CMMI[®] and Six Sigma Synergy

SEPG 2005

CMMI[®] and Six Sigma Synergy

CMMI® and Six Sigma Synergy

Objectives

- Overview of CMMI[®] and Six Sigma relationships
- How to leverage the similarities to benefit and accelerate your improvement efforts
- Synergies are present at levels 2 and 3, as well as levels 4 and 5
- Some Generic Practices share common ground with Six Sigma concepts

CMMI® and Six Sigma Synergy

Topics

During this presentation we will cover the following:

- 1. Six Sigma Background Information
- 2. Six Sigma Methods and the CMMI®
- 3. CMMI[®] Process Area/Six Sigma Relationships
- 4. Sharing Process Improvement Infrastructure
- 5. Customer vs. Model Focus
- 6. CMMI[®]/Six Sigma Intersect Example
- 7. Six Sigma Tools and Techniques to Accelerate CMMI®
- 8. Summary of CMMI® and Six Sigma Synergies

CMMI® and Six Sigma Synergy

What is Six Sigma?

A. Quality Management Philosophy?B. Quality Improvement Methodology?C. Measurement of Product and Process Quality?

Answer: ____ (A, B, C)

The answer is "All of the above"

CMMI[®] and Six Sigma Synergy

[1]

What is Six Sigma? (Cont.)

A Quality Management Philosophy

Reduce variation in your business and make customer-focused, data driven decisions. This is commonly referred to as "*Management by Fact*."

CMMI[®] and Six Sigma Synergy

What is Six Sigma? (Cont.)

A Quality Improvement Methodology

- Methodology and tools to improve business processes
- Delivers "Better, Faster, Cheaper" solutions
- Uses statistical process control methods:

DMAIC – Define, Measure, Analyze, Improve, Control

DFSS – Design for Six Sigma – Approach that incorporates various methods

CMMI[®] and Six Sigma Synergy

What is Six Sigma? (Cont.)

Measurement of Product/Process Quality

- 3.4 Defects Per Million Opportunities (DPMO).
- Most business processes operate between
 3-4 Sigma (~93.3% to ~99.4% efficient).
- Six Sigma capability = ~99.9996% efficient.

CMMI[®] and Six Sigma Synergy

[5]

What is Six Sigma? (Cont.)

Measurement of Product/Process Quality

Sigma Comparison Examples:

- Six Sigma or better capability (~99.9996% efficient) - domestic airline passenger fatality rate.
- 2. 4 Sigma capability (~99.4% efficient)
 - □ 107 incorrect medical procedures a day
 - □ 200,000 incorrect drug prescriptions/year
 - □ 18,322 pieces of mishandled mail an hour
 - □ 2,000,000 documents lost by IRS a year

CMMI® and Six Sigma Synergy

[1]

Six Sigma Methods and the $\text{CMMI}^{\textcircled{\text{$\$$}}}$

DMAIC – <u>D</u>efine, <u>M</u>easure, <u>A</u>nalyze, <u>I</u>mprove, <u>C</u>ontrol

- Define the project goals and customer (internal and external) deliverables
- Measure the process to determine current performance
- Analyze and determine the root cause(s) of the defects
- □ Improve the process by eliminating defects
- Control future process performance

Accepted as a standard methodology in industry.

CMMI® and Six Sigma Synergy

Six Sigma Methods and the $\mathbf{CMMI}^{\texttt{®}}$

<u>DMADV</u> – <u>D</u>efine, <u>M</u>easure, <u>A</u>nalyze, <u>D</u>esign, <u>V</u>erify

- Define the project goals and customer (internal and external) deliverables
- Measure and determine customer needs and specifications
- Analyze the process options to meet the customer needs
- Design (detailed) the process to meet the customer needs
- Verify the design performance and ability to meet customer needs

DMADV is a Design for Six Sigma (DFSS) methodology. [1]

CMMI[®] and Six Sigma Synergy

Six Sigma Methods and the CMMI®

What do I need, DMAIC or DMADV/DFSS?

