
© 2010 Carnegie Mellon University

Introduction to the Team
Software Process

James Over
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

2
Team Software Process

© 2010 Carnegie Mellon University

Tutorial Objectives

This tutorial answers the following questions:
•  What is the Team Software Process?

•  What does the Team Software Process do?

•  How does the Team Software Process work?

•  How do the Team Software Process and CMMI relate?

•  What is the experience with the Team Software Process ?

•  How do you introduce the Team Software Process ?

3
Team Software Process

© 2010 Carnegie Mellon University

Agenda

When • Topics

9:00 – Break • Case study: a project in trouble
• Team Software Process and its implementation strategy
• TSP concepts

Break – Lunch • Why projects fail
• Case study: launching the project

Lunch – Break • Case study: launching the project (continued)

Break – 5:30 • Case study: team-working framework
• Corporate experience with TSP
• TSP and CMMI
• Building internal support for TSP

4
Team Software Process

© 2010 Carnegie Mellon University

The Project

Management was under great pressure to put out a new version
of their primary software product.

Marketing was demanding a release within 9 months.

The development staff thought this was impossible.

A previous project with similar scope and resources took two
years to complete.

You’ve been asked to lead the project. What would you do?

Day 1

5
Team Software Process

© 2010 Carnegie Mellon University

Your Choices

What do you think of the schedule?
•  Whose date is 9 months?
•  How does this compare with prior projects?
•  Do you agree?

What are your choices?
•  Accept the 9 month schedule.
•  Complain and then accept it.
•  Say you will do it, but not in 9 months.
•  Update your resume.

The way you answer will determine whether the project succeeds or fails.

6
Team Software Process

© 2010 Carnegie Mellon University

High Profile, High Risk Projects

Discussion topic
•  You’ve been asked to lead the project.

•  What would you do?

  10 minutes

7
Team Software Process

© 2010 Carnegie Mellon University

The Project

The proposed schedule for the project was impossible.

Tom, the newly appointed manager of the project, and
Bob, a software architect, were frustrated by
management’s

•  unreasonable schedule demands.

•  lack of concern for software quality.

They decided to investigate potential solutions,
including the TSP.

Day 2

8
Team Software Process

© 2010 Carnegie Mellon University

Team Software Process (TSP)

TSP is a process that is specifically designed for
software teams.

It’s purpose is to build high-performance teams and
help them

•  plan their work

•  negotiate their commitments with management

•  manage and track projects to a successful conclusion

•  produce quality products in less time

•  achieve their best performance without the “death
march” ending

9
Team Software Process

© 2010 Carnegie Mellon University

Reliable Estimates

From a study of fifteen projects in four
organizations at all maturity level
except ML4.

TSP improved effort and schedule
predictability on every project.

Schedule Performance

Study baseline +27% to +112%

TSP -8% to +20%

Effort (Cost) Performance

Study baseline +17% to +85%

TSP -25% to +25%

Source: CMU/SEI-TR-2000-015

10
Team Software Process

© 2010 Carnegie Mellon University

Reliable Products

From a study of 20 projects in 13
organizations at all maturity levels.

TSP teams averaged 0.06 defects
per thousand lines of new or modified
code.

Approximately 1/3 of these projects
were defect-free.

These results are substantially better
than those achieved in high maturity
organizations.

Source: CMU/SEI-2003-TR-014

11
Team Software Process

© 2010 Carnegie Mellon University

TSP Impact and Performance Results

Performance
Category Mean Min. Max. # Data Points

Effort estimation error 5% -24% 25% 21
Schedule estimation error 6% -20% 27% 21
System test effort** 4% 2% 7% 21
Cost of quality 17% 4% 38% 21
Product quality* 0.06 0.0 0.2 21

*Post-release defects reported thousand new or modified lines of code

**System test effort as a percentage of total development effort

Source: Davis, N.; & Mullaney, J. The Team Software Process in Practice: A Summary of Results (CMU/SEI-2003-TR-014)

12
Team Software Process

© 2010 Carnegie Mellon University

TSP Implementation Strategy

TSP is implemented project-by-project.

•  Select two or three teams.

•  Train top-down, starting with senior
managers, then project managers, then
team members.

•  When the managers and team are
trained, conduct a TSP Launch to kick-
off each project.

•  Evaluate and fine tune the approach.

•  Repeat this cycle increasing scope at a
sustainable pace.

Select the
team(s)

Train
managers

and
developers

Launch and
coach

Refine and
evaluate the

approach

Repeat

13
Team Software Process

© 2010 Carnegie Mellon University

TSP Product Suite: Process, Training, Tools

Process Notebook
•  Process scripts

•  Forms

•  Guidelines and standards

•  Role descriptions

Training and Textbooks
•  Executives

•  Project Managers

•  Engineering

•  TSP Coach

•  TSP Trainer

Tools
•  TSP Workbook

•  PSP Workbook

•  Coach/Trainer Workbook

14
Team Software Process

© 2010 Carnegie Mellon University

The Project Timeline Using TSP

Bob and Tom thought that the TSP’s project-
focused, rapid deployment strategy would be a
perfect fit for the high-risk project.

They constructed this timeline and convinced the
head of QA to fund the training and support.

Task Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Training

TSP Executive Strategy Seminar ♦

Leading Development Teams ♦

PSP Fundamentals ♦

Product Development

Launches and Re-Launches ♦ ♦ ♦

Postmortems ♦ ♦ ♦

15
Team Software Process

© 2010 Carnegie Mellon University

TSP Training

TSP Executive Strategy Seminar
• Building a “winning” organization
• Managing with facts and data
• One-day course

Leading a Development Team
• Building self-directed teams
• Motivating and leading self-directed teams
• Three-day course

PSP for Software Developers
• Using a defined and measured personal process
• Personal planning and tracking
• Personal quality management and design
• Five-day course

16
Team Software Process

© 2010 Carnegie Mellon University

The Training Problem

The cost of training is known; the cost of not training is often
ignored.

TSP changes the way managers and developers work, without
proper training, managers and developers won’t understand
TSP.

Without understanding they will continue to work as they
always have with the same result.

