Introduction to the Team
Software Process

James Over

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

=== Software Engineering Institute | CarnegieMellon ©2010 Carmegie Wllon Universi

Tutorial Objectives

This tutorial answers the following questions:

What is the Team Software Process?

What does the Team Software Process do?

How does the Team Software Process work?

How do the Team Software Process and CMMI relate?
What is the experience with the Team Software Process ?

How do you introduce the Team Software Process ?

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Agenda
When [Topies

9:00 — Break «Case study: a project in trouble
*Team Software Process and its implementation strategy
*TSP concepts

Break — Lunch *Why projects fail
*Case study: launching the project

Lunch — Break *Case study: launching the project (continued)

Break — 5:30 *Case study: team-working framework
*Corporate experience with TSP
*TSP and CMMI

*Building internal support for TSP

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

The Project

Management was under great pressure to put out a new version
of their primary software product.

Marketing was demanding a release within 9 months.

The development staff thought this was impossible.

A previous project with similar scope and resources took two
years to complete.

You've been asked to lead the project. What would you do?

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

Your Choices

What do you think of the schedule?
Whose date is 9 months?

How does this compare with prior projects?
Do you agree?

What are your choices?

Accept the 9 month schedule.
Complain and then accept it.

Say you will do it, but not in 9 months.
Update your resume.

The way you answer will determine whether the project succeeds or fails.

=—— i 1 I . Team Software Pr
—=—— Software Engineering Institute | Carnegie Mellon cam SeTware Trocess

© 2010 Carnegie Mellon University

High Profile, High Risk Projects \’7

Discussion topic

You've been asked to lead the project.

What would you do?

10 minutes

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

The Project

The proposed schedule for the project was impossible.

Tom, the newly appointed manager of the project, and
Bob, a software architect, were frustrated by
management’s

unreasonable schedule demands.

lack of concern for software quality.

They decided to investigate potential solutions,
including the TSP.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Team Software Process (TSP)

TSP is a process that is specifically designed for
software teams.

It's purpose is to build high-performance teams and
help them

plan their work

negotiate their commitments with management
manage and track projects to a successful conclusion
produce quality products in less time

achieve their best performance without the “death
march” ending

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Reliable Estimates

From a study of fifteen projects in four
organizations at all maturity level
except ML4.

TSP improved effort and schedule
predictability on every project.

Effort (Cost) Performance
Study baseline +17% to +85%
TSP -25% to +25%

Schedule Performance
Study baseline +27% to +112%
TSP -8% to +20%

Source: CMU/SEI-TR-2000-015

=== Software Engineering Institute

Effort Deviation Range
100%
80% -
5 60% -
ut.l 40% +
§ 20%
5 7"
o 0%
-20%
-40%
Pre-TSP With TSP
Schedule Deviation Range
120%
100% -
= 80% -
=
w 60% -
IS
Q 40% -
T
o 20%
-20%
Pre-TSP With TSP

Carnegie Mellon

Team Software Process

© 2010 Carnegie Mellon University

Reliable Products

From a study of 20 projects in 13 Defects/KLOC
organizations at all maturity levels. T3

e 6.24

6-
TSP teams averaged 0.06 defects L 473
per thousand lines of new or modified N
code.

3 2.28

? . J 1.05
Approximately 1/3 of these projects 1. 005
were defect-free. Ll | lewl2 | Lewls | Lewld | Lewls | TSP

Source: CMU/SEI-2003-TR-014

These results are substantially better
than those achieved in high maturity
organizations.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Impact and Performance Results

Effort estimation error 5%, -24% 25% 21
Schedule estimation error 6% -20% 27% 21
System test effort** 4% 2% 7% 21
Cost of quality 17% 4% 38% 21
Product quality* 0.06 0.0 0.2 21

*Post-release defects reported thousand new or modified lines of code
**System test effort as a percentage of total development effort

Source: Davis, N.; & Mullaney, J. The Team Software Process in Practice: A Summary of Results (CMU/SEI-2003-TR-014)

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Implementation Strategy

TSP is implemented project-by-project.

. Select two or three teams.

_ _ _ _ Select the
. Train top-down, starting with senior team(s)
managers, then project managers, then
team members. Train

managers
and

- When the managers and team are S

trained, conduct a TSP Launch to kick-
off each project.

. Evaluate and fine tune the approach.

Refine and Launch and
: : : valuate the
- Repeat this cycle increasing scope at a eappmach coach

sustainable pace.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Product Suite: Process, Training, Tools

TSP.Team Launch - Script LAU
Purpose To guide teams in launching a software-intensive project

PrOCeSS NOtebOOK Entry Criteria - The launch preparation work has been completed (PREPL, PREPT).
- Allteam members and the team leader are committed to attend launch
. Process scri ptS meetings 1 through 9 and the launch postmortem, and management and

marketing representatives are prepared and available for meetings 1 and 9.
- An authotized launch coach is on hand to lead the launch process.

° Forms General

Schedule

. Guidelines and standards

- Role descriptions , mmn]ng 2)
Training and Textbooks Software -
o« AnExeautve Stalegy H c Sat: Introduction to the
. hem ® £ : S rtenatly H Introduction s
- Executives Twi WY e | | e — 10the Team Software

i = e : Personal

. “N: i 9 /e Software

- Project Managers ! S e Process

- Engineering
. TSP Coach
. TSP Trainer

Tools
. TSP Workbook

. PSP Workbook
. Coach/Trainer Workbook

44 i\ Tsp nructions { Peraude { Quauide)profect (Tean { Godl\ TSR o5 cctons /e 7 Quaaide Project {Team £ G £ R0ks /50 £50ma Z<1<

—— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

— © 2010 Carnegie Mellon University

The Project Timeline Using TSP

Bob and Tom thought that the TSP’s project-
focused, rapid deployment strategy would be a
perfect fit for the high-risk project.

They constructed this timeline and convinced the
head of QA to fund the training and support.

Training 1 —p
TSP Executive Strategy Seminar ¢
Leading Development Teams ¢
PSP Fundamentals .
Product Development H —
Launches and Re-Launches ¢ . .
Postmortems ¢ ¢ *

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Training

Winning - TSP Executive Strategy Seminar

Soflwar =0 * Building a “winning” organization
gt » Managing with facts and data
» One-day course

Leading a Development Team

* Building self-directed teams
» Motivating and leading self-directed teams
* Three-day course

PSP for Software Developers

» Using a defined and measured personal process
* Personal planning and tracking

 Personal quality management and design

* Five-day course

‘ Team Software Process

—== Software Engineering Institute | CarnegieMellon

© 2010 Carnegie Mellon University

The Training Problem

The cost of training is known; the cost of not training is often
ignored.

TSP changes the way managers and developers work, without

proper training, managers and developers won'’t understand
TSP.

Without understanding they will continue to work as they
always have with the same result.

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

TSP Concepts

Managing self-directed teams

Using processes and measures in engineering/creative work

Quality management

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Management Styles

The principal management styles have been:

Frederick Taylor Peter Drucker
Body Management Task Management Knowledge management
People as oxen that must People as machines. People as individuals. The
be driven, directed, and Management knows the knowledge worker knows the
motivated through fear. best way to get the work best way to get the work done.
done. The workers follow. Management motivates, leads,

and coaches.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Knowledge Work

“The key rule in managing knowledge work
IS this: managers can’t manage it, the
workers must manage themselves.”

Software development is knowledge work.

To manage software work, developers must

be motivated
make accurate plans

negotiate commitments

track their plans
Watts Humphrey,

manage quality creator of TSP

How is this accomplished?

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Self-directed Team Management Style

Traditional team Self-directed team

The leader plans, directs, and The team members participate in

tracks the team’s work. planning, managing, and tracking their
own work.

—— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

The Project Manager or Team Leader’s Role

The team leader’s job on a TSP team is to

guide and motivate the team in doing its work

take the time to reach full consensus on all important issues
ensure that the team establishes high standards for the work
provide management support to the team

support the team with management

protect the team so that it can concentrate on the project

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

The TSP Coaching Role

The coach
. trains and facilitates the adoption of TSP
. works with the team leader to build the team

. observer that guides the team

Team Leader vs. Coach

The team leader’s job is to use the
team to build the product.

