
KRvW
Associates

© 2006, Cigital & KRvW Associates

Software security
Setting the stage

KRvW
Associates

© 2006, Cigital & KRvW Associates

Agenda

9:00-10:00 Software [in]security

10:15-12:00 Exploiting Software and exercise

1:00-2:30 Software security touchpoints

2:45-4:30 Seven pernicious kingdoms

4:30-5:00 Code review and next steps

KRvW
Associates

© 2006, Cigital & KRvW Associates

Pop quiz

 What do wireless devices, cell phones, PDAs,
browsers, operating systems, servers, personal
computers, routers, public key infrastructure
systems, and firewalls have in common?

KRvW
Associates

© 2006, Cigital & KRvW Associates

Questions for you

 Who is from dev? How about testing? Anyone here
from product management?

 What languages do you use? C? C++? Java?
 How do you describe and capture software

architecture and design?
 Do you follow a particular software process in your

group?

KRvW
Associates

© 2006, Cigital & KRvW Associates

Software [in]security

KRvW
Associates

© 2006, Cigital & KRvW Associates

The Problem

© 2004, Cigital & KRvW Associates

KRvW
Associates

© 2006, Cigital & KRvW Associates

Software vulnerability growth

Software Vulnerabilities

1090

2437

4129
3784 3780

5690

0

1000

2000

3000

4000

5000

6000

2000 2001 2002 2003 2004 2005

KRvW
Associates

© 2006, Cigital & KRvW Associates

���The Trinity Of Trouble:
Connectivity

 The Internet is everywhere
and most of our software is
on it

 When was the last time that
you did business with a
major vendor who had no
Internet connectivity?

 Tried VoIP on your mobile
phone in a coffee shop WiFi
hotspot yet?

The network is
the computer.

KRvW
Associates

© 2006, Cigital & KRvW Associates

���The Trinity Of Trouble:
�Complexity

 A simple user interface can
be enormously complex
“under the hood”

 Consider what happens
behind the scenes in one of
today’s AJAX web
applications

 But it sure does make for a
compelling “user
experience”

KRvW
Associates

© 2006, Cigital & KRvW Associates

���The Trinity Of Trouble:
Extensibility

 Systems evolve in unexpected
ways and are changed on the
fly

 After all, who would want a
computing device that can’t be
functionally extended?

 From J2ME to desktop PC
users (running with
administrative privileges)

.NET

KRvW
Associates

© 2006, Cigital & KRvW Associates

The classic security tradeoff

Windows Complexity

0

5

10

15

20

25

30

35

40

45

Win

3.1

(1990)

Win

NT

(1995)

Win 95

(1997)

NT 4.0

(1998)

Win 98

(1999)

NT 5.0

(2000)

Win

2K

(2001)

XP

(2002)

M
il

li
o

n
s

 o
f

L
in

e
s

KRvW
Associates

© 2006, Cigital & KRvW Associates

So what’s the problem?
 Well, for starters

 Consumers don’t demand more
 Software developers tend to lack knowledge of

vulnerabilities, attacks, and threats
 IT security tends to not understand software development

 But that’s not all!

KRvW
Associates

© 2006, Cigital & KRvW Associates

Additional problems - 1

 We don’t pay enough attention
to our failures

 Consider other engineering
disciplines

KRvW
Associates

© 2006, Cigital & KRvW Associates

Additional problems - 2

 We fail to consider business
risks first and foremost

 Business must drive
technology

 Consider Wi-Fi, Word macros,
USB drives, etc.

KRvW
Associates

© 2006, Cigital & KRvW Associates

Additional problems - 3

 Old school information security
solutions don’t adequately
protect the software

 Consider IM, Skype, Wi-Fi,
VPNs

KRvW
Associates

© 2006, Cigital & KRvW Associates

Additional problems - 4

 Software testing does not
adequately address security

 Penetration testing is not
sufficient

KRvW
Associates

© 2006, Cigital & KRvW Associates

Additional problems - 5

 Too much attention is paid to
functional spec

 Consider what can go wrong
as well

KRvW
Associates

© 2006, Cigital & KRvW Associates

Additional problems - 6

 IT security is viewed as an
impediment to business

 Don’t just be the person that
says no

KRvW
Associates

© 2006, Cigital & KRvW Associates

Security problems are complicated
IMPLEMENTATION BUGS

 Buffer overflow
 String format
 One-stage attacks

 Race conditions
 TOCTOU (time of check to

time of use)
 Unsafe environment variables
 Unsafe system calls

 System()
 Untrusted input problems

ARCHITECTURAL FLAWS
 Misuse of cryptography
 Compartmentalization

problems in design
 Privileged block protection

failure (DoPrivilege())
 Catastrophic security failure

(fragility)
 Type safety confusion error
 Insecure auditing
 Broken or illogical access

control (RBAC over tiers)
 Method over-riding problems

(subclass issues)
 Signing too much code

KRvW
Associates

© 2006, Cigital & KRvW Associates

BUG: The dreaded buffer overflow

 Overwriting the bounds of data
objects

 Allocate some bytes, but the
language doesn’t care if you try to
use more
 char x[12];

 x[12] = ‘\0’;

 Why was this done? Efficiency!
 Two main flavors of buffers

 Heap allocated buffers
 Stack allocated buffers
 Smashing the stack is the

most common attack

 The most pervasive security
problem today in terms of
reported bugs

0

5

10

15

20

25

30

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

Security Problems (CERT)

CERT Alerts

Buffer overflows

KRvW
Associates

© 2006, Cigital & KRvW Associates

Pervasive C problems lead to BUGS

void main() {
char buf[1024];

gets(buf);
}

 How not to get input
 Attacker can

send an infinite
string!

 Chapter 7 of
K&R (page 164)

 Calls to watch out for

 Hundreds of such calls
 Use static analysis to find these

problems
 ITS4, Fortify

 Careful code review is
necessary

Instead of: Use:

gets(buf) fgets(buf, size, stdin)

strcpy(dst, src) strncpy(dst, src, n)

strcat(dst, src) strncat(dst, src, n)

sprintf(buf, fmt, a1,…) snprintf(buf, fmt, a1, n1,…)

(where available)

*scanf(…) Your own parsing

KRvW
Associates

© 2006, Cigital & KRvW Associates

FLAW: 802.11b WEP crypto

 Well-documented flaws in the design of the WEP
protocol

 Even if implemented 100% perfectly, the design is
flawed and the encryption easily circumvented

 802.11b is widely deployed and wildly popular
 It was designed by experts
 Would you entrust a mission-critical enterprise app

to run over it?

KRvW
Associates

© 2006, Cigital & KRvW Associates

Software security: state of the practice

 Programming is hard
 Popular languages are really

awful (C/C++)
 Many subtleties to learn
 Lots to know
 The only constant is change

 Some good resources on
software security

 Tools are getting better, but
only cover BUGS

Software security is not security software!
Software security is about building things properly.

KRvW
Associates

© 2006, Cigital & KRvW Associates

Exploiting software

KRvW
Associates

© 2006, Cigital & KRvW Associates

Who is the bad guy?