17
Team Software Process

© 2010 Carnegie Mellon University

TSP Concepts

Managing self-directed teams

Using processes and measures in engineering/creative work

Quality management

18
Team Software Process

© 2010 Carnegie Mellon University

Management Styles

The principal management styles have been:

Knowledge management
People as individuals. The
knowledge worker knows the
best way to get the work done.
Management motivates, leads,
and coaches.

Body Management
People as oxen that must
be driven, directed, and
motivated through fear.

Task Management
People as machines.
Management knows the
best way to get the work
done. The workers follow.

Frederick Taylor Peter Drucker

19
Team Software Process

© 2010 Carnegie Mellon University

Knowledge Work

“The key rule in managing knowledge work
is this: managers can’t manage it, the
workers must manage themselves.”
Software development is knowledge work.

To manage software work, developers must
•  be motivated

•  make accurate plans

•  negotiate commitments

•  track their plans

•  manage quality

How is this accomplished?

Watts Humphrey,
creator of TSP

20
Team Software Process

© 2010 Carnegie Mellon University

TSP Self-directed Team Management Style

Traditional team
The leader plans, directs, and
tracks the team’s work.

TM TM TM TM

TL

TM TM TM TM

Self-directed team
The team members participate in
planning, managing, and tracking their
own work.

TM

TM TM

TL

TM

TSP
Coach

TM TM

TM TM

21
Team Software Process

© 2010 Carnegie Mellon University

The Project Manager or Team Leader’s Role

The team leader’s job on a TSP team is to
•  guide and motivate the team in doing its work

•  take the time to reach full consensus on all important issues

•  ensure that the team establishes high standards for the work

•  provide management support to the team

•  support the team with management

•  protect the team so that it can concentrate on the project

22
Team Software Process

© 2010 Carnegie Mellon University

The TSP Coaching Role

The coach

•  trains and facilitates the adoption of TSP

•  works with the team leader to build the team

•  observer that guides the team

Team Leader vs. Coach

The team leader’s job is to use the
team to build the product.

The coaches job is to use the project
to build the team.

Tiger Woods and his former coach, Hank Haney.

23
Team Software Process

© 2010 Carnegie Mellon University

TSP Concepts

Managing self-directed teams

Using processes and measures in engineering/creative work

Quality management

24
Team Software Process

© 2010 Carnegie Mellon University

Learning to Develop Software

In universities,
•  the emphasis is on technical knowledge and individual

performance.
•  evaluation emphasizes code that runs, not how the student got

there.
•  the prevailing ethic is to code quickly and fix the problems in test.

In industry, team-working skills are also needed.

TSP uses the Personal Software Process to build these skills.
•  planning and tracking the work
•  measuring and managing quality
•  anticipating and correcting problems

25
Team Software Process

© 2010 Carnegie Mellon University

PSP Learning Stages

Developers write one or more programs at each PSP level

PSP0
• Current process
• Basic measures

PSP1
• Size estimating

• Test report

PSP2
• Code reviews

• Design reviews

 Team Software
Process

• Teambuilding
• Risk management

• Project planning and tracking

PSP2.1
 Design templates

PSP1.1
• Task planning

•  Schedule planning

PSP0.1
• Coding standard

• Process improvement proposal
• Size measurement

Introduces process discipline
and measurement

Introduces estimating and
planning

Introduces quality
management and design

26
Team Software Process

© 2010 Carnegie Mellon University

Using A Defined Process

The PSP process is like the TSP
implementation phase, but without
inspections, component release, and the
implementation phase postmortem.

Developers learn the PSP by writing small
programs and measuring the result.

They convince themselves of the benefits
and also learn how to apply the concepts to
their own work.

Implementation Phase
Component Plan

Detailed Design (DLD)

DLD Inspection

Code Review

Implementation Postmortem

DLD Review

Code

Compile

Code Inspection

Unit Test

Component Release

Component Postmortem

Component

Requirements

27
Team Software Process

© 2010 Carnegie Mellon University

The TSP/PSP Measurement Framework

Four direct measures apply to all
processes and products.

•  Estimates made during planning

•  Directly measured by team members
while working

The data are used to track project
status and to analyze and improve
performance.

Benefit – direct measures, integrated
into a measurement framework,
provide flexibility. Size

Schedule

Quality

Effort

Source: CMU/SEI-92-TR-019

28
Team Software Process

© 2010 Carnegie Mellon University

Schedule

Schedule is the most commonly used project measure.

Schedule accuracy depends on granularity.

TSP schedule granularity is in hours, not days, weeks, or
months.

29
Team Software Process

© 2010 Carnegie Mellon University

Size

Size is a measure of the magnitude of the
deliverable, e.g. lines of code or function points,
pages.

TSP size measures are selected based on their
correlation with time.

TSP also uses size data to

•  normalize other measures

•  track progress

30
Team Software Process

© 2010 Carnegie Mellon University

Time

Time is a measure of time on task.

The TSP time measure is task hours,
i.e. the time spent on a project task,
minus interruption time.

TSP team members record their time
as they work, not at the end of the
day, week, or month.

31
Team Software Process

© 2010 Carnegie Mellon University

Defects

Defects are the measure of quality in the TSP.

Any change to an interim or final work product, made
to ensure proper design, implementation, test, use,
or maintenance, is a defect in the TSP.

Defects are logged as they
are found and fixed.

Defect tracking takes place
throughout the process.

32
Team Software Process

© 2010 Carnegie Mellon University

What the Direct Measures Provide

Management measures derived from the base measures are used by
the team to manage the project and manage quality.

Project management measures: earned value, productivity ,
estimation accuracy, estimation size and effort prediction intervals, cost
performance index, time in phase distributions, …

Quality management measures: defects injected and removed in
each process phase, defect density, defect injection and removal rates,
process yield, phase yield, review and inspection rates, cost of quality,
percent defect free, quality profiles, quality profile index, …

33
Team Software Process

© 2010 Carnegie Mellon University

PSP Improves Estimating Accuracy -1

11
10
9
8
7
6
5
4
3
2
1
0

0.2

0.3

0.4

0.5

0.6

0.7

Mean Time Misestimation

PSP Level Average

Effort Estimation Accuracy Trend

Program Number
Es
tim

at
ed

 M
in

ut
es

 -
Ac

tu
al

 M
in

ut
es

 /
 E

st
im

at
ed

 M
in

ut
es

298 developers

PSP0 PSP1 PSP2

34
Team Software Process

© 2010 Carnegie Mellon University

PSP Improves Estimating Accuracy -2

Majority are under-estimating

Balance of over- and under-estimates

Much tighter balance around zero

35
Team Software Process

© 2010 Carnegie Mellon University

PSP Improves Process Yield

A higher-yield process will result in fewer defects in test.