The coaches job is to use the project
to build the team.

—

Tiger Woods and his former coach, Hank Haney.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Concepts

Managing self-directed teams

Using processes and measures in engineering/creative work

Quality management

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Learning to Develop Software

In universities,

the emphasis is on technical knowledge and individual
performance.

teﬁ/aluation emphasizes code that runs, not how the student got
ere.

the prevailing ethic is to code quickly and fix the problems in test.

In industry, team-working skills are also needed.

TSP uses the Personal Software Process to build these sKills.
planning and tracking the work

measuring and managing quality
anticipating and correcting problems

—— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

PSP Learning Stages

Team Software
Process

*Teambuilding
*Risk management
*Project planning and tracking

PSP2 PSP2.1 Introduces quality
-Code reviews Design templates management and design
/ +Design reviews |
' PSP1.1 L
PSP1 Task planning Introduces estimating and
-Size estimating » Schedule planning planmng
*Test report
PSPO0.1 I
PSPO -Coding standard Introduces process discipline
«Current process | °*Process improvement proposal and measurement
*Basic measures *Size measurement
]

Developers write one or more programs at each PSP level

Team Software Process

=== Software Engineering Institute | CarnegieMellon

© 2010 Carnegie Mellon University

Using A Defined Process

Requirements p]

The PSP process is like the TSP e e STERe

implementation phase, but without
!nspectlons, .component release, and the
implementation phase postmortem.

Developers learn the PSP by writing small
programs and measuring the result.

They convince themselves of the benefits

and also learn how to apply the concepts to _
their own work

!

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

The TSP/PSP Measurement Framework

Four direct measures apply to all
processes and products.

.- Estimates made during planning

- Directly measured by team members
while working

The data are used to track project
status and to analyze and improve

) performance.
fO, 7 Sy
70,.09270,%270, . . .
» 'ro o P70, 3 Benefit — direct measures, integrated
" s - 4 into a measurement framework,
T as - . provide flexibility.
Size Quality

Team Software Process

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Schedule

Schedule is the most commonly used project measure.

Schedule accuracy depends on granularity.

TSP schedule granularity is in hours, not days, weeks, or
months.

TSP Task Planning Template - Form TASK Total Plan Hours Total Actus
Name Prasad Perini 3189
Team PSP Ghost Reminder:
Date 2/3/2004 Estimated Hours can be entered manually - OR - calculated based on Estimated Si;
If Size and Rate are present, this field will be recalculated when you Update Task
Cycle ¥
e
Generate Update Task § N 33: o
Task List and Schedule 2 5 2 E = g o 3| 3 &
=) 2 =] = o | T (=}
5 ﬁEi =& ‘g‘ o T o = h= =
@ = o = =) = c = S b=
Assembly Phase |Task & E c% E E i f 2 c% E E
Main Form DLDINSP Main Form DLD Inspection SA, PP 300 LOC 2000 15 1.0 15 3M0/2003 15 5.0 3/7,2003
Main Form CODEINSP Main Form Code Inspection SA, PP 300 LOC 2000 15 1.0 15 3M0/2003 15 4.8 3M0/2003
Fiter Ohject CODEINSP Fitter Ohject Code Inspection SA, PP 300 LOC 2000 15 1.0 15 3M0/2003 15 3.2 1/22/2003
Task Panel Control DLDINSP Task Panel Control DLD Inspection NK, PP 250 LOC 2000 1.3 1.0 1.3 3M0/2003 15 00 3/7/2003
Task Panel Control CODEINSP | Task Panel Control Code Inspection NK, PP 250 LOC 2000 1.3 1.0 1.3 3M0/2003 15 0.0 3M0/2003
ProfileUserList.aspx DLDINSP ProfileUserList.aspx DLD Inspection PP, VY 1010 LOC 200.0 51 1.0 51 3M7/2003 16 20 2i4/2003
ProfileUserList.aspx CODEINSP ProfileUserList.aspx Code Inspection PP, VY 1010 LOC 2000 541 1.0 51 3M72003 16 4.4 2/27/2003

—— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

— © 2010 Carnegie Mellon University

Size

Size is a measure of the magnitude of the

deliverable, e.g. lines of code or function points, 1
pages. , - ¢

TSP size measures are selected based on their ‘P AL ‘
correlation with time. " o -

‘ o
TSP Size Summary - Form SUMS ||
Name Prasad Petini
. Team PSP Ghost
TSP also uses size data to Date 2137004
Cycle Actual Size |]
H 1=
- normalize other measures 5 g
= c
s 5
o b o
. track progress i 5| £ 5| B | |38 |¢
Assembly, Sub-Assembly, | 9 I o 8 i} 5 Ll) z T
=] or Part Name g Parent Assembly Name (¥ 3 @ 3 g 3 g g E
25 DeliveryOEMPartValidate-Files & OEM MOO Integration RSM PP LOC 0 0 0 439 0 439 439
26 DeliveryOEMPartList(SGL) A OEM MOO Integration RSM PP LOC 0 1] 0 613 u] B13 613
27 AppDataExchangeCreate(SQl & OEM MOO Integration RSM PP LOC 0 1] u] 178 u] 178 178
28 AppDataExchangeGet(SQL) A OEM MOO Integration RSM PP LOC 0 0 0 153 0 153 153
29 OEM MOO Integration RSM A SYSTEM NK Text Pages u] 1] 0 4 0 4 4
30 Build Doc for OEM MOO Team & OEM MOO Integration RSM NK Text Pages 0 0 0 0 0 0 0
B4 Dl Cmid fme AEMA AR Tam 8 AT MAA mdmmembinm DOM W1 A a - A a a a A

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Time

Time is a measure of time on task.

The TSP time measure is task hours,
l.e. the time spent on a project task,
minus interruption time.

TSP team members record their time

TSP Time Recording Log - Form LOGT
as they work, not at the end of the Nome Prasa Per bato 20004
Team PSP Ghost
Cycle
day, week, or month. e
Assembly | Phase | Task | Date | Start Int. | Stop | Defta

OEM-ChangeR PLAN OEM-ChangeRequest-7 PLAN 031303 154510 16:22:43 376
OEM-ChangeR HLD OEM-ChangeRequest-7 HLD 031303 16:53:08 17:30:40 375
OEM-ChangeR DLD OEM-ChangeRequest-7 DLD 031303 17:30:49 18:02:59 322
OEM-ChangeR DLD OEM-ChangeRequest-7 DLD 031303 185520 19:54:35 593
OEM-ChangeR DLDR OEM-ChangeRequest-7 DLDR 031403 10:00:43 10:31:59 N3
OEM-ChangeR DLDINSP | OEM-ChangeRequest-7 DLDINSP 031703 14:37:36 15:13:56 363
OEM-ChangeR DLD OEM-ChangeRequest-7 DLD 031703 154618 16:00:51 146
OEM-ChangeR DLD OEM-ChangeRequest-7 DLD 031703 16:11:56 16:33:34 2186
OEM-ChangeR DLDR OEM-ChangeRequest-7 DLDR 03M7/03 16:46:49 17:04:20 175
OEM-ChangeR CODE OEM-ChangeRequest-7 CODE 031703 17:4547 18:47:23 616
OEM-ChangeR CODE OEM-ChangeRequest-7 CODE 031703 18:50:51 19:01:18 105
OEM-ChangeR CODE OEM-ChangeRequest-7 CODE 031803 09:38:54 10:10:35 N7
OEM-ChangeR CR OEM-ChangeRequest-7 CR 031803 11:50:46 12:04:33 138 °
OEM-ChangeR CR OEM-ChangeRequest-7 CR 031803 12:53:56 13:29:14 353

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

— © 2010 Carnegie Mellon University

Defects

Defects are the measure of quality in the TSP.

Any change to an interim or final work product, made
to ensure proper design, implementation, test, use,
or maintenance, is a defect in the TSP.