 Hackers
 “Full disclosure” zealots

 “Script kiddies”
 Criminals

 Lone guns or organized
 Malicious insiders

 Compiler wielders
 Business competition
 Police, press, terrorists, intelligence agencies

KRvW
Associates

© 2006, Cigital & KRvW Associates

Attackers do not distinguish bugs and flaws

 Both bugs and flaws lead to vulnerabilities
that can be exploited

 Attackers are pragmatic in their approach
 Attackers write code to break your software’s

design and/or implementation

KRvW
Associates

© 2006, Cigital & KRvW Associates

How attacks unfold

 Attacking a system is a process
of discovery and exploration
 Qualify target (focus on

input points)
 Determine what

transactions the input
points allow

 Apply relevant attack
patterns

 Cycle through observation
loop

 Find vulnerability
 Build an exploit

The standard process
 Scan network
 Build a network map
 Pick target system
 Identify OS stack
 Port scan
 Determine target components
 Choose attack patterns
 Leverage environment faults
 Use indirection
 Plant backdoor

KRvW
Associates

© 2006, Cigital & KRvW Associates

Attacker’s toolkit: disassemblers and decompilers

 Source code is not a necessity for software exploit
 Binary is just as easy to understand as source code
 Disassemblers and decompilers are essential tools
 Reverse engineering is common and must be

understood (not outlawed)
 IDA allows plugins to be created
 Use bulk auditing

KRvW
Associates

© 2006, Cigital & KRvW Associates

Attacker’s toolkit: control flow and coverage

 Tracing input as it flows through
software is an excellent method

 Exploiting differences between
versions is also common

 Code coverage tools help you
know where you have gotten in a
program
 dyninstAPI (Maryland)
 Figure out how to get to

particular system calls
 Look for data in shared buffers

KRvW
Associates

© 2006, Cigital & KRvW Associates

Attacker’s toolkit: APISPY32

 Look for broken system
calls (at all levels in code)

 lstrcpy() makes a great
example

 On win32 systems, use
APISPY to determine which
APIs are being used by a
target program

 Interposition attacks are a
great thing to think about at
this level

KRvW
Associates

© 2006, Cigital & KRvW Associates

Attacker’s toolkit: breakpoints

 Breakpoints are central to debuggers
 Use interrupt 3 on x86 architectures

 Mark entire blocks for access
 Single step at breakpoint (also as in debugging)

 Check out “The PIT” http://www.hbgary.com

KRvW
Associates

© 2006, Cigital & KRvW Associates

Attacker’s toolkit: the buffer overflow

 Find targets with static analysis
 Change program control flow

 Heap attacks
 Stack smashing
 Trampolining

 Particular examples
 Overflow binary resource

files (used against
Netscape)

 Overflow variables and
tags (Yamaha MidiPlug)

 MIME conversion fun
(Sendmail)

 HTTP cookies (apache)

 Trampolining past a canary

Local Variable: Buffer B

Local Variable: Pointer A

Local Variable: Buffer A

Function arguments

Return Address

Canary Value

Frame Pointer

KRvW
Associates

© 2006, Cigital & KRvW Associates

Attacker’s toolkit: shell code and other payloads

 Common payloads in buffer overflow attacks
 Size matters (small is critical)
 Avoid zeros
 XOR protection (also simple crypto)

 Payloads for
 X86 (win32)
 RISC (MIPS and sparc)
 Multiplatform payloads

KRvW
Associates

© 2006, Cigital & KRvW Associates

Attacker’s toolkit: rootkits

 The apex of software exploit…complete control of
the machine

 Live in the kernel
 XP kernel rootkit in the book
 See http://www.rootkit.com

 Get into the microchips (hardware viruses)
 Hide files and directories by controlling access to

process tables
 Provide control and access over the network

KRvW
Associates

© 2006, Cigital & KRvW Associates

Attacker’s toolkit: other miscellaneous tools

 Debuggers (user-mode)
 Kernel debuggers

 SoftIce
 Fault injection tools

 Failure simulation tool
 Hailstorm
 Holodeck

 Boron tagging
 The “depends” tool
 Grammar rewriters

KRvW
Associates

© 2006, Cigital & KRvW Associates

Attack Patterns

KRvW
Associates

© 2006, Cigital & KRvW Associates

Knowledge: 48 Attack Patterns
 Make the Client Invisible
 Target Programs That Write to Privileged OS Resources
 Use a User-Supplied Configuration File to Run

Commands That Elevate Privilege
 Make Use of Configuration File Search Paths
 Direct Access to Executable Files
 Embedding Scripts within Scripts
 Leverage Executable Code in Nonexecutable Files
 Argument Injection
 Command Delimiters
 Multiple Parsers and Double Escapes
 User-Supplied Variable Passed to File System Calls
 Postfix NULL Terminator
 Postfix, Null Terminate, and Backslash
 Relative Path Traversal
 Client-Controlled Environment Variables
 User-Supplied Global Variables (DEBUG=1, PHP

Globals, and So Forth)
 Session ID, Resource ID, and Blind Trust
 Analog In-Band Switching Signals (aka “Blue Boxing”)
 Attack Pattern Fragment: Manipulating Terminal Devices
 Simple Script Injection
 Embedding Script in Nonscript Elements
 XSS in HTTP Headers
 HTTP Query Strings

 User-Controlled Filename
 Passing Local Filenames to Functions That Expect a

URL
 Meta-characters in E-mail Header
 File System Function Injection, Content Based
 Client-side Injection, Buffer Overflow
 Cause Web Server Misclassification
 Alternate Encoding the Leading Ghost Characters
 Using Slashes in Alternate Encoding
 Using Escaped Slashes in Alternate Encoding
 Unicode Encoding
 UTF-8 Encoding
 URL Encoding
 Alternative IP Addresses
 Slashes and URL Encoding Combined
 Web Logs
 Overflow Binary Resource File
 Overflow Variables and Tags
 Overflow Symbolic Links
 MIME Conversion
 HTTP Cookies
 Filter Failure through Buffer Overflow
 Buffer Overflow with Environment Variables
 Buffer Overflow in an API Call
 Buffer Overflow in Local Command-Line Utilities
 Parameter Expansion
 String Format Overflow in syslog()

KRvW
Associates

© 2006, Cigital & KRvW Associates

Attack pattern 1:
Make the client invisible

 Remove the client from the
communications loop and
talk directly to the server

 Leverage incorrect trust
model (never trust the
client)

 Example: hacking browsers
that lie

KRvW
Associates

© 2006, Cigital & KRvW Associates

Attack pattern 2:
Command delimiters

 Use off-nominal
characters to string
together multiple
commands

 Example: shell
command injection with
delimiters

<input type=hidden name=filebase
value="bleh; [command]”>

cat data_log_; rm -rf /; cat
temp.dat

exec(“cat data_log_ .dat”);

; rm –rf /; cat temp

KRvW
Associates

© 2006, Cigital & KRvW Associates

Attack pattern 3:
Cross site scripting XSS

 Attacker sends active
content to a victim

 Content invokes a script
on the vulnerable website

 Later invoked by a web
browser hitting the website

 The script runs
 Attacker allowed access

 Examples
 Javascript injection
 Inject in non-script

elements
 HTTP headers
 Query strings

KRvW
Associates

© 2006, Cigital & KRvW Associates

Breaking stuff is important

 Learning how to think like
an attacker is essential

 Do not shy away from
carrying out attacks on your
own stuff
 Engineers learn from

stories of failure
 Attacking is fun! Fun is

good!

KRvW
Associates

© 2006, Cigital & KRvW Associates

Software security touchpoints

KRvW
Associates

© 2006, Cigital & KRvW Associates

Software security touchpoints

© 2004, Cigital & KRvW Associates

KRvW
Associates

© 2006, Cigital & KRvW Associates

Software security touchpoints

KRvW
Associates

© 2006, Cigital & KRvW Associates

Adopting the touchpoints

KRvW
Associates

© 2006, Cigital & KRvW Associates

Touchpoint 1: code review (with a tool)

 Code review is a necessary evil
 Better coding practices make

the job easier
 Automated tools help catch silly

errors
 Fortify/SCA (Cigital rules)

 Implementation errors do
matter
 Buffer overflows can be

uncovered with static
analysis

 Static analysis
 C/C++
 Java
 .NET
 PSQL

 Tracing back from vulnerable
location to input is critical

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP1: Code review
OutputsActivitiesInputs

Static Code Analysis

Documentation

Code

Documentation
(optional)

! Standards

! Platform

! Language
! Framework

Architecture &

Design

Documents

T ech n ical Lead

Prior Analysis

Documents

Source File to

Module

Mappling

Static Analysis Tool

! FxCop

! Fortify

! BOON

! BLAST

Iden tify Inpu t

Po in ts, Prob lem

Symptoms &

Vu lnerab ilities

fo r Add itional

Inspection

Set Up

Selected

Tool(s)

Select Source

Files to be

Analyzed

Analysis

Criteria

Knowledge

M anagement

System

List of

Categorized
Prioritized

Risks

Run Tool(s)

Analyze Tool

Output

Identify,

Categorize &

Prioritize

Risk(s)

Run Tool(s)

Again?