- DMAIC EXISTING process/product not meeting customer specification.
- DMADV/DFSS NEW process/product OR Revolutionary improvement on existing process/product.

CMMI® and Six Sigma Synergy

Six Sigma Methods and the CMMI®

<u>Six Sigma</u>	<u>CMMI</u> ®
DEFINE	PP(L2), REQM(L2), RD(L3), OPD(L3), IPM(L3)
MEASURE	MA(L2), QPM(L4)
ANALYZE	REQM(L2), DAR(L3), QPM(L4), OPP(L4), CAR(L5)
IMPROVE	OT(L3), OPF(L3), OID(L5)
CONTROL	PMC(L2), IPM(L3), QPM(L4)

Based upon [2]

CMMI[®] and Six Sigma Synergy

CMMI® Process Area/Six Sigma Relationships

Level	Process Areas		Phase	all and a second
5 Optimizing	Organizational Innovation and Deployment Causal Analysis and Resolution	$\left\{ \right.$	CONTROL	
4 Quantitatively Managed	Organizational Process Performance Quantitative Project Management		IMPROVE	
3 Defined	Requirements Development Technical Solution Product Integration Verification Validation Organizational Process Focus Organizational Process Definition		ANALYZE	
	Integrated Project Management Risk Management Integrated Teaming Integrated Supplier Management Decision Analysis and Resolution Organizational Environment for Integration		MEASURE	
2 Managed	Requirements Management Project Planning Project Monitoring and Control Supplier Agreement Management Measurement and Analysis Process and Product Quality Assurance		DEFINE	
	Configuration Management			Based upon [2

CMMI[®] and Six Sigma Synergy

CMMI® Process Area/Six Sigma Relationships

What about the Generic Practices?

<u>GP2.7 – Identify and Involve Relevant Stakeholders</u> Both CMMI[®] and Six Sigma support identification of key stakeholders early in the process.

GP2.8 – Monitor and Control the Process

Monitoring and control are at the heart of the Control Phase in Six Sigma.

GP3.2 – Collect Improvement Information

The collection of improvement information from the performance of a process (particularly measurement data) is essential in Six Sigma (Measure Phase).

CMMI[®] and Six Sigma Synergy

Sharing Process Improvement Infrastructure

CMMI® and Six Sigma Synergy

Sharing Process Improvement Infrastructure

Strategic Top-Down Institutionalization

Process Nirvana

Tactical Bottom-Up Improvements

- Establishes quantitative ROI data
- Provides shorter cycle times for improvement
- Shows bottom-line savings from the Infrastructure
- Secures support for future improvement efforts
- □ Select Six Sigma projects carefully

CMMI® and Six Sigma Synergy

Sharing Process Improvement Infrastructure

Some guidelines for selection of Six Sigma projects:

- Identify biggest problem areas / greatest bottomline savings
- Areas containing systemic problems / major sources of pain for the organization
- Avoid minor improvements / little bottom-line savings
- Dedicate one of your best and brightest people

Based upon [2]

CMMI® and Six Sigma Synergy

Customer vs. Model Focus

Traditional "Process-Centric" approach:

- Achieve Maturity Level x
- Can result in O/H and wrapping "process" around business as usual
- False starts (we've all seen them) can kill support for process improvement efforts

"Customer-Centric" approach:

- Voice of the Customer (VOC)
- Focuses on Critical to Quality (CTQ)
- Quantifiable business goals which add value from customer's perspective

Based upon [3]

CMMI[®] and Six Sigma Synergy

CMMI®/Six Sigma Intersect Example

<u>CMMI®</u>

Requirements Development

SG 1 Develop Customer Requirements [PA157.IG101]

- SP 1.1 Elicit Needs
- SP 1.2 Develop the Customer Requirements

SG 2 Develop Product Requirements [PA157.IG103]

