

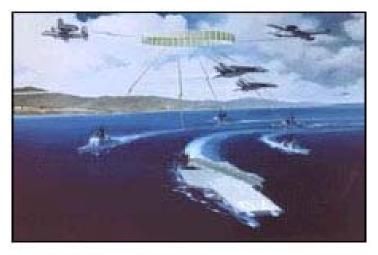
Carnegie Mellon Software Engineering Institute Sponsored by the U.S. Department of Defense © 2008 by Carnegie Mellon University

Applied Computational Mechanism Design

Kurt Wallnau

March 06, 2008

Credits


Gabriel Moreno (SEI) Mark Klein (SEI) Daniel Plakosh (SEI) Kurt Wallnau (SEI)

David Parkes (Harvard University) Alex Bordedsky (Naval Postgraduate School)

Recall from Mark Klein's Talk...

"Theories and constructs from the field of economics can endow the notion of architecture with new meaning and consequently offer structuring principles for Ultra-Large-Scale Systems."*

We put this idea to the test to allocate scarce bandwidth in an emulated tactical data network based on the US Navy's LINK-11.

ULS Research Area 6.2 Computational Emergence 6.2.1 Algorithmic Mechanism Design Computational

Mark Klein, Panel slides, SMART Ultra-Large-Scale Systems Forum

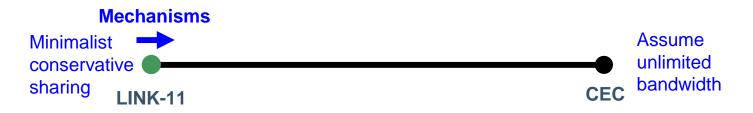
© 2008 by Carnegie Mellon University

Did you know that...

- 98%+ of Google's \$6.7B revenue in 2006 has been attributed to an auction mechanism?
- the FCC has conducted auctions of licenses for electromagnetic spectrum since 1994?
- in 2007 three Nobel prizes in economics were awarded for work in mechanism design?

What is Computational Mechanism Design?

- A mechanism is an institution, such as a market or an auction, that defines the rules for how humans are allowed to interact, and governs the procedures for how collective decisions are made.
- A computational mechanism uses computational processes to act on behalf of humans, and/or uses computers to determine decision outcomes.
- Computational mechanism design is the art of designing computational mechanisms
- Computational mechanism design straddles microeconomics, game theory, and computer science


Why Study Tactical Data Networks?

A tactical data network will serve diverse needs of diverse users in a highly dynamic, performance-critical environment

Many systems communicate only minimal information to conserve bandwidth and to minimize latency

Mechanisms may provide a principled way to trade scarce bandwidth for value-driven improvements in data quality

We will regard the system as a virtual economy, where bandwidth is *scarce* and information has *value*

© 2008 by Carnegie Mellon University

Our approach to studying mechanism design

Develop an environment to study mechanisms at scale

• tactical data network (LINK-11)

Study one mechanism in-depth in this environment

• Vickrey-Clarke-Groves auction

Evaluate engineering potential

 mechanism engineering as a peer of, for example, performance engineering?

demonstration...

© 2008 by Carnegie Mellon University

Takeaway Point

"Since computation has moved over the past twenty years decisively closer to people, interfaces with social sciences such as Psychology and Sociology, besides Economics, have become increasingly important"

> Christos H. Padadimitriou, in "Algorithms, Games, and the Internet"