YES

NO
Synthesize

Results

Updated L ist o f

Categorized

Prio r itized Risks

Knowledge

M anagement

System

Tool Output

Source

Files to

be

Analyzed

Configured

Tool(s)

Vu lnerab le

Code &

Auto Doc

Vu lnerab ility

Documentation There are many ways to
apply code review
technology

 Use a tool
 Integrate into the build

KRvW
Associates

© 2006, Cigital & KRvW Associates

Touchpoint 2: Architectural risk analysis

 To assess and understand the risks, ask questions:
 What is the likelihood of an attack?
 What does the software do to support your organization’s

mission?
 Is there a disaster recovery plan?
 What would the impact be if the software were unavailable?
 What is a tolerable down time?

 Whom should you ask?
 Software owner
 IT manager
 Key users

49

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP2: Architectural risk analysis

 Follow a process
 Build an overview

(one page)
 Three steps

 Attack
resistance
analysis

 Ambiguity
analysis

 Weakness
analysis

 Rank risks
 Build mitigations

Architectural Risk Analysis

Inputs OutputsActivities

Perform Attack

Resistance

Analysis

Perform

Ambiguity

Analysis

Perform

Underlying

Framework

Weakness

Analysis

M ap

Ap p licab le Attack

Patterns

Id en tify General

Flaws

! Non-Compliance
! Show where

guidelines are not

followed

Sh o w Risks and

Drivers in

Arch itectu re

Po n der Design

Imp lications

Un ify

Un derstand ing

! Uncover Ambiguity

! Identify
Downstream

Difficulty

(Sufficiency

Analysis)
! Unravel

Convolutions

! Uncover Poor

Traceability

F ind & Analyze

F laws in

! COTS

! Frameworks
! Network Topology

! Platform

Iden tify Services

Used By

App lication

Documents

Security

Analyst

Gen erate Separate

Arch itectu re

Diagram

Do cuments

Documents
M ap Weaknesses

to Assumptions

M ade by

App lication

Attack Patterns

Sh o w Viab ility o f

Kn o wn Attacks

Ag ain st Analogous

T ech n o log ies

Architectural Risk

Assessment

Report

Software

Flaws

Documents

Attack

Patterns

Exploit Graphs

Secure Design

Literature

Documents

Requirements
Architectural

Documents

Regulatory

Requirements/
Industry

Standards

Build One Page
Architecture Overview

External

Resources
!Mailing Lists

!Product

Documentation

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP2: Architectural risk analysis

 Designers should not do this
 Build a one page white board

design model (like that)
 Use hypothesis testing to

categorize risks
 Threat modeling/Attack

patterns
 Rank risks
 Tie to business context
 Suggest fixes
 Repeat

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP2 step: Attack resistance

 Identify general flaws
 Non-compliance
 Where guidelines are not

followed
 Map applicable attack patterns
 Identify risks in architecture
 Consider known attacks against

similar technologies

 Attack Patterns
 Pattern language
 Database of patterns
 Actual flaws from clients

 Exploit Graphs
 Ease mitigation
 Demonstrate attack paths

 Secure design

Example flaws from experience…
 Transparent authentication token generation/management
 Misuse of cryptographic primitives
 Easily subverted guard components, broken encapsulation
 Cross-language trust/privilege issues

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP2 step: Ambiguity analysis
 Consider implications of design
 Generate separate arch.

diagrams
 Unify understanding

 Uncover ambiguity
 Identify downstream

difficulty (traceability)
 Unravel convolution

 Apprenticeship model
 Use system, technology experts

 Win32 knowledge
 JVM/managed code
 Language/compiler knowledge

 Previous experience

Example flaws from experience…
 Protocol, authentication problems
 Javacard applet firewall, inner class issues, instantiation in C#
 Type safety and type confusion
 Password retrieval, fitness and strength

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP2 step: Weakness analysis

 Consider systemic flaws
 COTS
 Frameworks
 Network topology
 Platform

 Identify services
 Map weaknesses to

assumptions

 Experience base
 Assessments of COTS and

platforms
 Attack patterns
 Other resources

 Mailing lists
 Product documentation

Example flaws from experience…
 Browser and other VM sandboxing failures
 Insecure service provision: RMI, COM, etc.
 Debug (or other operational) interfaces
 Unused (but privileged) product “features”
 Interposition attacks: DLLs, library paths, client spoofing

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP2: Keep track of risks

 The key to making a process
like the one we described work
is to KEEP TRACK of what
you’ve found

 Use excel if you have nothing
better

 Cigital uses the Cigital
workbench

 Remember the RMF? Use it!

KRvW
Associates

© 2006, Cigital & KRvW Associates

Touchpoint 3: Penetration testing

 A very good idea since software is bound in
an environment

 How does the complete system work in
practice?
 Interaction with network security

mechanisms
 Firewalls
 Applied cryptography

 Penetration testing should be driven by risks
uncovered throughout the lifecycle

 Not a silver bullet!

KRvW
Associates

© 2006, Cigital & KRvW Associates

Touchpoint 4: Security testing

 Test security functionality
 Cover non-functional requirements
 Security software probing

 Risk-based testing
 Use architectural risk analysis results to drive scenario-

based testing
 Concentrate on what “you can’t do”
 Think like an attacker
 Informed red teaming

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP4: Risk-based testing

 Identify areas of potential risk in the system
 Requirements
 Design
 Architecture

 Use abuse cases to drive testing according to risk
 Build attack and exploit scenarios based on identified

risks
 Test risk conditions explicitly

 Example: Overly complex object-sharing system in Java
Card

KRvW
Associates

© 2006, Cigital & KRvW Associates

Touchpoint 5: Abuse cases

 Use cases formalize normative behavior (and assume correct
usage)

 Describing non-normative behavior is a good idea
 Prepare for abnormal behavior (attack)
 Misuse or abuse cases do this
 Uncover exceptional cases

 Leverage the fact that designers know more about their
system than potential attackers do

 Document explicitly what the software will do in the face of
illegitimate use

 Think like an attacker!

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP5: Abuse cases

 Starting with attack patterns,
requirements and use cases

 Identify anti-requirements
 Build an attack model
 Determine misuse and abuse

cases

KRvW
Associates

© 2006, Cigital & KRvW Associates

Touchpoint 6: Security requirements

 Some security functionality
maps naturally to clear
requirements
 Medical data should be

cryptographically
protected

 Strongly authenticate
users

 Meet GLBA regulatory
guidelines

 But do not forget that
security is an emergent
property of a complete
system
 An attacker needs to find

only one hole
 “Do not allow buffer

overflows” is not much of
a requirement!