DefeCtS are |099 ed as th ey TSP Defect Recording Log - Form LOGD
Name Prasad Perini Date 2/3/2004
f d d f d Team PSP Ghost
are found and fixed. -
Fix Fix
Date Num | Type Assembly Injected Removed | Time | Ref. Description
1162003 66 20 OEM User Groups CODE CR 50 Missing ', between parameters
1162003 67 70 OEM User Groups CODE CR 5.0 Permissions don't match for objects and its attribud
D ef e Ct tra C kl n t a k e S I a C e 1/23/2003 68 70 OEM User Groups DLD CODEINSP 50 SRFile, SRProperty objects need create permissiol
g p 1/23/2003 69 70 OEM User Groups DLD CODEINSP 100 Permissions don't match for objects and its attribu
142372003 70 70 OEM User Groups CODE CODEINSP 20 211-212 Wrong Sproc (iGrpApp should be iCode)
th rou g h 0] ut th e p rocess. 1/24/2003 71 70 OEM User Groups CODE ut 250 Wrong Database Name for User&ccount Object
112452003 72 70 OEM User Groups DLD uT 3.0 Extra Aftribute name in UserAccount ObjectAttribu
172452003 73 90 AppDataExchangeG DLD DLDR 1.0 Granted permissions to OEMUsers instead of Phot
172472003 74 40 AppDataExchangeG DLD DLDR 50 Step names in Logic don't match with error table
172412003 75 40 AppDataExchangeG DLD DLDR 1.0 Change record to IsActive in step 2
112452003 76 70 AppDataExchangeG DLD DLDR 1.0 Column names were not specified in step 4
4 M4 0N TT CA MumnlNeadaConlimamaus™ N N nl N 4 N Cvvmy mmmaldinem taime med smmmifiosd aébov conslobs

Team Software Process

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

What the Direct Measures Provide

Management measures derived from the base measures are used by
the team to manage the project and manage quality.

Project management measures: earned value, productivity ,
estimation accuracy, estimation size and effort prediction intervals, cost
performance index, time in phase distributions, ...

Quality management measures: defects injected and removed in
each process phase, defect density, defect injection and removal rates,
process yield, phase yield, review and inspection rates, cost of quality,
percent defect free, quality profiles, quality profile index, ...

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

PSP Improves Estimating Accuracy -1

Effort Estimation Accuracy Trend

e Mean Time Misestimation
——— PSP Level Average

298 developers

02 T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11
Program Number

Estimated Minutes - Actual Minutes / Estimated Minutes

—— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

PSP Improves Estimating Accuracy -2

40

PSP 0
Majority are under-estimating 20 4

0 -
4(—)200% -100% 0% 100%

PSP 1

[\
(=]
|

Balance of over- and under-estimates

-200% -100% 0% 100%

Much tighter balance around zero

-200% -100% 0% 100%

o _m— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

PSP Improves Process Yield

Pre-compile Defect Yield
PSPO

60%

40% -

PSP1

Yield

20% -

PSP2

0%] 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9
Assignment

298 developers

A higher-yield process will result in fewer defects in test.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

PSP Quality Results

Defects Per KLOC Removed in Compile and Test

120

110

100 T

90

b Mean Compile + Test

80
i ——— PSP Level Mean Comp + Test

70
60

50

40

30 T
20

Mean Number of Defects Per
KLOC

10 B 298 developers

0 T T T T T T T T T T

Program Number

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Test Defects -from PSP Training

250 - 810 developer$
= 200 \ —1st Quartile
% 150 \ 2nd Quartile
g 100 3rd Quartile
) \\ At Quartil
a8 04— — — — Quartile

0 E— Defect
| | | | | | | | | | reduction
N D L Lo QA @ O O 1Q: 80.4%
S S S S S S S S S \
O HO° SO HO? 4O HO° O LO° ,O° O 2Q: 79.0%
N N A A A A A R 3Q. 78.5%
4Q: 77.6%

PSP Assignment Number

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

PSP Design Time Results

Time Invested Per (New and Changed) Line of Code

1.4
12 PSP1 PSP2
Q
9
- 1.0
(O]
o
g 0.8 A e Design
% —o— Code
8 0.6 - —a— Compile
5 —— Test
=
= 0.4 A
c
©
(V)
= 02-
298 developers
O-O T T T T T T T T T T

Program Number

—— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Concepts

Managing self-directed teams

Using processes and measures in engineering/creative work

Quality management

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Software Industry Quality Strategy

The software industry is the only modern
high-tech industry that ignores quality until
test.

Most software defects are found in or after
test when defect removal costs are the
highest and the methods are the least
effective.

This strategy results in defective products
and unnecessary rework that inflates
development costs by 30% to 40% or more.

This strategy is also a principal cause of
unexpected delays, system failures, and
software security vulnerabilities.

Linux crash on Airbus Entertainment System

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Testing Coverage

Overload

Hardware

Configuration failure

Resource Operator
contention error
Unsafe and insecure
region = untested
Data error (shaded red)

Team Software Process

=== Software Engineering Institute | CarnegieMellon

© 2010 Carnegie Mellon University

Put a Quality Product into Test

IBM’s Dr. Harlan Mills asked: “How do you Defects Removed by Phase
know that you’ve found the last defect in
system test?” .
700
” 600
. . s g 500
“You never find the first one. 2
300
200
100
. 0 : : | ‘ r)
If you Want a quallty prOdUCt Out Of teSt, Desilgn Revi'ewand Codle Revigw and Unit Test System Test
you must put a quality product into test. p p

To put a quality product into test you must
manage quality at every step.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Quality Management Practices -1

Planning for quality

TSP quality planning estimates the number of defects injected

and removed at each phase based on historical injection rates
and phase yields.

Removal rates, review rates, phase time ratios, defect densities,
and other quality indicators are then calculated by the tools.

Measuring and tracking quality

Developers track every defect found and fixed.

Quality is reviewed weekly by the quality manager and the team.

= i i 1 . Team Software Pr
—=—— Software Engineering Institute | Carnegie Mellon cam SoTtwate Trovess

© 2010 Carnegie Mellon University

TSP Quality Management Practices -2

Defect removal filters

Every activity that finds and removes defects can be thought of as a
defect removal filter, e.g. reviews, inspections, compilers, static
analyzers, etc.

TSP has many such filters.
Capture/Recapture

TSP uses capture/recapture to estimate the defects missed in
inspections.

Defect prevention

Every defect found in system test or later is analyzed to prevent
future escapes.

Every defective module is re-inspected.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Quality and the Team

High quality can only be achieved by the development team.

To manage quality they must
have control of their process
have the proper data to track quality

be properly trained and motivated

The self-directed team management style empowers the team to
manage quality.

The integrated measurement framework provides the data.

PSP provides the training, motivation, and commitment.

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

The Project Completes Training
The training was completed in 30 days.

Bob and Tom were very happy with the results.

The team did not believe that management would change.

Management thought the team would not have the
discipline to manage their work.

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

Agenda
When [Topies

9:00 — Break «Case study: a project in trouble
*Team Software Process and its implementation strategy
*TSP concepts

Break — Lunch *Why projects fail
*Case study: launching the project

Lunch — Break *Case study: launching the project (continued)

Break — 5:30 *Case study: team-working framework
*Corporate experience with TSP
*TSP and CMMI

*Building internal support for TSP

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Failed Projects

2000 to 2008 Project Resolution Successful projects delivered on time,

on budget, with required features and
functions.

60
50
Challenged projects were late, over
budget, and/or failed to deliver all of
the required features and functions.

40
30

20

Failed projects were cancelled prior to
completion or delivered and never

2000 | 2002 | 2004 | 2006 | 2008 || used.

28% 34% 29% 35% 32%
23% 15% 18% 19% 24%
49% 51% 53% 46% 44%

10

e_

Source: Standish group 2009 Chaos
M Succeeded M Failed | Challenged | report.

—— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Project Failure \’7

Discussion topic: Why do teams fail?

10 minutes

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

What Makes Teams Fail?

There are lots of ways to make teams fail.
Start late.

Demand impossible schedules.
Under-staff the project.
Manage to the schedule.

Fail to manage quality.

