to form operational
strings

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n
Emulating Computational Components in CUTS

www.cs.wustl.edu/~schmidt/PDF/CUTS.pdf

58

• Workload Modeling Language (WML) MDE
tool defines behavior of CoWorkErs via
“work sequences”

• WML programs are translated into XML
characterization files

• These files then configure CoWorkErs

Representing Computational Components in CUTS

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

www.cs.wustl.edu/~schmidt/PDF/QoSPML-WML.pdf

59

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

• BenchmarkManagerWeb-interface (BMW)
MDE tool generates statistics showing
performance of actions in each CoWorkEr

• Critical paths show end-to-end performance
of mission-critical operational strings

Visualizing Critical Path Performance in CUTS

CUTS integrates nicely with continuous integration servers

60

Concluding Remarks
• The emergence of ULS systems

requires significant innovations &
advances in tools & platforms

• Not all technologies provide the
precision we’re accustomed to in
legacy real-time systems

• Advances in Model-driven
engineering (MDE) are needed to
address ULS systems challenges

• Significant MDE groundwork laid in
recent DARPA programs

• Much more R&D
needed for ULS
systems

• e.g., recent
Software
Engineering
Institute study

ULS systems report available at www.sei.cmu.edu/uls