 “Make it secure” is
vague

KRvW
Associates

© 2006, Cigital & KRvW Associates

Touchpoint 7: Security operations

 Use your resources!
 Network security people know an awful lot

about real attacks
 Involve knowledgeable security people in as

many touchpoint activities as possible
 Fine tune the deployed environment to the

specific needs of your application
 “Standard OS build” process is not

enough

KRvW
Associates

© 2006, Cigital & KRvW Associates

Always: External review

 Having outside eyes look at
your system is essential
 Designers and

developers naturally get
blinders on

 External just means
outside of the project

 This is knowledge
intensive

 Outside eyes make it easier
to “assume nothing”
 Find assumptions, make

them go away

 Red teaming is a weak form
of external review
 Penetration testing is too

often driven by outside
in perspective

 External review must
include architecture
analysis

 Security expertise and
experience really helps

KRvW
Associates

© 2006, Cigital & KRvW Associates

Software security touchpoints

The sweet spot

KRvW
Associates

© 2006, Cigital & KRvW Associates

Reprise

© 2004, Cigital & KRvW Associates

KRvW
Associates

© 2006, Cigital & KRvW Associates

Best practices reprise

 These best practices should
be applied throughout the
lifecycle

 Tendency is to “start right”
(penetration testing) and
declare victory
 Not cost effective
 Hard to fix problems

 Start as far to the left as
possible

 Abuse cases
 Security requirements

analysis
 Architectural risk analysis
 Risk analysis at design
 External review
 Test planning based on

risks
 Security testing (malicious

tests)
 Code review with static

analysis tools

KRvW
Associates

© 2006, Cigital & KRvW Associates

Adopting the touchpoints

KRvW
Associates

© 2006, Cigital & KRvW Associates

Seven pernicious kingdoms

KRvW
Associates

© 2006, Cigital & KRvW Associates

Outline

 Classic Pitfalls
 Seven Kingdoms
 Static Analysis and Code

Review

KRvW
Associates

© 2006, Cigital & KRvW Associates

Classic Pitfalls

© 2004, Cigital & KRvW Associates

KRvW
Associates

© 2006, Cigital & KRvW Associates

Learn from history
Those who cannot remember the past are condemned to repeat it.

-- Santayana

 Other engineering disciplines overcome failures by collecting
failure data and analyzing failures for commonalty that could
lead to avoidance of that kind of failure in the future

 Failure data in software is generally considered proprietary
 Most failure data from product development is not available

for open research

KRvW
Associates

© 2006, Cigital & KRvW Associates

Same old mistakes

 By understanding software
security risks, developers can
avoid them when writing their
own code

 Learn by considering examples
 Configuring applications
 Scripts
 Errors
 Design flaws

 Many of the same problems
crop up year after year

 Basic science to classify
and categorize these
problems has yet to be done
 Bugs: implementation
 Flaws: higher-level

KRvW
Associates

© 2006, Cigital & KRvW Associates

Seven Kingdoms

© 2004, Cigital & KRvW Associates

KRvW
Associates

© 2006, Cigital & KRvW Associates

Seven pernicious kingdoms

 Input validation and
representation

 API abuse
 Security features
 Time and state

 Error handling
 Code quality
 Encapsulation
 Environment

KRvW
Associates

© 2006, Cigital & KRvW Associates

1. Input Validation and Representation

KRvW
Associates

© 2006, Cigital & KRvW Associates

Pernicious kingdom one

 Input Validation and Representation
 Problems due to metacharacters, alternate encodings,

numeric representations, and trusting input

 Example: Buffer Overflow phylum
int main(char ** argv, int argc) {

char buf[10];

strcpy(buf, argv[1]);

}

KRvW
Associates

© 2006, Cigital & KRvW Associates

The number one coding snafu

 “Scrubbing” user input pitfalls to avoid
 SQL Insertion
 Cross-Site Scripting (XSS)
 Format string vulnerabilities
 Integer overflows
 Buffer overflows

 Not a security problem per se in Java due to strict
variable range enforcement

 Not a trivial issue, as complexity and subtlety abounds

KRvW
Associates

© 2006, Cigital & KRvW Associates

Buffer overflows

 Pervasive problem, primarily in C and other non-
type-safe (sometimes called “unmanaged”) code

 Responsible for huge percentage of reported
vulnerabilities today

 Exploited by some of the most damaging worms
 1988: Morris worm
 2001: Code Red
 Others: Slammer, Blaster, Sasser, Zotob

KRvW
Associates

© 2006, Cigital & KRvW Associates

Buffer overflow causes

 String manipulation libraries
 Flawed libc functions: strcpy, strcat, …
 Multibyte characters
 Null termination errors

 Off by one errors
 Array manipulation
 Pointer arithmetic
 Others

 Format strings
 Integer overflow

 These all relate to reliability as well as security

KRvW
Associates

© 2006, Cigital & KRvW Associates

Historic example: the Morris worm of 1988

 Cornell grad student Robert Tappan Morris’s “Internet worm”
exploited a bug in the (then) popular BSD fingerd daemon

 The vulnerable fingerd contained the following code:

char line[512];

line[0] = “\0”;

gets(line);

 512 characters should be enough, shouldn’t it?

KRvW
Associates

© 2006, Cigital & KRvW Associates

Same issue in C++

 Although the gets() function was known to be horribly flawed
for years, the same mistake was made in C++

char buf[BUFSIZE];

cin >> (buf);

 Those cows come home yet?

KRvW
Associates

© 2006, Cigital & KRvW Associates

Problematic function: strcpy()

 Although not quite as bad as gets(), it’s darn close

int main(char ** argv, int argc) {

char buf[10];

strcpy(buf, argv[1]);

}

KRvW
Associates

© 2006, Cigital & KRvW Associates

Problematic function: sprintf()

 As with the likes of strcpy(), you can use sprintf() safely, but it
isn’t easy

 Is the following good or bad? (we already know it’s ugly)

char buf[42];

sprintf(buf, “Val1=%.8s Val2=%.8s Val3=%.8s”,
val1, val2, val3);

KRvW
Associates

© 2006, Cigital & KRvW Associates

What’s the deal with the n functions?

 Although the bounded versions of string functions, like
strncpy(), are better, there’s still room for silly mistakes

 Truncation can cause odd behavior
 Example: One simple mistake is to bound the data to the src

buffer, as in this example from MSDN

int main(int argc, char *argv[]) {

…

char DirSpec[MAX_PATH + 1];

printf(“Target dir is %s.\n”, argv[1]);

strncpy(DirSpec, argv[1], strlen(argv[1])+1);

KRvW
Associates

© 2006, Cigital & KRvW Associates

Problematic function: strncat()

 Example: The strncat() function is misleading because it
doesn’t accept a bound on the total size of the destination
buffer, but rather the remaining space available in the
destination buffer

char* buf[512];

strcpy(buf, “The argument is”);

strncat(buf, argv[1], 512);

KRvW
Associates

© 2006, Cigital & KRvW Associates

Format string vulnerabilities

 Format string vulnerabilities occur when an attacker can control a format string
 Although not technically buffer overflows, they almost invariably lead to

read/writes outside a buffer’s bounds
 Including execution of arbitrary code placed on stack by the attacker

 First seen around 1999, but in its first full year resulted in many root exploits
 Wu-ftpd 2.*
 Linux rpc.statd
 Qualcomm qpopper 2.53
 Apache + PHP3
 BSD chpass
 OpenBSD fstat

KRvW
Associates

© 2006, Cigital & KRvW Associates

Format strings: root cause

 Misuse of formatting functions
 A programmer wants to print a string
 Which is correct?
printf(“%s”, string);

printf(str);

 If an attacker can control the format string, then %n can be
used to write arbitrary values anywhere in memory

 Exploits then work the same way as traditional buffer overflows
 Overwrite return address
 Function pointer
 Other important values

KRvW
Associates

© 2006, Cigital & KRvW Associates

Example: wuftpd 2.6.0

 Widely publicized format string vulnerability occurs in the vreply()
function, which looks much like this

while (fgets(buf, sizeof buf, f)){
lreply(200, buf);
…

}

void lreply(int n, char *fmt, …) {
char buf[BUFSIZ];
…
vsnprintf(buf, sizeof buf, fmt, ap);
…