PSP0

PSP1

PSP2

298 developers

36
Team Software Process

© 2010 Carnegie Mellon University

PSP Quality Results

11
10
9
8
7
6
5
4
3
2
1
0

0

10

20

30

40

50

60

70

80

90

100

110

120

Mean Compile + Test

PSP Level Mean Comp + Test

Defects Per KLOC Removed in Compile and Test

Program Number

M
ea

n
Nu

m
be

r o
f D

ef
ec

ts
 P

er

KL
OC

298 developers

PSP0

PSP
1

PSP
2

37
Team Software Process

© 2010 Carnegie Mellon University

810 developers

Defect
reduction
1Q: 80.4%
2Q: 79.0%
3Q: 78.5%
4Q: 77.6%

38
Team Software Process

© 2010 Carnegie Mellon University

PSP Design Time Results

11 10 9 8 7 6 5 4 3 2 1 0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Design
Code
Compile
Test

Time Invested Per (New and Changed) Line of Code

Program Number

M
ea

n
M

in
ut

es
 S

pe
nt

 P
er

 L
OC

298 developers PSP0

PSP1 PSP2

39
Team Software Process

© 2010 Carnegie Mellon University

TSP Concepts

Managing self-directed teams

Using processes and measures in engineering/creative work

Quality management

40
Team Software Process

© 2010 Carnegie Mellon University

Software Industry Quality Strategy

The software industry is the only modern
high-tech industry that ignores quality until
test.

Most software defects are found in or after
test when defect removal costs are the
highest and the methods are the least
effective.

This strategy results in defective products
and unnecessary rework that inflates
development costs by 30% to 40% or more.

This strategy is also a principal cause of
unexpected delays, system failures, and
software security vulnerabilities.

Linux crash on Airbus Entertainment System

41
Team Software Process

© 2010 Carnegie Mellon University

Testing Coverage

Overload

Hardware
failure

Operator
error

Data error

Resource
contention

Configuration

Safe and secure
region = tested
(shaded green)

Unsafe and insecure
region = untested
(shaded red)

42
Team Software Process

© 2010 Carnegie Mellon University

Put a Quality Product into Test

IBM’s Dr. Harlan Mills asked: “How do you
know that you’ve found the last defect in
system test?”

“You never find the first one.”

If you want a quality product out of test,
you must put a quality product into test.

To put a quality product into test you must
manage quality at every step.

43
Team Software Process

© 2010 Carnegie Mellon University

TSP Quality Management Practices -1

Planning for quality
•  TSP quality planning estimates the number of defects injected

and removed at each phase based on historical injection rates
and phase yields.

•  Removal rates, review rates, phase time ratios, defect densities,
and other quality indicators are then calculated by the tools.

Measuring and tracking quality
•  Developers track every defect found and fixed.

•  Quality is reviewed weekly by the quality manager and the team.

44
Team Software Process

© 2010 Carnegie Mellon University

TSP Quality Management Practices -2

Defect removal filters
•  Every activity that finds and removes defects can be thought of as a

defect removal filter, e.g. reviews, inspections, compilers, static
analyzers, etc.

•  TSP has many such filters.

Capture/Recapture
•  TSP uses capture/recapture to estimate the defects missed in

inspections.

Defect prevention
•  Every defect found in system test or later is analyzed to prevent

future escapes.

•  Every defective module is re-inspected.

45
Team Software Process

© 2010 Carnegie Mellon University

Quality and the Team

High quality can only be achieved by the development team.

To manage quality they must
•  have control of their process

•  have the proper data to track quality

•  be properly trained and motivated

The self-directed team management style empowers the team to
manage quality.

The integrated measurement framework provides the data.

PSP provides the training, motivation, and commitment.

46
Team Software Process

© 2010 Carnegie Mellon University

The Project Completes Training

The training was completed in 30 days.

Bob and Tom were very happy with the results.

The team did not believe that management would change.

Management thought the team would not have the
discipline to manage their work.

Day 30

47
Team Software Process

© 2010 Carnegie Mellon University

Agenda

When • Topics

9:00 – Break • Case study: a project in trouble
• Team Software Process and its implementation strategy
• TSP concepts

Break – Lunch • Why projects fail
• Case study: launching the project

Lunch – Break • Case study: launching the project (continued)

Break – 5:30 • Case study: team-working framework
• Corporate experience with TSP
• TSP and CMMI
• Building internal support for TSP

48
Team Software Process

© 2010 Carnegie Mellon University

Failed Projects

Successful projects delivered on time,
on budget, with required features and
functions.

Challenged projects were late, over
budget, and/or failed to deliver all of
the required features and functions.

Failed projects were cancelled prior to
completion or delivered and never
used.

Source: Standish group 2009 Chaos
report.

49
Team Software Process

© 2010 Carnegie Mellon University

Project Failure

Discussion topic: Why do teams fail?

  10 minutes

50
Team Software Process

© 2010 Carnegie Mellon University

What Makes Teams Fail?

There are lots of ways to make teams fail.
•  Start late.

•  Demand impossible schedules.

•  Under-staff the project.

•  Manage to the schedule.

•  Fail to manage quality.

•  Lack of teamwork.

51
Team Software Process

© 2010 Carnegie Mellon University

Start Late

Many factors determine how long projects take.
•  Staffing experience and staff size

•  the size of the job

•  knowledge about requirements

•  job complexity

•  degree of change

Nothing, however, can make up for a late start.

52
Team Software Process

© 2010 Carnegie Mellon University

Demand an Impossible Schedule

To destroy a project, edict the schedule and don’t plan.

With an impossible schedule,
•  you cannot make a plan to meet the date

•  you must then work without a plan

•  you cannot coordinate or track the work

This is when everyone is in the dark.
•  You don’t know where you are.
•  And neither does anyone else.