- SP 2.1 Establish Product and Product-Component Requirements
- SP 2.2 Allocate Product-Component Requirements
- SP 2.3 Identify Interface Requirements

SG 3 Analyze and Validate Requirements [PA157.IG102]

- SP 3.1 Establish Operational Concepts and Scenarios
- SP 3.2 Establish a Definition of Required Functionality
- SP 3.3 Analyze Requirements
- SP 3.4 Analyze Requirements to Achieve Balance
- SP 3.5 Validate Requirements with Comprehensive Methods

Six Sigma

Voice of the Customer Quality Function Deployment (QFD) "House of Quality"

CMMI® and Six Sigma Synergy

Six Sigma Tools and Techniques to Accelerate CMMI[®]

- Scatter plots/diagrams
- Affinity diagrams
- Histograms
- Pareto charts
- Run charts & Control charts
- SIPOC diagrams
- Cause and effect diagrams
- Design of Experiments
- Quality Function Deployment (QFD)
- Failure Mode and Effects Analysis (FMEA)

CMMI[®] and Six Sigma Synergy

Six Sigma Tools and Techniques to Accelerate CMMI[®]

Sample Tool: Histogram

- Takes a snapshot in time
- Can help keep track of variations
- Ask:
 - Do measures distribute into a bell curve?

What is the average?

Do we meet specifications?

They do <u>not</u> provide information about patterns over time

CMMI® and Six Sigma Synergy

Six Sigma Tools and Techniques to Accelerate CMMI[®]

Sample Histogram

CMMI[®] and Six Sigma Synergy

[4]

Six Sigma Tools and Techniques to Accelerate CMMI[®]

Sample Tool: Control Chart

Enables visibility into:

- □ when the process is running satisfactorily
- when something is different than expected and may need correction
- patterns over time
- Measurements to learn capability must be collected over reasonable time period to include variations from all sources, e.g. 30 days
- Capability may change over long-term, so control charts should be revised periodically

CMMI[®] and Six Sigma Synergy

Six Sigma Tools and Techniques to Accelerate CMMI[®]

® CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. © 2005 Natural SPI. All rights reserved.

24

CMMI® and Six Sigma Synergy

Summary of CMMI[®] and Six Sigma Synergies

- Sharing infrastructure between CMMI[®] and Six Sigma benefits both initiatives
- Good measurements are essential to successful Six Sigma implementation and support CMMI[®] goals
- DMAIC and DFSS have strong ties to specific and generic practices within CMMI[®]
- Six Sigma can help accelerate CMMI[®] implementation at ALL levels of maturity
- Six Sigma provides business focused bottom-line savings for the process improvement program
- Six Sigma strengths complement CMMI[®] weaknesses, CMMI[®] strengths complement Six Sigma weaknesses

CMMI® and Six Sigma Synergy

References

- [1] iSixSigma, <u>www.software.isixsigma.com</u>
- [2] Hefner, Rick Ph.D., Purcell, Leitha: "Software Applications of Six Sigma", Los Angeles SPIN, January 2003.
- [3] Janiszewski, Steve: "Six Sigma and Software Process Improvement", DC SPIN, Washington D.C. March 3, 2004.
- [4] Madachy, Ray: "MBASE and CMMI[®] II", University of Southern California, Center for Software Engineering, April 7, 2003.
- [5] Lockheed Martin Corporation, Green Belt Training Program, 2001.
- [6] CMMI[®] Product Development Team, "CMMI[®] for Systems Engineering/Software Engineering/Integrated Product and Process Development, and Supplier Sourcing, Version 1.1, Staged Representation", CMU/SEI-2002-TR-012, March 2002.

CMMI® and Six Sigma Synergy

Contact Information

David Wilson david@naturalspi.com 919-465-3292

Natural SPI, Inc. www.naturalspi.com 866-648-5508

® CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. © 2005 Natural SPI. All rights reserved.

27