}

KRvW
Associates

© 2006, Cigital & KRvW Associates

SQL insertion

 Problem can exist when Java or middle-tier code interacts with
back-end SQL-based database

 User inputs must be pedantically screened for SQL code
 White space, quotes, etc., are indicators

 Regular Expression (regex) filtering is key

KRvW
Associates

© 2006, Cigital & KRvW Associates

Problem: SQL insertion

 Can enable attacker to execute arbitrary SQL commands on back-end
database

 PHP/SQL Example:
 PHP code inputs USERNAME and PASSWORD and passes to

SQL back-end
 USERNAME is entered as bob
 PASSWORD is entered as ’ or USERNAME=‘bob
 Back-end executes Select ID from USERS where

USERNAME=‘bob’ and PASSWORD=‘’ or USERNAME=‘bob’
 Instead of Select ID from USERS where USERNAME=‘bob’ and

PASSWORD=‘password’

KRvW
Associates

© 2006, Cigital & KRvW Associates

SQL insertion - example

[1]

[2]

[1] Begin by defining the regular expression itself
[2] Compile the regex and apply it to the string in question

(Even better: use PreparedStatement)

KRvW
Associates

© 2006, Cigital & KRvW Associates

Complications in parsing input

 Lots of things can make parsing through input fields complex
 Whitelisting and blacklisting approaches

 Assume input is dangerous until it is proven to be safe
 Internationalization

 Unicode can be used to obfuscate SQL insertion, XSS, etc.
 /etc/passwd—seems easy enough to parse, right?

KRvW
Associates

© 2006, Cigital & KRvW Associates

Unicode - example

[1]

[2]

[1] Define a regex to search for unicode characters (u002f = “\”)
[2] Check for specified unicode characters in the file name

KRvW
Associates

© 2006, Cigital & KRvW Associates

Good practice: take care with config files

 Check configuration files
 Can be ripe target for attackers
 Verify read/write controls are safe
 Verify data content before acting

 User inputs
 Command line parameters and desktop icons
 URLs
 Assume it to be harmful until proven otherwise

 Consider also where other user inputs can come from
 Signals, registry keys, mouse actions, and so on…

KRvW
Associates

© 2006, Cigital & KRvW Associates

Phyla: Input validation and representation

 Buffer Overflow
 Command Injection
 Cross-Site Scripting
 Format String
 HTTP Response Splitting
 Illegal Pointer Value
 Integer Overflow
 Log Forging
 Path Traversal
 Process Control
 Resource Injection
 Setting Manipulation
 SQL Injection
 String Termination Error
 Struts: Duplicate Validation Forms

 Struts: Erroneous validate() Method
 Struts: Form Bean Does Not Extend

Validation Class
 Struts: Form Field without Validator
 Struts: Plug-in Framework Not in Use
 Struts: Unused Validation Form
 Struts: Unvalidated Action Form
 Struts: Validator Turned Off
 Struts: Validator without Form Field
 Unsafe JNI
 Unsafe Reflection
 XML Validation

KRvW
Associates

© 2006, Cigital & KRvW Associates

2. API Abuse

KRvW
Associates

© 2006, Cigital & KRvW Associates

Pernicious kingdom two

 API Abuse
 A caller fails to honor the contract between the caller and

the callee
 Dangerous function, Unchecked Return Value, and others
 Example: Often Misused: Authentication phylum

String ip = request.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
if (addr.getCanonicalHostName().endsWith(

“trustme.com”)) {
trusted = true;

}

// Relying on DNS lookup for recognizing trusted hosts

KRvW
Associates

© 2006, Cigital & KRvW Associates

Comparing Java classes

 Never make a decision based on the name of a class
 A program may treat two classes the same when they

actually differ
 Class names are trivial to forge or substitute
 At the very least, verify that the name being checked is

within the current classloader

KRvW
Associates

© 2006, Cigital & KRvW Associates

Example: readlink()

 Abuse of readlink(), which although it fills a string
buffer does not null terminate the buffer

readlink(path, buf, MAXPATH);

int length = strlen(buf);

 The value returned from strlen() is likely to be
incorrect – perhaps wildly so – and may even result
in a buffer overflow or other runtime erratic behavior

KRvW
Associates

© 2006, Cigital & KRvW Associates

Example: SYN flood

 Attacker initiates, but does not complete TCP
session opening protocol

 Victim’s TCP stack is left in a wait state
 Attacker repeats until victim’s resource pool is

saturated
 Victim is now effectively off the net – DoS
 Why would someone want to do this?

KRvW
Associates

© 2006, Cigital & KRvW Associates

Phyla: API abuse

 Dangerous Function
 Directory Restriction
 Heap Inspection
 J2EE Bad Practices: getConnection()
 J2EE Bad Practices: Sockets
 Often Misused: Authentication
 Often Misused: Exception Handling
 Often Misused: Path Manipulation
 Often Misused: Privilege Management
 Often Misused: String Manipulation
 Unchecked Return Value

KRvW
Associates

© 2006, Cigital & KRvW Associates

3. Security Features

KRvW
Associates

© 2006, Cigital & KRvW Associates

Pernicious kingdom three

 Security Features
 Poorly handled authentication, access control,

confidentiality, cryptography, and privilege management
 Insecure Randomness, Password Management, Privacy

Violation, and others
 Example: Privacy Violation phylum
id = getId();
pass = getPassword();
type = getType();
tstamp = getTimestamp();
…
dbmsLog.log(id+“:”+pass+“:”+type+“:”+tstamp);

// Private info leaking into a log file

KRvW
Associates

© 2006, Cigital & KRvW Associates

Signing JAR files

 Signing JAR files can be dangerous
 A signed JAR might be trusted more than is warranted

 But, signed JARs also can be useful
 Authentication and integrity checking

 If you must sign, put your signed classes into one JAR file, all
by themselves

KRvW
Associates

© 2006, Cigital & KRvW Associates

Storing secrets

 “Hard coding” sensitive information in source code is
dangerous
 Class file can be viewed
 Class de-compilers (e.g., jode) can expose

KRvW
Associates

© 2006, Cigital & KRvW Associates

Storing secrets - example

[1]

[1] Two strings are defined that contain sensitive
information

KRvW
Associates

© 2006, Cigital & KRvW Associates

Storing secrets – example (cont'd)

[2]

[2] Using a decompiler, the values of both strings can
be retrieved from a compiled .class file

KRvW
Associates

© 2006, Cigital & KRvW Associates

Privilege handling

 Don’t forget the principle of least privilege
 Avoid privileged code if at all possible

 Tips
 Design things so that program does not need privileges
 Develop code without privileges enabled

 Did you know?
 90% of Windows software can’t be installed without

Administrator privileges
 70% can’t be run without Administrator privileges
 10,000 lemmings can’t be wrong!

KRvW
Associates

© 2006, Cigital & KRvW Associates

Why privileges are needed

 Interact directly with hardware
 Other shared resources

 Network ports, config, registry
 Alter OS behavior
 Override file system protections

 Install new files
 Update protected files
 Access files that belong to other users

KRvW
Associates

© 2006, Cigital & KRvW Associates

Case study: lpr

 Redhat lpr (Oct 1999)
 Setuid root in order to talk to printer device

int fd;

for (int i=1; i < argc; i++) {

/* first make sure that the user can read the
file, then open it */

if (!access(argv[i], O_RDONLY)) {

fd = open(argv[i], O_RDONLY);

}
print(fd);

}

KRvW
Associates

© 2006, Cigital & KRvW Associates

Case study: lpr

 File access race condition! Fix:
int fd;

for (int i=1; i < argc; i++) {

int uid = getuid(); int gid = getgid();

int original_euid = geteuid();

int original_egid = getegid();

seteuid(uid); setegid(gid);

fd = open(argv[i], O_RDONLY);
seteuid(original_euid);

setegid(original_egid);

}

print(fd);

KRvW
Associates

© 2006, Cigital & KRvW Associates

Case study: lpr

 Do you think that it’s fixed now?
 No! seteuid() return value ignored
 No one expects seteuid() to fail since we’re root

 POSIX capabilities vulnerability (June 2000)
 Attackers can cause seteuid() call to fail

 Not so simple, is it?