Lack of teamwork.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Start Late

Many factors determine how long projects take.

Staffing experience and staff size
the size of the job

knowledge about requirements
job complexity

degree of change

Nothing, however, can make up for a late start.

—— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Demand an Impossible Schedule

To destroy a project, edict the schedule and don’t plan.

With an impossible schedule,
you cannot make a plan to meet the date
you must then work without a plan

you cannot coordinate or track the work

This is when everyone is in the dark.

You don’t know where you are.

And neither does anyone else.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Understaff the Project

Pretend every project is staffed.

Don't set priorities.
Expect part-time engineers to produce.

Push for maximum overtime.

With understaffed projects, you

feel the work is low priority
are not personally committed
make a lot of mistakes

- Just try to get through test

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Manage to Schedule

Schedule is all that matters.
Quality is not measured.
There is no time for training.
There is no time for inspections.
The top priority is getting into test.

This is when

the job seems endless

there is no sense of progress

you just want to throw it over the wall
products are late and defective

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Failure to Manage Quality

When quality isn't managed,
projects appear to be farther ahead than they really are.

testing and rework account for half the schedule.

testing is unpredictable; no one knows how long it will take to fix
the open critical defects.

As schedule pressure increases, shortcuts are taken that
make quality worse, and the schedule slips again.

o _m— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Lack of Teamwork

Software development is like a team sport, the best results
are achieved when the team members work together.

For software teams to produce high-quality products on
aggressive schedules, they must

be involved in the work

be committed to its success

share a common process and plan
have a personal commitment to quality

work cooperatively to meet the team goals

—— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

The Advantage of Self-directed Teams

Self-directed teams
develop their own plans
negotiate commitments
track their work
keep management informed of project status and risks

Self-directed teams

are empowered by their management
are personally committed

enjoy their work

can resolve many team failure modes

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Producing Self-Directed Teams

A supportive working |
Performance environment Defined

feedback l, roles

Self-Directed Teams

Challenging
goals

Commitment
ownership

A common process
framework

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

The Project and The Team

The new product was still critically needed in 9 months.

The only requirements document was a list of the features
in the competitor’s product that marketing had prepared.

The project team had

2 managers
9 software engineers

5 hardware engineers

The managers and the team were trained.

They were ready to launch.

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Process Structure

TSP projects are divided into cycles.

Each cycle starts with a launch or re-
launch and ends with a postmortem.

Cycle content is determined by the
team.

Any lifecycle model can be
supported.

TSP projects can start on any
lifecycle phase.

TSP supports whatever structure
makes the most business and
technical sense.

=== Software Engineering Institute

Carnegie Mellon

T -

Estimates, plans,
process, commitment

technical
goals

D

Lessons, new
goals, new
requirements,
new risk, etc.

Development
phase
or cycle

\ Phase or cycle M
Postmortem

Work products,
status, metrics,
results

Project /
Postmortem

Team Software Process

© 2010 Carnegie Mellon University

The TSP Launch Process

The launch process performs essential tasks.

Without a launch process, these tasks are generally addressed only
when needed.

This is often too late to prevent problems.

It often causes unanticipated project delays.

The launch process steps are performed quickly when the
engineers follow these guidelines:

do the work as quickly as practical.
be thorough but don’t bother with formality.

build on what has been done before.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Key Objectives of the TSP Launch

Put professionals in charge of their own personal work.
Provide a team environment that supports individual excellence.
Enable teams to produce processes and plans that best fit their needs.

Those that do the work, own the process, make the plans and make
the commitments.

The TSP Launch is the first step in this commitment process.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

The TSP Launch Products

In the launch and relaunch Launch Products

workshops, the team develops a
standard suite of launch products.

These launch products provide a
solid foundation for the project plan.

They provide a sound basis for
guiding and tracking the project.

%% Software Engineering Institute | Carnegie Mellon

documented team goals
team-member role assignments
inventory of processes

a measurable quality plan

a facilities support plan

an overall development strategy
a detailed next-phase team plan

individual plans for the next
phase

a consolidated team plan

a project risk assessment

Team Software Process

© 2010 Carnegie Mellon University

The TSP Launch Process

1. Establish 4. Build Top-
Product and
. down and
Business
Next-Phase
Goals
Plans

7. Conduct
Risk
Assessment

9. Hold
Management
Review

8. Prepare
Management
Briefing and

Launch Report

2. Assign Roles 5. Develop

and Define the Quality
Team Goals Plan

Launch
Postmortem

3. Produce 6. Build Bottom-

Development dJel
Consolidated
Strategy

Plans

The TSP launch process produces necessary
planning artifacts, e.g. goals, roles,

estimates, task plan, milestones, quality plan,
risk mitigation plan, etc.

The most important outcome is a committed
team.

= 1 1 I . « Team Software Pr:
—=—— Software Engineering Institute | Carnegie Mellon cam SOTware Troeess

© 2010 Carnegie Mellon University

Meeting 1 - Understand the Project Objectives

In meeting 1, the team meets with management to
understand the project objectives.

Management describes the business goals and objectives, e.g.
business need, resources, schedule, success criteria.

Marketing or the customer describes the product goals and
objectives, e.g. market, customer needs, features, success
criteria.

The team asks questions.

o _m— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Management said “Failure is not an option!”

Management placed the team under enormous pressure at
the start of the launch.

schedule and functionality were non-negotiable
resources were fixed

failure was equated to “out of business”

The team was convinced the project was impossible.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

The Project Team Responds

No one felt comfortable making a plan and commitment.
there were no requirements or designs
the project was impossible anyway

Without a plan the team had three choices
quit or wait to be fired

agree to management’s demands and be fired when the project is
late

make a plan

They decided to make a plan.

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

Launch Meeting 2

The purpose of launch meeting 2 is to guide the team in
setting project goals and establishing team member roles.

Team members identify and select the roles of their choice.

A primary and an alternate are selected for each role.

Small teams may assign roles to groups or individuals
outside of the team.

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

Team Goals

The team develops a business needs statement to guide the
project.

Why does management want this project?

What will the project contribute to the business?

Measurable goals are established for each project stakeholder.
customer
user
management
team

team member roles

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Assign Team Roles

e Project Management Roles

Planning manager — responsible for tracking the plan.

Quality manager — responsible for tracking the quality plan.

Process manager — responsible for ensuring process
discipline and for process improvement.

Support manager — responsible for ensuring that support
needs are met and for configuration management.

Technical Roles

Customer interface manager — responsible for the interface
to the customer or customer representative.

Design manager — responsible for the design practices and
quality.

Implementation manager — responsible for implementation
practices and quality.

Self-directed team roles

Test manager — responsible for test practices and quality.

Eight pre-defined roles distribute traditional
project management responsibilities across the
team.

All team members have traditional roles, e.g.
developer, tester, etc.

Team Software Process

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Meeting 3 - Define the Work and the Approach

In meeting 3, the team accomplishes three

Conceptual

design Important prerequisites to building the team
plan.
Development 1. identifies all of the work the team
strategy
needs to do
List of 2. identifies the build strategy the team
products .
will use to develop the software
Project 3. identifies or defines the processes the
bt team will follow to do the work

Project strategy

o _m— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Product Conceptual Design

The product conceptual design is the “big picture” view of
the product, it is not a high-level design.

It includes the major parts of the products, i.e. what needs
to be built to meet management’s minimum requirements

The conceptual
design answers the
question, “If | had
these parts | could
build this system.”