53
Team Software Process

© 2010 Carnegie Mellon University

Understaff the Project

Pretend every project is staffed.
•  Don’t set priorities.

•  Expect part-time engineers to produce.

•  Push for maximum overtime.

With understaffed projects, you
•  feel the work is low priority
•  are not personally committed

•  make a lot of mistakes

•  just try to get through test

54
Team Software Process

© 2010 Carnegie Mellon University

Manage to Schedule

Schedule is all that matters.
•  Quality is not measured.
•  There is no time for training.
•  There is no time for inspections.
•  The top priority is getting into test.

This is when
•  the job seems endless
•  there is no sense of progress
•  you just want to throw it over the wall
•  products are late and defective

55
Team Software Process

© 2010 Carnegie Mellon University

Failure to Manage Quality

When quality isn’t managed,
•  projects appear to be farther ahead than they really are.

•  testing and rework account for half the schedule.

•  testing is unpredictable; no one knows how long it will take to fix
the open critical defects.

As schedule pressure increases, shortcuts are taken that
make quality worse, and the schedule slips again.

56
Team Software Process

© 2010 Carnegie Mellon University

Lack of Teamwork

Software development is like a team sport, the best results
are achieved when the team members work together.

For software teams to produce high-quality products on
aggressive schedules, they must

•  be involved in the work
•  be committed to its success

•  share a common process and plan

•  have a personal commitment to quality
•  work cooperatively to meet the team goals

57
Team Software Process

© 2010 Carnegie Mellon University

The Advantage of Self-directed Teams

Self-directed teams
•  develop their own plans
•  negotiate commitments
•  track their work
•  keep management informed of project status and risks

Self-directed teams
•  are empowered by their management
•  are personally committed
•  enjoy their work
•  can resolve many team failure modes

58
Team Software Process

© 2010 Carnegie Mellon University

Producing Self-Directed Teams

Self-Directed Teams

Defined
roles

Challenging
goals

Performance
feedback

Commitment
ownership

A common process
framework

A supportive working
environment

59
Team Software Process

© 2010 Carnegie Mellon University

The Project and The Team

The new product was still critically needed in 9 months.

The only requirements document was a list of the features
in the competitor’s product that marketing had prepared.

The project team had
•  2 managers

•  9 software engineers

•  5 hardware engineers

The managers and the team were trained.

They were ready to launch.

Day 31

60
Team Software Process

© 2010 Carnegie Mellon University

TSP Process Structure

TSP projects are divided into cycles.

Each cycle starts with a launch or re-
launch and ends with a postmortem.

Cycle content is determined by the
team.

Any lifecycle model can be
supported.

TSP projects can start on any
lifecycle phase.

TSP supports whatever structure
makes the most business and
technical sense.

Development
phase

or cycle
Development

phase
or cycle

Phase or cycle
Postmortem

Development
phase

or cycle

Launch

Re-launch

Project
Postmortem

Lessons, new
goals, new

requirements,
new risk, etc.

Business
and

technical
goals Estimates, plans,

process, commitment

Work products,
status, metrics,

results

61
Team Software Process

© 2010 Carnegie Mellon University

The TSP Launch Process

The launch process performs essential tasks.
•  Without a launch process, these tasks are generally addressed only

when needed.

•  This is often too late to prevent problems.

•  It often causes unanticipated project delays.

The launch process steps are performed quickly when the
engineers follow these guidelines:

•  do the work as quickly as practical.

•  be thorough but don’t bother with formality.

•  build on what has been done before.

62
Team Software Process

© 2010 Carnegie Mellon University

Key Objectives of the TSP Launch

Put professionals in charge of their own personal work.

Provide a team environment that supports individual excellence.

Enable teams to produce processes and plans that best fit their needs.

Those that do the work, own the process, make the plans and make
the commitments.

The TSP Launch is the first step in this commitment process.

63
Team Software Process

© 2010 Carnegie Mellon University

The TSP Launch Products

In the launch and relaunch
workshops, the team develops a
standard suite of launch products.

These launch products provide a
solid foundation for the project plan.

They provide a sound basis for
guiding and tracking the project.

Launch Products
•  documented team goals
•  team-member role assignments

•  inventory of processes

•  a measurable quality plan
•  a facilities support plan

•  an overall development strategy
•  a detailed next-phase team plan

•  individual plans for the next
phase

•  a consolidated team plan
•  a project risk assessment

64
Team Software Process

© 2010 Carnegie Mellon University

The TSP Launch Process

The TSP launch process produces necessary
planning artifacts, e.g. goals, roles,
estimates, task plan, milestones, quality plan,
risk mitigation plan, etc.
The most important outcome is a committed
team.

1. Establish
Product and

Business
Goals

2. Assign Roles
and Define
Team Goals

4. Build Top-
down and

Next-Phase
Plans

5. Develop
the Quality

Plan

6. Build Bottom-
up and

Consolidated
Plans

7. Conduct
Risk

Assessment

8. Prepare
Management
Briefing and

Launch Report

Launch
Postmortem

9. Hold
Management

Review

3. Produce
Development

Strategy

65
Team Software Process

© 2010 Carnegie Mellon University

Meeting 1 - Understand the Project Objectives

In meeting 1, the team meets with management to
understand the project objectives.

•  Management describes the business goals and objectives, e.g.
business need, resources, schedule, success criteria.

•  Marketing or the customer describes the product goals and
objectives, e.g. market, customer needs, features, success
criteria.

•  The team asks questions.

66
Team Software Process

© 2010 Carnegie Mellon University

Management said “Failure is not an option!”

Management placed the team under enormous pressure at
the start of the launch.

•  schedule and functionality were non-negotiable

•  resources were fixed

•  failure was equated to “out of business”

The team was convinced the project was impossible.

Day 31

67
Team Software Process

© 2010 Carnegie Mellon University

The Project Team Responds

No one felt comfortable making a plan and commitment.
•  there were no requirements or designs
•  the project was impossible anyway

Without a plan the team had three choices
•  quit or wait to be fired
•  agree to management’s demands and be fired when the project is

late
•  make a plan

They decided to make a plan.