KRvW
Associates

© 2006, Cigital & KRvW Associates

When are random numbers needed?

 Some numbers need to be cryptographically secure
 Crypto applications
 Generated passwords
 Port randomization
 External unique identifiers such as session tokens
 Discount codes

 Some do not
 Monte Carlo simulation systems
 Internal unique identifiers

KRvW
Associates

© 2006, Cigital & KRvW Associates

Example: Security depends on unpredictability

 The following code generates “unique” identifiers for online users who
make a purchase. Because lrand48() is a statistical PRNG, it is easy
for an attacker to predict

char* CreateReceiptURL() {
int num; time_t t1;
char *URL = (char*) malloc(MAX_URL);
if (URL) {

(void) time(&t1);
srand48((long) t1)
sprintf(URL, “%s%d%s, http://test.com,

lrand48(), “.html”);
}
return URL; }

KRvW
Associates

© 2006, Cigital & KRvW Associates

Choosing a PRNG

 Hardware can be good, if available
 OS may provide good random sources

 /dev/urandom is almost always the right choice for user apps
 /dev/random blocks and my be exhausted since shared

 Current state of the art
 Fortuna (described in Schneier’s Practical Cryptography)
 Implementations

 Win C++ (http://www.citadelsoftware.ca/fortuna/Fortuna.htm)
 Linux /dev/urandom driver (http://jlcooke.ca/random)

 Freebie in Microsoft-friendly code
 CryptoGenRandom()

KRvW
Associates

© 2006, Cigital & KRvW Associates

Phyla: Security features

 Insecure Randomness
 Least Privilege Violation
 Missing Access Control
 Password Management
 Password Management: Empty Password in Configuration File
 Password Management: Hard-Coded Password
 Password Management: Password in Configuration File
 Password Management: Weak Cryptography
 Privacy Violation

KRvW
Associates

© 2006, Cigital & KRvW Associates

4. Time and State

KRvW
Associates

© 2006, Cigital & KRvW Associates

Pernicious kingdom four

 Time and State
 Unexpected interactions between threads, processes, time,

and information that happen through shared state:
semaphores, variables, file system, etc.

 File Access Race Condition TOCTOU, Deadlock, and
others

 Example: Session Fixation phylum
private void auth(LoginContext lc,
HttpSession session)

throws LoginException {
…
lc.login();
…

}

// No call to session.invalidate()

KRvW
Associates

© 2006, Cigital & KRvW Associates

RISK: Race condition

 Time makes all the difference
 Atomic operations that are not atomic

Attack

KRvW
Associates

© 2006, Cigital & KRvW Associates

A simple (broken) Java servlet

import java.io.*;
import java.servlet.*;
import java.servlet.http.*;
public class Counter extends HttpServlet{
 int count = 0;
 public void doGet(HttpServletRequest in, HttpServletResponse out)
 throws ServletException, IOException {
 out.setContentType("text/plain");
 Printwriter p = out.getWriter();
 count++;
 p.println(count + " hits so far!");
 }
}

Race condition

KRvW
Associates

© 2006, Cigital & KRvW Associates

A simple (fixed) Java servlet

import java.io.*;
import java.servlet.*;
import java.servlet.http.*;
public class Counter extends HttpServlet{
 int count = 0;
 public synchronized void
 doGet(HttpServletRequest in, HttpServletResponse out)
 throws ServletException, IOException {
 out.setContentType("text/plain");
 Printwriter p = out.getWriter();
 count++;
 p.println(count + " hits so far!");
 }
}

KRvW
Associates

© 2006, Cigital & KRvW Associates

TOCTOU

 Race conditions on Unix files are
famous

 Passwd example
 Step 1: open file and read it in
 Step 2: create and open “ptmp”

in same directory
 Step 3: open password file

again, copying unchanged
contents into ptmp while
updating

 Step 4: Close both password
file and ptmp, then name ptmp
the password file

 If an attacker makes use of
unix’s linking facility, an attack
is possible

 Change the system state in a
subtle way in order to cause
the system to do something
dangerous

KRvW
Associates

© 2006, Cigital & KRvW Associates

Threads (J2EE)

 Thread management in a web application is prohibited by the
J2EE standard

 Difficult and likely to produce unpredictable results such as
deadlocks, race conditions and other synchronization errors

 Rather than managing threads directly, use standards such as
message driven beans and EJB timer service provided by the
container

KRvW
Associates

© 2006, Cigital & KRvW Associates

Good practice: watch out for web content

 Web data
 Watch out for data in hidden fields
 Even though it is within page, user can still alter

 Web cookies
 Can also be manipulated by user
 Classic example: changing customer ID or shopping cart price

totals
 State data must be protected

 Encryption is commonly used
 Verify that no data has been tampered with

KRvW
Associates

© 2006, Cigital & KRvW Associates

Serialization

 Largely fixed in latest JDK versions
 Previous default allowed serialization
 New default requires class to implement Serializable

interface
 When serialized, an object is written to disk directly, including

internal memory
 If you must make something serializable, declare private data

transient

KRvW
Associates

© 2006, Cigital & KRvW Associates

Serialization - example

[1]

[2]

[1] A serializable class that defines two private strings
[2] Output of the serialized class when read by a simple

text editor (note that the transient string is not
displayed)

KRvW
Associates

© 2006, Cigital & KRvW Associates

Phyla: Time and state

 Deadlock
 Failure to Begin a New Session upon Authentication
 File Access Race Condition: TOCTOU
 Insecure Temporary File
 J2EE Bad Practices: System.exit()
 J2EE Bad Practices: Threads
 Signal Handling Race Conditions

KRvW
Associates

© 2006, Cigital & KRvW Associates

5. Error Handling

KRvW
Associates

© 2006, Cigital & KRvW Associates

Pernicious kingdom five

 Error handling
 Both poor error handling and generation of errors that

either leak information or are difficult to handle
 Empty Catch Block, Overly-Broad Catch Block, and others
 Example: Empty Catch Block phylum

try {
attempToDoSomethingImportant();

}
catch (ImportantException e) {

}
// How should this exception be handled?

KRvW
Associates

© 2006, Cigital & KRvW Associates

Error handling: the problem

 Ignoring exceptional conditions and their ramifications
 A symptom: failure to think about what could go wrong
 An outcome: leads to inconsistent and unexpected program

state
 Unchecked return values
 Exception handling
 Signal handling

KRvW
Associates

© 2006, Cigital & KRvW Associates

Legacy problems

 Many standards to choose from
 fork() – 0 == success
 strtol() – 0 == failure
 strcmp() – 0 == true
 issetugid() – 0 == false
 fork() -- >0 == success

 And this doesn’t even address multithreaded apps

 Always check those reference manuals before assuming!

KRvW
Associates

© 2006, Cigital & KRvW Associates

Allocation problems

 Failure to check for memory allocation failure
buf = (char*) malloc(req_size);

strncpy(buf, xfer, req_size);

 What could go wrong?

 Bad for at least three reasons
 No opportunity to recover
 Impossible to exit gracefully
 No opportunity of collecting diagnostic information

KRvW
Associates

© 2006, Cigital & KRvW Associates

Missing error handling (J2EE)

 Un-handled exceptions can provide an attacker with potentially
dangerous information, such as an SQL query string, the type
of database being used, or application version numbers

 Web applications should always specify default error pages
and handle standard HTTP error codes

KRvW
Associates

© 2006, Cigital & KRvW Associates

Missing error handling - example

Include the following entries in the web.xml file to specify
default error pages...