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Development Strategy

The development strategy is the “big picture” view of the
development effort.

development increments and builds
general version content and freeze points
prototypes needed

iIntegration and test strategy

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Initial Estimates

Rough size and effort estimates are needed to define the
development strategy.

size estimates of the individual parts in the product conceptual
design

effort estimates for each increment

These estimates are based on available historical data, the
engineer’'s PSP data, and/or best guess.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

List of Products and Features

=
o
o
The list of products and features <
[l [] 2-
iIncludes everything that will be 2
7]
7]
p I’Od U Ced . o Assembly, Sub-Assembly, or Part Name < Parent Assembly Name
1 BOM Wizard A SYSTEM |
. 2 BOM Wizard A SYSTEM
e requireme nts 3 Security Analysis-BOM Wizard A BOM Wizard
4 General Query w/oc BOM Query (FE) A BOM Wizard
. g . 5 Query CommonCode w/o BOM Query (MT) A BOM Wizard
. SpeCIflCathnS 6 Export to Excel (FE) A BOM Wizard
7 EI-CI Relationship Report (BE) A BOM Wizard
. 8 BOM Viewer Control (FE) A BOM Wizard
. dGSIg ns 9 Add BOM Query to General Query (FE) A BOM Wizard
10 Common Query Changes (BE) A BOM Wizard
11 BOM Query Sproc Changes (BE) A BOM Wizard
° SOftwa re 12 User Report Settings (BE) A BOM Wizard
13 BOM Wizard & Query Common Code w/BOM and Expc A BOM Wizard
14 General Query BE Changes A BOM Wizard
. test cases 15 OEM MOO Integration RSM A SYSTEM
16 System Analy=is-OEMMOO A OEM MOO Integration RSM
. 17 OEMMOO Delivery.aspx (FE-Server) A OEM MOO Integration RSM
° dOCU mentatlon 18 OEMMOO Delivery.aspx (FE-Client) A OEM MOO Integration RSM
19 RSMEDelivery(MT) A OEM MOO Integration RSM
H H 20 ConfigReader (MT) A OEM MOO Integration RSM
¢ InSta”atlon proced u reS 21 OEMUserAccountinitiate (SQL) A OEM MOO Integration RSM
22 DeliveryOEMPartValidate-User(SQL) A OEM MOO Integration RSM
3 DeliveryOEMPartValidate-OPK (SQL) A OEM MOO Integration RSM

Team Software Process

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Development Process

The team next plans their development process.

Having defined what to build the team is prepared to define
how to build it.

The development process is based on the organization’s
standard process and the TSP.

This step produces a process plan.

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Development Process

] High-Level .
Requirements > . » Implementation
Design
Requirements High-Level Implementation
Launch Design Launch Launch

Produce
High-Level
Design

Produce
Requirements
Specifications

Produce
Detail Design

Personal

Review

Produce
Technical

Artifacts (Code)

Personal
Review

Compile

Inspection .

&siection
The TSP process elements are

adapted to the organization’s process.

A 4

System Test

System Test
Launch

System

Team Software Process

=== Software Engineering Institute

Carnegie Mellon

© 2010 Carnegie Mellon University

The Process Plan

The process plan is

an inventory of process elements that will be used by the team

a plan for building any missing elements.

Size and time estimates are made for producing any
missing elements.

Responsibility for producing or acquiring these elements is
then typically assigned to the process manager.

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

Meeting 4 - Build the Overall Plan

: _ In launch meeting 4, the team creates the
Estimate size overall plan by establishing

the estimated size of each work product
(how big is the job)

Define tasks

the tasks needed to complete the work
(with effort estimates)

Estimate — next-phase tasks, detailed to the
resources work-step level

— later phases at a high level

Estimate | |
available . the estimated team hours available each

time week for the work

an initial schedule for the project
Overall plan

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Size and Effort

The size measure is selected

Gode Production Rate based on its correlation to effort.
§ R = 0882
: / Detailed component size
3 / * estimates reduce estimation risk.
§ s Total effort can then be predicted
for each component.
Actual (-;‘f;‘/t (Howrs)

—— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Estimated Size

TSP Size Summary - Form SUMS 4]
Name DGW
Team Galileo
Date 8/12/2002
Cycle Planned Size
5 -
Q 5
= =
d 2 2
z @ - 2
2 5 = B 2 T 3 5 _
Assembly, Sub-Assembly, | @ S o o] bl 2 a = ©
o or Part Name =z Parent Assembly Name | O %] 3 a = =z & 2 B
23 Gateway dbus_rcv A Gateway tj LOC 3059 0 0 200 0 200 3259
24 Gateway cyc A Gateway re LOC 145 0 0 15 0 15 161
25 Gateway rd A Gateway re LOC 6365 0 0 100 0 100 5465
26 Gateway ms A Gateway rc LOC 2685 0 0 100 0 100 2785
27 Gateway f82_8%9sc A Gateway rc LOC 1657 0 0 100 0 100 1757
28 Gateway FC 227 A Gateway tj LOC 2576 0 0 100 0 100 2676
29 Gateway FC 227-SOE A Gateway ro LOC 0 0 0 50 0 50 S0
30 Gateway FC 228 A Gateway tj LOC 0 0 0 800 0 800 800
31 Gateway FC 222 A Gateway tj LOC 5175 0 0 300 0 300 5475
32 Gateway FC 223 A Gateway mrw LOC 1677 0 0 300 0 300 1977
33 Gateway FC 224 A Gateway ro LOC 2458 0 0 200 0 200 2699
34 Gateway FC 225 A Gateway ro LOC 1750 0 0 100 0 100 1850
35 Gateway flash A Gateway mrw LOC 401 0 0 50 0 S0 451
36 Gateway nvm A Gateway mrw LOC 3029 0 0 250 0 250 3279
37 Gateway spo and nvm A Gateway mrw LOC 0 0 0 35 0 35 35 B
M 4> M STRAT .“INV .~ SUMP .~ SUMQ | SUMS . Task .~ Schedule .~ LOGT .~ LOGD .~Week ./ IRTL .~ IRWeek A >

Team Software Process

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Task Planning

Assembly Task Planner @

Assemblies Assembly | BRC FC 227
= SYSTEM » i
EI Size | 200 | LOC
= [E] calieo
= . BRC Rate 10
BRC General
. Total Hours 200
[Z] BRrC FC 227-50E
BRC FC 227 Process | Team Software Process j
[Z] ercFC 224 Defects
Tasks T Plan Hrs. | Enars. Inj. Rem.
[£] eRc Fc 228 cold ‘ ask [Plan Hrs. | Enars .| Re
BRC FC 227 - Planning 0.4 1.0 0.0 0.0
. BRC FC 228-50E BRC FC 227 - Requirements 0.4 1.0 0.0 0.0
. BRC FC 229 BRC FC 227 - System Test Plan 0.5 1.0 0.0 0.0
BRC FC 227 - REQ Inspection 1.0 1.0 0.0 0.0
[E] BrcFC 241 el .
BRC FC zz7? High-Lewel Design 1.4 1.0 0.0 0.0
Ogtimize Downlo: BRC FC 227 - Integration Test Plan 1.0 1.0 0.0 0.0
BRC FC 227 - HLD Inspection 0.6 1.0 0.0 0.0
= Gatevvay . .
BRC FC 227 - Detailed Design z2.3 1.0 0.0 0.0
Gatewway Geners BRC FC 227 - DLD Review 1.0 1.0 0.0 0.0
= Gateway BIO BRC FC 227 - Test Development 1.0 1.0 0.0 0.0
BRC FC 227 - DLD Inspection 2.0 1.0 0.0 0.0
Gateway BRC FC 227 - Code 3.0 1.0 0.0 0.0
Gateway BRC FC 227 - Code Review 1.0 1.0 0.0 0.0
BRC FC 227 - Compile 0.2 1.0 0.0 0.0
= GWAY B EBRC FC 227 - Code Inspection 1.8 1.0 0.0 0.0
. G BREC FC 227 - Unit Test 0.6 1.0 0.0 0.0
. G ERC FC 227 - Build and Integration Test 0.6 1.0 0.0 0.0
BRC FC 227 - System Test 1.0 1.0 0.0 0.0
Gatevvay BRC FC 227 - Postmortem 0.z 1.0 0.0 0.0
[Z] cateway ¥
< ?
Delete Tasks Add Tasks Close