Day 31

68
Team Software Process

© 2010 Carnegie Mellon University

Launch Meeting 2

The purpose of launch meeting 2 is to guide the team in
setting project goals and establishing team member roles.

Team members identify and select the roles of their choice.

A primary and an alternate are selected for each role.

Small teams may assign roles to groups or individuals
outside of the team.

69
Team Software Process

© 2010 Carnegie Mellon University

Team Goals

The team develops a business needs statement to guide the
project.

•  Why does management want this project?

•  What will the project contribute to the business?

Measurable goals are established for each project stakeholder.
•  customer

•  user

•  management

•  team

•  team member roles

70
Team Software Process

© 2010 Carnegie Mellon University

Assign Team Roles

Project Management Roles
Planning manager – responsible for tracking the plan.

Quality manager – responsible for tracking the quality plan.

Process manager – responsible for ensuring process
discipline and for process improvement.

Support manager – responsible for ensuring that support
needs are met and for configuration management.

Technical Roles
Customer interface manager – responsible for the interface
to the customer or customer representative.

Design manager – responsible for the design practices and
quality.

Implementation manager – responsible for implementation
practices and quality.

Test manager – responsible for test practices and quality.

TM

CIF SM

PM

Self-directed team roles

Eight pre-defined roles distribute traditional
project management responsibilities across the
team.

All team members have traditional roles, e.g.
developer, tester, etc.

TSP
Coach

IM QM

DM Proc
M

71
Team Software Process

© 2010 Carnegie Mellon University

Meeting 3 - Define the Work and the Approach

In meeting 3, the team accomplishes three
important prerequisites to building the team
plan.

1.  identifies all of the work the team
needs to do

2.  identifies the build strategy the team
will use to develop the software

3.  identifies or defines the processes the
team will follow to do the work

72
Team Software Process

© 2010 Carnegie Mellon University

Product Conceptual Design

The product conceptual design is the “big picture” view of
the product, it is not a high-level design.

It includes the major parts of the products, i.e. what needs
to be built to meet management’s minimum requirements

The conceptual
design answers the
question, “If I had
these parts I could
build this system.”

73
Team Software Process

© 2010 Carnegie Mellon University

Development Strategy

The development strategy is the “big picture” view of the
development effort.

•  development increments and builds

•  general version content and freeze points

•  prototypes needed

•  integration and test strategy

74
Team Software Process

© 2010 Carnegie Mellon University

Initial Estimates

Rough size and effort estimates are needed to define the
development strategy.

•  size estimates of the individual parts in the product conceptual
design

•  effort estimates for each increment

These estimates are based on available historical data, the
engineer’s PSP data, and/or best guess.

75
Team Software Process

© 2010 Carnegie Mellon University

List of Products and Features

The list of products and features
includes everything that will be
produced.

•  requirements

•  specifications

•  designs

•  software

•  test cases

•  documentation

•  installation procedures

•  …

76
Team Software Process

© 2010 Carnegie Mellon University

Development Process

The team next plans their development process.

Having defined what to build the team is prepared to define
how to build it.

The development process is based on the organization’s
standard process and the TSP.

This step produces a process plan.

77
Team Software Process

© 2010 Carnegie Mellon University

Compile
(optional)

TSP Development Process

Requirements
Launch

Produce
Requirements
Specifications

Inspection

Postmortem

Produce
High-Level

Design

System Test
Launch

Postmortem

Implementation
Launch

Produce
Detail Design

Produce
Technical

Artifacts (Code)

Postmortem

High-Level
Design Launch

Inspection

Postmortem

Personal
Review

Inspection

Personal
Review

Unit
Test

Inspection

System
Build

Integration
Test

System
Test

Requirements
High-Level

Design
Implementation System Test

The TSP process elements are
adapted to the organization’s process.

78
Team Software Process

© 2010 Carnegie Mellon University

The Process Plan

The process plan is
•  an inventory of process elements that will be used by the team

•  a plan for building any missing elements.

Size and time estimates are made for producing any
missing elements.

Responsibility for producing or acquiring these elements is
then typically assigned to the process manager.

79
Team Software Process

© 2010 Carnegie Mellon University

Meeting 4 - Build the Overall Plan

In launch meeting 4, the team creates the
overall plan by establishing

•  the estimated size of each work product
(how big is the job)

•  the tasks needed to complete the work
(with effort estimates)

— next-phase tasks, detailed to the
work-step level

—  later phases at a high level

•  the estimated team hours available each
week for the work

•  an initial schedule for the project
Overall plan

Estimate
available

time

Estimate
resources

Define tasks

Estimate size

80
Team Software Process

© 2010 Carnegie Mellon University

Size and Effort

The size measure is selected
based on its correlation to effort.

Detailed component size
estimates reduce estimation risk.

Total effort can then be predicted
for each component.

81
Team Software Process

© 2010 Carnegie Mellon University

Estimated Size

82
Team Software Process

© 2010 Carnegie Mellon University

Task Planning

83
Team Software Process

© 2010 Carnegie Mellon University

Fine Tuning the Task Plan

84
Team Software Process

© 2010 Carnegie Mellon University

Creating the Schedule

85
Team Software Process

© 2010 Carnegie Mellon University

The Earned Value Plan

86
Team Software Process

© 2010 Carnegie Mellon University

Meeting 5 - Build the Quality Plan

In launch meeting 5, the team builds a quality
plan that estimates the

•  number of defects that will be injected in each
phase

•  number of defects that will be removed in each
phase

•  quality (defect density) of the final product

•  quality (process quality index) of the
development process

The team ensures that the plan meets the
quality goals.

Quality
plan

Quality
goals

Defects
injected

Defects
removed

87
Team Software Process

© 2010 Carnegie Mellon University

Defect Removal Filters
Planning

Development
Defect Filter
Postmortem

88
Team Software Process

© 2010 Carnegie Mellon University

Economics of Quality

Avg. removal
rate

(defects/hr)

Phase yields
(% of defects

removed)

Estimated effort

Design Review 1.5 50% to 70%

Design Inspection 0.5 50% to 70%

Code Review 4 50% to 70%

Code Inspection 1 50% to 70%

Unit Test 0.2 35% to 50%

Integration Test 0.1 35% to 50%

System Test 0.05 35% to 50%

Efficiency Effectiveness Predictability

High variability
- based on

time to find &
fix defects

Low
variability -
based on

product size

89
Team Software Process

© 2010 Carnegie Mellon University

TSP Defect Injection/Removal Plan

90
Team Software Process

© 2010 Carnegie Mellon University

Quality Plan Contents

The quality plan goals are used like control limits, to
support early identification of quality problems.