<error-page>
<exception-type>java.lang.Throwable</exception-type>
<location>/error.jsp</location>

</error-page>
<error-page>

<error-code>404</error-code>
<location>/error.jsp</location>

</error-page>
<error-page>

<error-code>500</error-code>
<location>/error.jsp</location>

</error-page>

KRvW
Associates

© 2006, Cigital & KRvW Associates

Phyla: Error handling

 Catch NullPointerException
 Empty Catch Block
 Overly Broad Catch Block
 Overly Broad Throws Declaration
 Unchecked Return Value

KRvW
Associates

© 2006, Cigital & KRvW Associates

6. Code Quality

KRvW
Associates

© 2006, Cigital & KRvW Associates

Pernicious kingdom six
 Code Quality

 Poor code quality indicates security problems likely
 Memory Leak, Null Dereference, Uninitialized Variable, and

others
 Example: Attribute Stored in HttpSession Might Not Be

Serializable phylum

public class MyAttribute {
 …
}

public void add (HttpSession s, MyAttribute a) {
 session.setAttribute(“attribute”, a);
}

// Not Serializable

KRvW
Associates

© 2006, Cigital & KRvW Associates

Code quality issues

 All have the potential to allow denial of service attacks
 More often leads to unpredictable behavior

 Exceedingly difficult to test for
 Read “The Bug” by Ellen Ullman

 Unpredictable behavior is the friend of the attacker

KRvW
Associates

© 2006, Cigital & KRvW Associates

Example: memory leak

 Find easy cases with tools like Purify
 Hard cases can be dynamic flow driven and really tough to find
 Common causes: error conditions, confusion over responsibility

char* getBlock(int fd) {
char* buf = (char*(malloc(BLOCK_SIZE);
if (!buf) {

return NULL;
}
if (read(fd, buf, BLOCK_SIZE) != BLOCK_SIZE) {

return NULL;
}

}
return buf;

KRvW
Associates

© 2006, Cigital & KRvW Associates

Example: use after free

char* ptr = (char*) malloc(SIZM);
…

if (err) {
abrt = 1;

free(ptr);
}

…
if (abrt) {

logError(“operation aborted before commit”, ptr);
}

 And sometimes it works!
 Memory may be re-allocated by the time the error is logged

KRvW
Associates

© 2006, Cigital & KRvW Associates

Example: double free

 Most often causes a crash, but can result in buffer overflow
under rare circumstances

char* ptr = (char*) malloc(SIZM);

…

if (abrt) [

free(ptr);

}

…

free(ptr);

KRvW
Associates

© 2006, Cigital & KRvW Associates

Portability problems

 Internal buffer overflows in some implementations of getopt()
 Avoid with good input validation

 In many cases, you cannot avoid problems
 Examples

 vfork() behavior varies by platform
 strcmpi() is not defined on many UNIX systems
 memmem() problematic due to changes between versions

whereby order of the arguments is reversed

KRvW
Associates

© 2006, Cigital & KRvW Associates

Returning mutable objects

 Mutable objects are references to specific locations in memory
 The most common example is an array

 Returning a mutable object to malicious code enables an
attacker to modify the contents of memory pointed to by the
object

KRvW
Associates

© 2006, Cigital & KRvW Associates

Returning mutable objects - example

[1] Store a reference to a mutable array in a local context
[2] Modify the original array by changing the local array

[1]

[2]

KRvW
Associates

© 2006, Cigital & KRvW Associates

Storing mutable objects

 In a similar way as returning mutable objects, storing mutable
objects passed to your code can lead to problems
 Especially if you act on the returned object(s)

 See example—MutableStorage

KRvW
Associates

© 2006, Cigital & KRvW Associates

Public static final mutable objects

 Public static final mutable objects can still be modified,
because only the reference to the object is constant

KRvW
Associates

© 2006, Cigital & KRvW Associates

Java Initialization

 Java is supposed to initialize new variables cleanly, but it’s still
good practice to do so manually
 Apart from anything else, this is just a good housekeeping

KRvW
Associates

© 2006, Cigital & KRvW Associates

Phyla: Code quality

 Double Free
 Inconsistent Implementations
 Memory Leak
 Null Dereference
 Obsolete
 Undefined Behavior
 Uninitialized Variable
 Unreleased Resource
 Use After Free

KRvW
Associates

© 2006, Cigital & KRvW Associates

7. Encapsulation

KRvW
Associates

© 2006, Cigital & KRvW Associates

Pernicious kingdom seven

 Encapsulation
 Violation of boundaries between software components with

various trust level
 System Information Leak, Trust Boundary Violation, Mobile

Code: Non-Final Public Field, and others
 Example: Field Assignment in a Servlet phylum

MyServlet extends HttpServlet {
 private User user = new User();
 …
 void getInfo(HttpServletRequest req) {
 Session s = req.getSession();
 user.userId = s.getAttribute(“id”);
 }
}

// Shared field

KRvW
Associates

© 2006, Cigital & KRvW Associates

Public fields

 Public fields can be accessed by all classes
 Declare private and provide get/set methods unless they must

be public
 If you absolute have to use a public field, be sure to make it

final

KRvW
Associates

© 2006, Cigital & KRvW Associates

Public fields - example
Not a good idea...

A better idea...

KRvW
Associates

© 2006, Cigital & KRvW Associates

Public methods

 Similarly, make sure that your methods are explicitly made
private

 Prevents interface from being maliciously accessed
 E.g., providing tainted data

 If a method must be made public, be sure to document the
reason

 See example – MethodAccess

KRvW
Associates

© 2006, Cigital & KRvW Associates

Public methods - example

[1]

[1] Be sure that methods are made private unless they must be
public, otherwise they can be invoked by any class

KRvW
Associates

© 2006, Cigital & KRvW Associates

Public static modifier

 Public static fields and methods can be accessed by other
classes even if they don’t instantiate

KRvW
Associates

© 2006, Cigital & KRvW Associates

Public static modifier - example

[1]

[2]

[1] The Widget.height field is defined as public static
[2] Any class is now able to access/modify the height field

without instantiating the Widget class

KRvW
Associates

© 2006, Cigital & KRvW Associates

Package scope

 Any class within a package can access the public and
protected variables within other classes in the same package

 Thus, if you don’t want to provide access to something, make it
private explicitly

KRvW
Associates

© 2006, Cigital & KRvW Associates

Package scope - example

[1]

[1] The height field is accessible to any class that declares
itself part of the somepackage package

KRvW
Associates

© 2006, Cigital & KRvW Associates

Inner classes

 The manner in which JVMs compile inner classes opens up a
loophole that enables an attacker to access private members
of the outer class

 Entails making creative use of the Reflection API
 See example – InnerClasses

KRvW
Associates

© 2006, Cigital & KRvW Associates

Inner classes - example

[1]

[2]

[1] A private integer field is defined in the outer class
[2] The inner class accesses the private field in the outer class

(the Java compiler must create a loophole to allow this)

KRvW
Associates

© 2006, Cigital & KRvW Associates

Inner classes – example (cont'd)

[3]

[3] The Java compiler creates a method called access$000
that can be called using Reflection to obtain the value
of the private field

KRvW
Associates

© 2006, Cigital & KRvW Associates

Finalization

 If methods and classes aren't made final, they can be
extended in unforeseen ways and may enable an attacker to
access or alter otherwise protected objects and information

KRvW
Associates

© 2006, Cigital & KRvW Associates

Finalization - example
[1]

[1] Define classes to be final whenever possible to prevent
them from being extended in unforseen ways