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

— © 2010 Carnegie Mellon University

Fine Tuning the Task Plan

A B G K L M| N O P Q R
TSP Task Planning Template - Form TASK Total Plan Hours
Name DGW 408.4
Team Galieo Reminder:
Date 8/12/2002 If Size and Rate are present, estimated hours is calcula
whenever the plan is updated. To prevent calculation, s
Cycle
® =21 &
Generate Task N |l | 2 =]
: Update Plan » (2] = I & I
List o o = L £ o g
o 3] 5 (] - 5] 3
2 E 2| 2| 2 E |E| ¢
Assembly Phase Task & E c% 14 [Lﬁu &5 g
Gateway BIO Moc HLD Modulebus diag. (Phase 2) - design dgw 600 LOC 10.0 60.0 0.1 6.0
Gateway BIO Moc CODE Modulebus diag. (Phase 2) - coding dgw 600 LOC 10.0 600 04 240
Gateway BIO Moc CR Modulebus diag. (Phase 2) - code review dgw 600 LOC 10.0 60.0 0.1 6.0
Gateway BIO Moc COMPILE Modulebus diag. (Phase 2) - compile dgw 600 LOC 10.0 60.0 0.1 3.0
Gateway BIO Moc UT Modulebus diag. (Phase 2) - unit test dgw 600 LOC 10.0 60.0 0.1 6.0
Gateway BIO Moc UT IOR S800 interface HW testing dgw 0 0.0 0.0 1.0 0.0
Gateway BIO Moc HLD Modulebus Software BRC-based version - Design |dgw 350 LOC 5.0 700 0.2 155
Gatewawv BIN Hat' HL DINSP HntSwan Task . Nezinn Ingnertinn dnw 75 1.0C 50N 150 _01 17
4 r M STRAT “INV .~ SUMP .~ SUMQ SUMS | Task . Schedule . LOGT . LOGD . Week -~ IRTL IRWeek - PIP DTR {IF 4

Team Software Process

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Creating the Schedule

TSP Schedule Planning Template - Form SCHEDULE
Name DGW
Team Galileo Total Task Plan Hour
Date 8/12/2002 Total Schedule Plan Hour
Differenc
Cycle
2 ® o I 8L o ®
t |25 | % |23 | s | E
Date Week g 3z g 32 |28 [32
12/10/2001 16 15.0 18.0 5.3 53 I <
12/17/2001 17 15.0 33.0 16.2 215 TSP Task Planning Template - Form TASK
12/24/2001 18 0.0 33.0 0.0 215 Name DGW
12/31/2001 19 10.0 43.0 11.8 334 Team Galieo
1179007 5 P e
111-7.;33; ;? :‘ég ?,20 :’:; ?;i Date 8/12/2002 E is callculated as Size / Rate
112112002 22 15.0 33.0 16.4 87.8 Iculation, size or rate must b
1/28/2002 23 150 103.0 187 1065 Cycle
2/4/2002 24 9.0 112.0 10.2 116.7
2/11/2002 25 15.0 127.0 8.8 125.5 Generate Task L
211812002 26 150 1420 211 1465 List s i 4 - 2
2/25/2002 27 15.0 157.0 23.5 170.0 = g é
M 4 » M| Project .~ Team .~ Goals .~ Roles .~ STRAT . IN = = =
Assembly Phase Task g g g
Gateway BIO Moc HLD Modulebus diag. (Phase 2) - design 6.0 2182002 26
Gateway BIO Moc CODE Modulebus diag. (Phase 2) - coding 240 2/25/2002 27
Gateway BIO Moc CR Modulebus diag. (Phase 2) - code review 6.0 3/4/2002 28
Gateway BIO Moc COMPILE Modulebus diag. (Phase 2) - compile 3.0 3/4/2002 28
Gateway BIO Moc UT Modulebus diag. (Phase 2) - unit test 6.0 3/4/2002 28
Gateway BIO Moc UT IOR S2800 interface HW testing 0.0 3/4/2002 28
Gateway BIO Moc HLD Modulebus Software BRC-based version - Design 155 31172002 29)
Gatewaw BIN Hot' HI DINSP HntSwan Task . Nezinn Ingnertinn 17 1212002 2N
4 r M STRAT .~ INV .~ SUMP .~ SUMQ SUMS | Task .~ Schedule . LOGT .- LOG/ NI S

—— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

— © 2010 Carnegie Mellon University

The Earned Value Plan

Cumulative Earned Value

100.0

%0.0

80.0

70.0

Q
=]
s

—— Cumulative PV
—&— Cumulative EV

= =
o o
n B3

anjep pauieg

Cumulative Predicted EV

—=— Baseline Cumulative PV

30.0

200

100

N

Q
o

zo0z/s/8

z00z/6z/L
zoozfzefe
z00z/sTfL
z00z/8/t

zo0z/1/t

zooz/ve/fa
zoozfitfa
zooz/ot/a
zZooz/efa

zoozfizfs
zoozfoz/s
zooz/ET/s
z00z/a/s

z00z/6Z/v
zoozfeefv
z00z/STfiv
z00z/8/v

z00z/1/v

z00Z/5Z/€
z00z/8T/E
zZ00zZ/TT/E
zZ00z/w/E

z00z/szfT
z00z/81/z
z00z/11/z
z00z/¥/z

z00z/8z/1
zooz/1e/1
00z vT/1
zo0z/Lf1

T00Z/1E/21
100Z/vZ/T1
T00Z/L1/21
100Z/0T/Z1
T00Z/E/TT
100Z/9Z/11

[.

Sll.l.!;1Q SUMS -~ Task .~ Schedule “LOGT ~LOGD ~Week “IRTL IRWeek

SUMP

Team . Goals .~ Roles .~ STRAT INV

Project

4 4 » M

Team Software Process

ineer

=
=
=
=
&
=
o
o)
-

ing Institute

Software Eng

© 2010 Carnegie Mellon University

Meeting 5 - Build the Quality Plan

In launch meeting 5, the team builds a quality

SEEULA plan that estimates the
goals

number of defects that will be injected in each
phase

Defects
injected

number of defects that will be removed in each
phase

quality (defect density) of the final product

Defects . quality (process quality index) of the
removed development process

leaal:‘ty The team ensures that the plan meets the

quality goals.

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

Planning

Defect Removal Filters Bl Development

O

[Defect Filter

Requirements

Launch msRequirements ggl [ENEEY

High-Level : - X
w'“sp“"“ High-Level Design

'
Detail Design Review Compile
(PSP) (PSP) (PSP)

Implementation

Unit Test Postmortem

> Integration & System Test
/

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

Economics of Quality

Efficiency Effectiveness Predictability

4 Y4 AY4 N
Avg. removal Phase yields Estimated effort
rate (% of defects
(defects/hr) removed)
Design Review 1.5 50% to 70%
Low
Design Inspection 0.5 50% to 70% variability -
_ based on
Code Review 4 50% to 70% product size
Code Inspection 1 50% to 70%
Unit Test 0.2 35% to 50% | High variability
- based on
Integration Test 0.1 35% to 50% time to find &
System Test 0.05 35% to 50% | X defects

—— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Defect Injection/Removal Plan

Defects Injected Plan Defects Removed Plan
Planning 0.0 Planning 0.0
Requirements 17.0 R UEInE: S
System Test Plan 0.0 géséem;itﬁ::]an —_— (1)'8
=G Ieeseen) _____ b High-Level Design 0.0
High-Level Design o4 T Integration Test Plan 0.0
Integration Test Plan 00 HLD Inspection 418
HLD Inspection 0.0 Detailed Design 0.0
Detailed Design 4.5 DLD Review 15.7
DLD Review 0.0 Test Development 0.0
Test Development 0.0 DLD Inspection 4.7
DLD Inspection 0.0 Code 00
Code 469.9 ggi}ep,ﬁ{:"'ew —333?

. -~ A~ | | .
Lk Rewew —OO Code Inspection 54.0
Compile _ 126 Unit Test 18.5
Code Inspection —00 Build and Integration Test 14.8
Unit Test 13.8 System Test 1.8
Build and Integration Test 0.0 Total Development Defects Removed 570.6
System Test 0.0 Acceptance Test 0.0
Total Development Defects Injected 572.4 Product Life 18

—— Team Software Process

=== Software Engineering Institute | CarnegieMellon

© 2010 Carnegie Mellon University

Quality Plan Contents

The quality plan goals are used like control limits, to
support early identification of quality problems.