The quality plan includes these key derived measures
•  percent defect free
•  yield by phase

•  inspection and review rates

•  defect density by phase
•  development time ratios

•  defect ratios

91
Team Software Process

© 2010 Carnegie Mellon University

Assessing the Plan for Quality

High quality is not achieved by accident.

The team’s plan should include defect removal and defect prevention
steps before testing.

Adequate time should be planned for
•  requirements and design
•  personal reviews
•  inspections by peers

The planned product defect density should meet the team’s quality
goal.

92
Team Software Process

© 2010 Carnegie Mellon University

Meeting 6 - Build Individual Work Plans

In launch meeting 6, each team member
builds a plan to which he or she can commit.

In building their plans, the team members
•  allocate tasks to individuals

•  refine size and effort estimates using their own
data and processes

•  break tasks to the granularity of around 10
hours or less per task

•  estimate their own available task hours for
each week

•  create an earned-value plan

•  balance workloads across all team members.

Balanced
plan

Allocate
tasks

Create
individual

plans

Balance
workload

93
Team Software Process

© 2010 Carnegie Mellon University

The Need for Detailed Individual Work Plans

With detailed plans the engineers
•  know what tasks to do next

•  get data for future detailed planning

•  have plans that are easier to compare with actual results

With detailed plans, engineers can also

•  track progress in detail

•  know where they are on the plan

•  get regular performance feedback

94
Team Software Process

© 2010 Carnegie Mellon University

Personal Plan Review

Each developer presents his or her plan.

Team members consider whether
•  the plan is complete

•  the plan is sufficiently detailed

•  the tasks are consistent with the team’s overall plan

•  the plans should be adjusted

•  the plan seems reasonable and achievable

The developer makes any needed adjustments.

95
Team Software Process

© 2010 Carnegie Mellon University

Plan Consolidation

The planning manager then leads the team in producing a
composite team plan.

The product is based on a roll-up of the individual plans using
the TSP support tool.

If the rolled-up plan does not match the top-down plan,
adjustments are made

•  balance workload or add resources

•  increase schedule

•  reduce requirements

96
Team Software Process

© 2010 Carnegie Mellon University

Meeting 7 - Risk Management

In launch meeting 7, the team develops a
risk management plan.

In building the risk management plan the
team members

•  identify project risks

•  evaluate each risk for high, medium, or low
impact and likelihood

•  assign each high or medium risk to a team
member and define an action date and
mitigation strategy Risk

Management
Plan

Identify
Risks

Risk
Evaluation

Mitigation
Action

97
Team Software Process

© 2010 Carnegie Mellon University

Launch Meetings 8 and 9

1. Establish
Product and

Business
Goals

2. Assign Roles
and Define
Team Goals

4. Build Top-
down and

Next-Phase
Plans

5. Develop
the Quality

Plan

6. Build Bottom-
up and

Consolidated
Plans

7. Conduct
Risk

Assessment

8. Prepare
Management
Briefing and

Launch Report

Launch
Postmortem

9. Hold
Management

Review

3. Produce
Development

Strategy

98
Team Software Process

© 2010 Carnegie Mellon University

The Project Plan Summary

The project produced a very detailed plan but it had at least one
problem, it did not meet management’s goal for release.

Product Quality (Defects/KLOC) Plan

Integration Test 1.0

System Test 0.1

Field Trial 0.0

Operation 0.0

Size and Effort Plan

Size (New and Changed LOC) 110,000

Effort (Task Hours) 16,000

Schedule Months 18

99
Team Software Process

© 2010 Carnegie Mellon University

Meeting 9 - Making a Commitment

The team leader briefed management on the plan.

Under strong management pressure, the team

•  explained their approach.

•  justified the effort required.

Management reluctantly accepted the plan and the team
began development.

Day 34

100
Team Software Process

© 2010 Carnegie Mellon University

Agenda

When • Topics

9:00 – Break • Case study: a project in trouble
• Team Software Process and its implementation strategy
• TSP concepts

Break – Lunch • Why projects fail
• Case study: launching the project

Lunch – Break • Case study: launching the project (continued)

Break – 5:30 • Case study: team-working framework
• Corporate experience with TSP
• TSP and CMMI
• Building internal support for TSP

101
Team Software Process

© 2010 Carnegie Mellon University

Work Begins Day 37

Weekly planning

•  Priorities for the week

•  Task order

•  Time Tracking

•  Defect Tracking

•  Task Completion

102
Team Software Process

© 2010 Carnegie Mellon University

Personal Tracking

1. Set priorities
for the week

2. Define task
order 3. Select task

Track time

Record defects
found and fixed

Mark task
complete

103
Team Software Process

© 2010 Carnegie Mellon University

The Team-Working Framework

The TSP team-working framework helps the project move forward.

Management reviews are held monthly

Team plans are consolidated weekly

Galileo Protec RSM

Team member’s track plans daily

Bob Tom Sally John Tyra Pablo Gloria Abhinav

104
Team Software Process

© 2010 Carnegie Mellon University

Weekly Status

Team members meet each week to
assess progress.

•  Role managers present evaluation of
the plan and data

•  Goal owners present status on
product and business objectives

•  Risk owners present status on risk
mitigation plans and new risks

•  Team members present status on
their plans

Plan deviations are addressed each
week.

Significant deviations, e.g. new
requirements, trigger a replan.

Performance Data Reviewed
•  Baseline Plan Value
•  Plan Value
•  Earned Value
•  Predicted Earned Value
•  Earned Value Trend
•  Plan Task Hours
•  Actual Task Hours
•  Tasks/Milestones completed
•  Tasks/Milestones past due
•  Tasks/Milestones next 2 weeks
•  Effort against incomplete tasks
•  Estimation Accuracy
•  Review and Inspection Rates
•  Injection Rates
•  Removal Rates
•  Time in Phase Ratios
•  Phase and Process Yield
•  Defect Density
•  Quality Profile (QP)
•  QP Index
•  Percent Defect Free
•  Defect Removal Profile
•  Plan to Actual Defects Injected/Removed

105
Team Software Process

© 2010 Carnegie Mellon University

Resource Tracking

Cumulative plan and actual resource hours shows resource burn rate and
potential source of slip

Typical
software
project

106
Team Software Process

© 2010 Carnegie Mellon University

Earned Value Tracking

Cumulative planned value
shows the current plan.