KRvW
Associates

© 2006, Cigital & KRvW Associates

Cloning

 If an object can be cloned, an attacker may be able to bypass
its constructor, which could lead to disclosing uninitialized
memory space

 If an object must implement the Cloneable interface, make
sure to provide an explicit final clone() method as early in the
inheritance hierarchy as possible

KRvW
Associates

© 2006, Cigital & KRvW Associates

Cloning - example

[1]

[1] To prevent cloning, override the clone() method and
throw a java.lang.CloneNotSupportedException

KRvW
Associates

© 2006, Cigital & KRvW Associates

Phyla: Encapsulation

 Comparing Classes by Name
 Data Leaking Between Users
 Leftover Debug Code
 Mobile Code: Object Hijack
 Mobile Code: Use of Inner Class
 Mobile Code: Non-Final Public Field
 Private Array-Typed Field Returned from a Public Method
 Public Data Assigned to Private Array-Typed Field
 System Information Leak
 Trust Boundary Violation

KRvW
Associates

© 2006, Cigital & KRvW Associates

*. Environment

KRvW
Associates

© 2006, Cigital & KRvW Associates

Bonus pernicious kingdom

 Environment
 Everything that is outside of source code but is still critical

to security
 ASP .NET Misconfiguration: Password in Configuration

File, Insecure Compiler Optimization, and others
 Example: ASP .NET Misconfiguration: Creating Debug

Binary phylum

<configuration>
<compilation debug=“true”>

...
</compilation>
...

</configuration>

// Debug binary

KRvW
Associates

© 2006, Cigital & KRvW Associates

CLASSPATH

 Modifying the CLASSPATH environment variable is the
equivalent of modifying a Windows/Unix PATH
 An attacker can construct classes with “value added”

features that perform malicious acts
 Classic example is theft of username/password
 Involves duping a user into running attacker's code

KRvW
Associates

© 2006, Cigital & KRvW Associates

Weak access permissions (J2EE)

 EJB method permissions should never grant access to the
ANYONE role

 Indicates that access control for an application has not been
carefully thought through

 Method permissions should always be restricted to the
minimum set of roles that should be granted access

KRvW
Associates

© 2006, Cigital & KRvW Associates

Weak access permissions - example
The following example illustrates the improper use of
method access controls...

<ejb-jar>
...
<assembly-descriptor>

<method-permission>
<role-name>ANYONE</role-name>
<method>

<ejb-name>SomeBean</ejb-name>
<method-name>someMethod</method-name>

</method-permission>
</assembly-descriptor>
...

</ejb-jar>

KRvW
Associates

© 2006, Cigital & KRvW Associates

Phyla: Environment

 ASP .NET Misconfiguration: Creating Debug Binary
 ASP .NET Misconfiguration: Missing Custom Error

Handling
 ASP .NET Misconfiguration: Password in Configuration

File
 Insecure Compiler Optimization
 J2EE Misconfiguration: Insecure Transport
 J2EE Misconfiguration: Insufficient Session-ID Length
 J2EE Misconfiguration: Missing Error Handling
 J2EE Misconfiguration: Unsafe Bean Declaration
 J2EE Misconfiguration: Weak Access Permissions

KRvW
Associates

© 2006, Cigital & KRvW Associates

Static Analysis and Code Review

© 2004, Cigital & KRvW Associates

KRvW
Associates

© 2006, Cigital & KRvW Associates

Software Security Flaws

Malformed

Input

16%
Resource

Leaks

6%

Format

Bugs

6%

Buffer

Overflows

19%

Access

16%

Pathnames

10%

Symbolic

Links

11%

Other

16%

[Evans & Larochelle, IEEE Software, Jan 2002]

Reported flaws in
Common Vulnerabilities
and Exposures Database,
Jan-Sep 2001.

56 % of CVE
vulnerabilities
could have been
detected with
straightforward
static analyses!

KRvW
Associates

© 2006, Cigital & KRvW Associates

Touchpoint: code review (with a tool)

 Code review is a necessary evil
 Better coding practices make

the job easier
 Automated tools help catch silly

errors
 Fortify/SCA (Cigital rules)

 Implementation errors do
matter
 Buffer overflows can be

uncovered with static
analysis

 Static analysis
 C/C++
 Java
 .NET
 PSQL

 Tracing back from vulnerable
location to input is critical

KRvW
Associates

© 2006, Cigital & KRvW Associates

Code scanning tools
 Early static analysis tools (tokenizers)

 ITS4
 RATS
 Flawfinder

 Modern tools (parsers)
 Prefix
 Fortify source code analysis suite
 Ounce labs
 Coverity

 The key is encapsulated know-how

KRvW
Associates

© 2006, Cigital & KRvW Associates

Bug space coverage and early tools

KRvW
Associates

© 2006, Cigital & KRvW Associates

Fortify Source Code Analysis

 Integrated data flow analysis
 Broad platform support
 A comprehensive set of secure

coding rules
 Capability to add your own

rules
 Proven large scale deployability

Commercially viable, accurate and effective analysis

KRvW
Associates

© 2006, Cigital & KRvW Associates

Audit Workbench

Analysis Engine

Semantic
Global Data Flow
Control Flow
Configuration

Software Security
Manager

Rules Builder

Front-End

Java
C/C++
C#
JSP
PLSQL
XML

NST

Pre-PackagedCustom

3rd party IDE plug-ins

Secure Coding Rules

Fortify architecture

KRvW
Associates

© 2006, Cigital & KRvW Associates

Comprehensive secure coding rules

 Secure coding rulepacks based on the seven kingdoms
 Continuously updating and improving rulepacks
 Fortify Rules Builder allows you to further extend rulepacks to

meet individualized needs
 Advanced context sensitive guidance inside in the IDE
 Intellectual property based on ten years of Cigital work

 see vulncat.fortifysoftware.com

The single largest compilation of secure coding
techniques and guidance ever written

KRvW
Associates

© 2006, Cigital & KRvW Associates

Next steps

© 2004, Cigital & KRvW Associates

KRvW
Associates

© 2006, Cigital & KRvW Associates

Software security critical lessons

 Software security is more than a set of security functions
 Not magic crypto fairy dust
 Not silver-bullet security mechanisms
 Not application of very simple tools

 Non-functional aspects of design are essential
 Security is an emergent property of the entire system (just like

quality)
 Breaking stuff is important
 To end up with secure software, deep integration with the

SDLC is necessary

KRvW
Associates

© 2006, Cigital & KRvW Associates

Bottom up software security actions
 A few relatively simple things can make a tangible difference

and can help you get started with software security

 Build checklists and use them
 Sun’s SAG checklist

http://www.securecoding.org/companion/checklists/SAG/
 Begin to develop a resource set (e.g., portal)
 Start small with simple architectural risk analyses (think

Smurfware)
 Don’t forget to include business-case justifications
 Use code scanning tools

KRvW
Associates

© 2006, Cigital & KRvW Associates

Top down software security actions

 Think of the problem as an evolutionary approach
 Chart out a strategic course of action to get where you want to

be
 Have a gap analysis performed
 Make achievable, realistic milestones
 Think about metrics for success

 Use outside help if you need it (Cigital)

KRvW
Associates

© 2006, Cigital & KRvW Associates

IEEE Security & Privacy Magazine

 Monthly Department on Software
Security Best Practices called
“Building Security In”

http://www.computer.http://www.computer.org/securityorg/security/bsisub/bsisub

KRvW
Associates

© 2006, Cigital & KRvW Associates

For more

 See the Addison-Wesley
Software Security series

 Send e-mail: gem@cigital.com
Ken@KRvW.com

 http://www.cigital.com

 http://www.krvw.com

“So now, when we face a choice between
adding features and resolving security issues,

we need to choose security.”
-Bill Gates