The quality plan includes these key derived measures
percent defect free
yield by phase
Inspection and review rates
defect density by phase
development time ratios

defect ratios

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Assessing the Plan for Quality

High quality is not achieved by accident.

The team’s plan should include defect removal and defect prevention
steps before testing.

Adequate time should be planned for
requirements and design

personal reviews
inspections by peers

Thelplanned product defect density should meet the team’s quality
goal.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Meeting 6 - Build Individual Work Plans

In launch meeting 6, each team member

Allocate builds a plan to which he or she can commit.
tasks . :
In building their plans, the team members
Create - allocate tasks to individuals
individual . refine size and effort estimates using their own
plans data and processes
break tasks to the granularity of around 10
Balance hours or less per task
e estimate their own available task hours for
each week
Balanced . create an earned-value plan

plan
balance workloads across all team members.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

The Need for Detailed Individual Work Plans

With detailed plans the engineers

know what tasks to do next
get data for future detailed planning

have plans that are easier to compare with actual results

With detailed plans, engineers can also

track progress in detail
know where they are on the plan

get regular performance feedback

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Personal Plan Review

Each developer presents his or her plan.

Team members consider whether

the plan is complete

the plan is sufficiently detailed

the tasks are consistent with the team’s overall plan
the plans should be adjusted

the plan seems reasonable and achievable

The developer makes any needed adjustments.

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

Plan Consolidation

The planning manager then leads the team in producing a
composite team plan.

The product is based on a roll-up of the individual plans using
the TSP support tool.

If the rolled-up plan does not match the top-down plan,
adjustments are made

balance workload or add resources
increase schedule

reduce requirements

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Meeting 7 - Risk Management

In launch meeting 7, the team develops a

Identify risk management plan.

Risks

In building the risk management plan the

Risk team members
Evaluation

identify project risks

evaluate each risk for high, medium, or low

Mitigation impact and likelihood
Action

assign each high or medium risk to a team
member and define an action date and

Risk mitigation strategy

Management
Plan

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Launch Meetings 8 and 9

9. Hold
Management
Review

8. Prepare
Management
Briefing and

Launch Report

=== Software Engineering Institute | Carnegie Mellon

Team Software Process

© 2010 Carnegie Mellon University

The Project Plan Summary

The project produced a very detailed plan but it had at least one
problem, it did not meet management’s goal for release.

Size and Effort Plan
Size (New and Changed LOC) 110,000
Effort (Task Hours) 16,000
Schedule Months 18
Product Quality (Defects/KLOC) Plan
Integration Test 1.0
System Test 0.1
Field Trial 0.0
Operation 0.0

=== Software Engineering Institute

Carnegie Mellon

Team Software Process

© 2010 Carnegie Mellon University

Meeting 9 - Making a Commitment

The team leader briefed management on the plan.

Under strong management pressure, the team

explained their approach.

justified the effort required.

Management reluctantly accepted the plan and the team
began development.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Agenda
When [Topies

9:00 — Break «Case study: a project in trouble
*Team Software Process and its implementation strategy
*TSP concepts

Break — Lunch *Why projects fail
*Case study: launching the project

Lunch — Break *Case study: launching the project (continued)

Break — 5:30 *Case study: team-working framework
*Corporate experience with TSP
*TSP and CMMI

*Building internal support for TSP

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Work Begins

Weekly plannmg TSP Task Planning Template - Form TASK
Name DGW

. Priorities for the week Toam Saueo

. Task order Cycle

- Time Tracking s [updste pan

- Defect Tracking

Assembly Phase Task
. Gateway BIO Ger PLAN Gateway BIO PLAN

- Task Completion Gateway BIO Ger HLD Gateway 50 ALD
Gateway BIO VO!HLD Create VOS library skeletons - Design
Gateway BIO VO! CODE Create VOS library skeletons - Coding
Gateway BIO VO!CR Create VOS library skeletons - Code Review
Gateway BIO VO! COMPILE Create VOS library skeletons - Compile
Gateway BIO VO!TD Create VOS library skeletons - Test Development
Gateway BIO VO!UT Create VOS library skeletons - Unit Test
Gateway BIO VO!HLDINSP Create VOS library skeletons - Design Inspection
Gateway BIO VO! CODEINSP Create VOS library skeletons - Code Inspection
Gateway BIO VO!HLD VOS Library - Semaphore routines - Design
Gateway BIO Ger HLDINSP Gateway BIO HLDINSP
Gateway BIO VO!HLD VOS Library - Misc. routines - Design
Gateway BIO VO!HLD VOS Library - Timer routines - Design

» M| Project .- Team . Goals . Roles .- STRAT . INV .- SUMP . SUM

Team Software Process

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Personal Tracking

1. Set priorities 2. Define task Record defects
for the week paoelectiashk found and fixed
Mark task
complete

Team Software Process

%% Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

The Team-Working Framework

The TSP team-working framework helps the project move forward.

Bob Tom Sally John Tyra Pablo Gloria Abhinav
Team plans are consolidated weekly
Galileo Protec RSM

A 4

Management reviews are held monthly

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Weekly Status

Team members meet each week to
assess progress.

- Role managers present evaluation of
the plan and data

Goal owners present status on
product and business objectives

Risk owners present status on risk
mitigation plans and new risks

- Team members present status on
their plans

Plan deviations are addressed each
week.

Significant deviations, e.g. new
requirements, trigger a replan.

=== Software Engineering Institute | Carnegie Mellon

Performance Data Reviewed

Baseline Plan Value

Plan Value

Earned Value

Predicted Earned Value
Earned Value Trend

Plan Task Hours

Actual Task Hours
Tasks/Milestones completed
Tasks/Milestones past due
Tasks/Milestones next 2 weeks
Effort against incomplete tasks
Estimation Accuracy

Review and Inspection Rates
Injection Rates

Removal Rates

Time in Phase Ratios

Phase and Process Yield
Defect Density

Quality Profile (QP)

QP Index

Percent Defect Free

Defect Removal Profile

Plan to Actual Defects Injected/Removed

Team Software Process

© 2010 Carnegie Mellon University

Resource Tracking

Cumulative plan and actual resource hours shows resource burn rate and
potential source of slip

1200.0 ~
—e— Cumulative
Planned
Hours
1000.0 ~
Cumulative
(%) Actual Hours
=]
L 8000 A
o
O
c
S
o 600.0 +
@
=
]
<
=]
g 400.0 -
=]
(&S]
200.0 ~
0.0 + T
g < < < < < < < < Lo LO Lo LO Lo LO Lo LO Lo
o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o
o o™ o o™ o o™ o o™ o™ o™ o™ o™ o™ o™ o™ o™ o™ o
| S T T e S S S A L S
(an) o ™~ ~ LO O [aa\] «© o o N~ ~ < [e @) < O ~ Lo
D N — N N = L = N = A =—— (A
oo D (@>) o o ~ ~ ~ o ~ ~ (@] o o o <r <
— - -— —
Week

Team Software Process

=== Software Engineering Institute | CarnegieMellon

© 2010 Carnegie Mellon University

Earned Value Tracking

1000 - Cumulative planned value
shows the current plan.
90.0 A
Baseline cumulative
80.0 1 planned value shows the Cumulative
initial plan. Planned
700 i \/alue
e == CUMulative
%_ 60.0 - S~ EV
5 73
© 50.0 1 Cumulative
S 74 Predicted
g 400 - Earned Valug
o
Baseline
30.0 A Cumulative
. Plan Value
74 Cumulative earned
20.0 1 /7 value is the actual
progress to-date. .
10.0 1 Milestone Date
00 - | Baseline End Date 2/14
g & & 3 3 & 3 3 3 8 8 8 8 8 8 8 8
S 2 28 28 28 28 8 28 8 8 8 8 8 8 8 8 2| CurrentPlan End Date 4/25
S ® K - B ©®© & © © o KR = F 8 o <=
QT 9 £ 9@ = 9 Q9 = D2 @ 9 @ 9 .
® o © S S = = = d = = & o o o 3| Predicted End Date 5/16
Week |

Team Software Process

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Weekly Status Report

TSP Week Summary - Form WEEK
Name Carol Date 4/7/2003
Team PSP Ghost

Status for Week 15 j: Cycle

Week Date 3/10/2003 Plan/
Weekhy Data Plan Actual Actual

Schedule hours for this week 151.0 86.0 1.76

Schedule hours this cycle to date 1526.0 15948 0.96

Earned value for this week 6.9 4.2 1.64

Earned value this cycle to date 79.5 84.3 0.94

To-date hours for tasks completed 1580.7 1568.1 1.01

To-date average hours perweek 101.7 106.3 0.96

Task Plan Task Earned or Planned Plan vs.