Cumulative earned
value is the actual
progress to-date.

Using the rate of progress as a
basis, predicted earned value
shows the likely completion

date.
Baseline cumulative

planned value shows the
initial plan.

Milestone Date

Baseline End Date 2/14

Current Plan End Date 4/25

Predicted End Date 5/16

107
Team Software Process

© 2010 Carnegie Mellon University

TSP Weekly Status Report

108
Team Software Process

© 2010 Carnegie Mellon University

Quality Tracking

109
Team Software Process

© 2010 Carnegie Mellon University

Quality Profile

The TSP Quality Profile is a quality early warning indicator.

It examines criteria that are effective predictors of system test and post-release
quality, and produces a graph of the result.

It supports drill down to any level for further analysis, e.g. in software:

 system → component → module → class.

Quality Profile Criteria
1.  Design time = coding time

2.  Design review time = ½ design time

3.  Code review time = ½ coding time

4.  Compile defects < 10 per KLOC

5.  Unit test defects < 5 per KLOC

If satisfied, a criterion has a value of 1, and is drawn
along the outer edge of the chart.

Design/Code
Time Ratio

Design/Design
Review

Time Ratio

Code/Code
Review

Time Ratio

Unit Test
Defect Density

Compile Defect
Density

Quality Profile

110
Team Software Process

© 2010 Carnegie Mellon University

The Project in Week 6 Day 79

111
Team Software Process

© 2010 Carnegie Mellon University

Why Are We Behind?

The keys:
•  Earned Value is Behind by 22%

•  18% over-estimated for work completed thus far

•  32% over-estimated “on-task” hours
•  If we do nothing different it is likely we will finish 2 months behind

112
Team Software Process

© 2010 Carnegie Mellon University

Plan Dynamics

Teams need detailed plans to make realistic commitments
and to coordinate and track their work.

Detailed plans are accurate only for brief periods of time.
•  As engineers work, they learn more about the job.

•  The work among individuals becomes unbalanced.

•  Organizations and teams are dynamic.

Consequently, TSP teams maintain their plans dynamically.

113
Team Software Process

© 2010 Carnegie Mellon University

Communicating Commitment Changes
Whenever changes are made to the plan, the team must
make sure they

•  review plan changes

•  verify they understand why the changes were made

•  review impact to commitments

If the change to the plan impacts commitments
•  consider alternatives

•  offer choices and recommendations to stakeholders

114
Team Software Process

© 2010 Carnegie Mellon University

Focus Hours Works!

115
Team Software Process

© 2010 Carnegie Mellon University

A Project Quality Problem Month 15

116
Team Software Process

© 2010 Carnegie Mellon University

Teamwork: Results

The project was completed 17 months later with these results.

•  Quality levels improved 20 times over prior projects.

•  Actual effort and schedule were within 8% of plan (early).

The product worked so well that the customer ended their relationship with the
competitor.

Product Quality (Defects/KLOC) Plan Actual

Integration Test 1.0 0.2

System Test 0.1 0.4

Field Trial 0.0 0.02

Operation 0.0 0.0

Size and Effort Plan Actual

Size (New and Changed LOC) 110,000 89,900

Effort (Task Hours) 16,000 14,711

Schedule Months 18 17

Month 17

117
Team Software Process

© 2010 Carnegie Mellon University

Agenda

When • Topics

9:00 – Break • Case study: a project in trouble
• Team Software Process and its implementation strategy
• TSP concepts

Break – Lunch • Why projects fail
• Case study: launching the project

Lunch – Break • Case study: launching the project (continued)

Break – 5:30 • Case study: team-working framework
• Corporate experience with TSP
• TSP and CMMI
• Building internal support for TSP

118
Team Software Process

© 2010 Carnegie Mellon University

User Experience and the Business Case for TSP

The principal costs of introducing TSP are training costs and lost
opportunity cost resulting from time spent in training.

The principal benefits are
•  lower development costs and shorter schedules

•  more functionality per release and improved productivity
•  lower defect density in both system test and in the delivered product

•  improved work-life balance for the developers

•  improved customer satisfaction

•  fast track to higher performance and higher maturity

119
Team Software Process

© 2010 Carnegie Mellon University

TSP Adoption

120
Team Software Process

© 2010 Carnegie Mellon University

Schedule Management

First-time TSP projects at Microsoft had a 10 times better mean schedule error
than non-TSP projects at Microsoft as reflected in the following table.

Microsoft Schedule Results Non-TSP Projects TSP Projects

Released on Time 42% 66%

Average Days Late 25 6

Mean Schedule Error 10% 1%

Sample Size 80 15

Source: Microsoft

121
Team Software Process

© 2010 Carnegie Mellon University

Managing Task Hours

Task hours are the hours that teams spend on planned tasks and do not include
unplanned but necessary tasks like meetings, courses, coordination, handling mail, etc.

When measured, tracked, and managed, the team can usually improve task hours, but
management can’t. Why?

Teams monitor actual vs. plan hours per
week and for the cycle

122
Team Software Process

© 2010 Carnegie Mellon University

7/12/10

Improving Task Hours

At Allied Signal average task hours per
developer per week were improved from
9.6 hours to 15.1 hours through quiet time,
process documentation, more efficient
meetings, etc.

This is equivalent to a 57% increase in
productivity.

+57%

Source: Allied Signal

Actual Task Hours per Week

123
Team Software Process

© 2010 Carnegie Mellon University

Source: Xerox

Reviews and Inspections Save Time

Xerox found that TSP quality management practices reduced the cost of poor
quality by finding and removing defects earlier when costs are lower.

124
Team Software Process

© 2010 Carnegie Mellon University

Reduced Rework

Source: CMU/SEI-TR-2003-014

125
Team Software Process

© 2010 Carnegie Mellon University

Productivity Improvement

From data on over 40 TSP teams, Intuit has found that
•  post code-complete effort is 8% instead of 33% of the project

•  for TSP projects, standard test times were cut from 4 months to
1 month or less.

•  Productivity improved by 30%.

Development

Development

T
e
s
tNon-TSP

TSP

Source: Intuit

Test

126
Team Software Process

© 2010 Carnegie Mellon University

Intuit Productivity Improvement

By putting a quality product into system test Intuit improved productivity and
reduced cost while delivering 33% more functionality than planned.

Source: Intuit

Source: Intuit

127
Team Software Process

© 2010 Carnegie Mellon University

Intuit Quality Improvement

TSP reduced defects found in system test by 60% over the previous two
releases of QuickBooks 2007 release.

Intuit has also recently reported a savings of $20M from a reduction in
customer support calls on QuickBooks 2007.

Source: Intuit

128
Team Software Process

© 2010 Carnegie Mellon University

Work-Life Balance

Finding and retaining good people is critical to long-term success.

Intuit found that TSP improved work-life balance, a key factor in job
satisfaction.

Source: Intuit

Source: Intuit

129
Team Software Process

© 2010 Carnegie Mellon University

A Process for Managers and Developers

Source: CMU/SEI-TR-2003-014

130
Team Software Process

© 2010 Carnegie Mellon University

Impact of TSP at Adobe

131
Team Software Process

© 2010 Carnegie Mellon University

TSP Quality Improvements at Adobe

132
Team Software Process

© 2010 Carnegie Mellon University

TSP Implements CMMI -1

Unrated - out of scope
for TSP.

Not addressed -
project practice that
TSP does not cover.

Partially addressed -
project practices that
TSP addresses with
some weakness of
omission

Supported -
organizational
practices that TSP
supports.

Directly Addressed -
TSP practices meet the
intent of the CMMI
specific practice (SP)
without significant
reservations.

Based on a SCAMPI C of the latest version of TSP

133
Team Software Process

© 2010 Carnegie Mellon University

TSP Implements CMMI -2

An organization using TSP has directly
addressed or implemented most
specific practices (SP).

•  85% of SPs at ML2

•  78% of SPs at ML3

•  54% of SPs at ML4

•  25% of SPs at ML5

•  80% of ML2 and ML3 SPs

•  75% of SPs through ML5

Most generic practices are also
addressed.

Based on a SCAMPI C of the latest version of TSP

134
Team Software Process

© 2010 Carnegie Mellon University

NAVAIR AV-8B TSP/CMMI Experience

AV-8B is a NAVAIR System
Support Activity.

They integrate new features
into the Marine Harrier
aircraft.

They used TSP to reduce
the time to go from CMMI
Level 1 to CMMI Level 4.

2.5 Years

6 Years SEI Average

AV-8B

135
Team Software Process

© 2010 Carnegie Mellon University

Fast Track to High Maturity and High Performance

7/12/10

High
Maturity and

High
Performance

CMMI

SCAMPI
Team

Software
Process

Six
Sigma
toolkit

136
Team Software Process

© 2010 Carnegie Mellon University

TSP Implementation Strategy

TSP is implemented on a project-by-project or team-by-team basis

Start with two or three teams.
•  train the team members and their managers
•  launch these teams with TSP

•  evaluate and fine tune the approach

From the time of starting the first training session, a team can be
launched and up and running within 1 month.

This cycle is then repeated, increasing scope at a sustainable pace.

137
Team Software Process

© 2010 Carnegie Mellon University

Selecting Pilot Projects

Pick 2 to 3 pilot projects.

•  3 to 15 team members

•  4 to 18 month schedule

•  software-intensive new development or enhancement

•  representative of the organization’s work

•  important projects

Select teams with members and managers who are willing to participate.

Consider the group relationships.

•  contractors

•  organizational boundaries

•  internal conflicts

138
Team Software Process

© 2010 Carnegie Mellon University

Deployment Timeline

Task Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

TSP Executive Strategy Seminar ♦
Leading Development Teams ♦
PSP Fundamentals ♦
Launch Initial Teams ♦
Cycle Postmortem for Initial Teams ♦
Re-launch Initial Teams ♦
Train instructors and coaches

Project Postmortem for Initial Teams ♦
Train and launch remaining projects and
teams at a sustainable pace.

The training schedule can be compressed to as short as one week for a faster start.

The gating factor for most organizations is the availability of projects.

SEI recommends training internal coaches as soon as possible.

139
Team Software Process

© 2010 Carnegie Mellon University

Build Internal Capability

Organizations should develop internal capability to support TSP.
•  SEI-certified TSP coaches are essential

•  SEI-authorized trainers are optional as training can be outsourced

The initial pilot projects provide the “hands-on” experience with
TSP.

Training and authorization requirements
•  Coach – one week training course, exam, and a launch observation

•  Instructor – one week training course and an exam

SEI does offer a support program where SEI leads the effort
initially and internal staff observe, then internal staff lead and
SEI mentors.

140
Team Software Process

© 2010 Carnegie Mellon University

Training for Participants

Participant CBT
Option

Course Notes

Executives and
senior management

No TSP Executive Strategy Seminar 1 day + optional ½ day strategic planning session.

Middle and first-line
managers

No Leading Development Teams 3 days

Software developers Yes PSP Fundamentals

PSP Advanced

5 days

5 days (optional)

Team members
other than software
developers

TSP Team Member Training 2.5 days (will replace Introduction to Personal Process
in 2009)

Instructors No PSP Instructor Training 5 days

Pre-requisite training: PSP Fundamentals and PSP
Advanced or PSP I and PSP II

Coaches No TSP Coach Training 5 days

Pre-requisite training: PSP Fundamentals and PSP
Advanced or PSP I and PSP II

141
Team Software Process

© 2010 Carnegie Mellon University

Summary

TSP is an agile, high-performance, high maturity process
for development teams.

It addresses the cost, schedule, quality, and predictability
issues that most organizations face

TSP can be introduced quickly with near-term ROI.

TSP complements CMMI and has compelling results.

142
Team Software Process

© 2010 Carnegie Mellon University

Questions?