Assembly Phase Tasks Completed or Due Resource Hrs. Actual Hrs. Plan Value Week Actual Hrs.

Main Form CODEINSP Main Form Code Inspection SA 1.5 2.4 0.1 10 0.63

OEMMOO Delivery.aspz UT QEMMOO Delivery.aspx (FE-Server) U NK 8.9 3.0 0.5 13 2.91
OEMMOO Delivery.aspx DLDINSP QEMMOO Delivery.aspx (FE-Client) DI NK 0.0 0.0 0.0 13

OEMMOO Delivery.aspx CODE QEMMOO Delivery.aspx (FE-Client) Ci NK 25 A 0.4 14 1.32

OEMMOO Delivery.aspx CR QEMMOO Delivery.aspx (FE-Client) Ci NK 3.8 1.7 0.2 14 2.26

OEMMOO Delivery.aspx COMPILE QEMMOO Delivery.aspx (FE-Client) Ci NK 1.3 049 0.1 14 1.44
OEMMOO Delivery.aspx CODEINSP OEMMOO Delivery.aspx (FE-Client) Ci NK 0.0 0.0 0.0 14

OEMMOO Delivery.aspz UT QEMMOO Delivery.aspx (FE-Client) Ul NK 5.9 6.8 0.3 14 0.87
Query Object TD Query Ohject Test Development mMB 0.0 0.0 0.0 14

Query Object CODEINSP Query Object Code Inspection mMB 0.0 1.2 0.0 14 0.00

Muarn: Mhiact 11T Muar: NMhiact | kit Tact Nialane | ¥, =] 154 17 n 14 neR

Team Software Process

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Quality Tracking

Percent Defect Free
Cumulative Defects Removed by Phase for Assembly SYSTEN
Defect Density by Phase for Assembly SYSTEM

g

g

2 25.00 +
g | B
= % 2000 +
-
8§12 |,
a & S 15.00 +

- | .
¥ 8 = —&—Plan
g \g "g’ Actual
S v < 10.00 +

g a

E 5.00

3 \\\

0.00 4 : : : : : "
& & @ @Q\\e &° <& <& <&
Q¢ & Q® <® K & N o
< N ® O S &
(N ® ® X 2
Qv I b\&
*
O
&
Phase

—— Team Software Process

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Quality Profile

The TSP Quality Profile is a quality early warning indicator.

It examines criteria that are effective predictors of system test and post-release
quality, and produces a graph of the result.

It supports drill down to any level for further analysis, e.g. in software:

system — component — module — class.

Quality Profile Criteria Quality Profile

1. Design time = coding time Design/Code

2. Design review time = 7% design time Time Ratio

3. Code review time = V2 coding time DeS|gn/!:) esign Code/Qode

Review Review

4. Compile defects < 10 per KLOC Time Ratio Time Ratio

5. Unit test defects < 5 per KLOC
If satisfied, a criterion has a value of 1, and is drawn Unit Test Compile Defect
along the outer edge of the chart. Defect Density Density

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

The Project in Week 6

Cumulative Earned Value
100.0 +
90.0 +
80.0 +
700 +
E 60.0 + —e— Cumulative Planned Value
; Cumulative EV
= 500+))
@ Cumulative Predicted Earned Value
E 400 + —~Baseline Cumulative Plan Value
30.0 +
20.0 +
10.0 +
00 = t } } } } } } } } } } } } } } |
(€6} [€e] [€e] [€e] [€e] [€e] [€e] [€e] [€e] [€e] [€e] [€e] [€e] [€e] [€e] [€e] [€e] [€e]
o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o
g4 94 4d o4 d 49 d g o4 d o d o o4 4 o d o
T T 9@ Q0 g5 =T @ 9@ » =T T @ 5 oo < ¢ @ =
N~ N~ N~ [o o o o o o ~ ~ o o o ~
Weeks

= 1 1 I . Team Software Pr:
—=—— Software Engineering Institute | Carnegie Mellon cam SOTware Troeess

© 2010 Carnegie Mellon University

Why Are We Behind?

P Week Summary - Form WEEK

Name Overall - Development Date 8/24/06
Team The"A" Team
Status for Week - 6 Selected Assembly Cycle

Week Date 8/14/06 SYSTEM

Plan / Plan -

Task Hours %Change Weekly Data Plan Actual Actual Actual Project End Dates
Baseline 1427.3 Schedule hours for this week 80.0 72.4 1.10 7.6 Baseline 11/6/06
Current 1427.3 Schedule hours this cycle to date 342.8 259.2 1.32 83.6 Plan 11/6/06
%Change 0.0% Earned value for this week 7.0 4.8 1.46 2.2 Predicted 1/8/07
Earned value this cycle to date 23.1 19.0 1.22 4.2
To-date hours for tasks completed 270.5 230.1 1.18
To-date average hours per week 57.1 43.2 1.32

EV per completed task hour to date 0.070 0.082

- Earned Value is Behind by 22%
- 18% over-estimated for work completed thus far
- 32% over-estimated “on-task” hours

- If we do nothing different it is likely we will finish 2 months behind

—— Team Software Process

=== Software Engineering Institute | CarnegieMellon

© 2010 Carnegie Mellon University

Plan Dynamics

Teams need detailed plans to make realistic commitments
and to coordinate and track their work.

Detailed plans are accurate only for brief periods of time.

As engineers work, they learn more about the job.
The work among individuals becomes unbalanced.

Organizations and teams are dynamic.

Consequently, TSP teams maintain their plans dynamically.

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

Communicating Commitment Changes

Whenever changes are made to the plan, the team must
make sure they

review plan changes
verify they understand why the changes were made

review impact to commitments

If the change to the plan impacts commitments

consider alternatives

offer choices and recommendations to stakeholders

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Earned Value Trend

T 00T

T 900 L L L
T 90020 L1
T 00ZEW L

Team Software Process
© 2010 Carnegie Mellon University

T 9002 1L
T 900Zf0E0 1
T 900Zsezio L
T 90023101
* 900201
- 90020l
.ﬁ 9002526
} ¢ 90023 W6

Weeks

4 88:,5
ot 900Z/H6
. t 9007/87/2
i 1 9002/ 1242
t 9002/ 18

=
=
=
=
&
=
b
<
o)
QD
)
=)
=
7
=
(*2)
=

._&_
_
_ﬁ.- m_oom._.h_.w
t_ T 9002 LErL

ineer

o L 900Zi4Zi2
< 1 900Z12 WL

Focus Hours Works!

t t t +— t t t t i 900Z/0 L
o 0N % @ 0 e
e Q@ 9 <

aNPAYIS puiypR g - 3INp3YIs jo peayy

Software Eng

A Project Quality Problem

Quality Profile for Assembly BOM Query Sproc Changes (BE)

Design/Code Time
1,

Design Review Time “mCode Review Time

Unit Test D LOC \\\Ccmplle Defects/KLOC

—&—Plan
Actual

Quality Profile for Assembly OEMMOO Delivery.aspx (FE-Server)

Design/Code Time

Ry
o

Unit Test Dd KL ‘Compile Defects/KLOC

Month 15

—e—Plan
Actual

Quality Profile for A bly C Query Changes (BE)

Design/Code Time
P N

Design Review Time Code Review Time

Unit Test D LOC ;Ccmplle DefectsKLOC

—&—Plan
Actual

Quality Profile for Assembly User Report Settings (BE)

Design/Code Time
1

Design Review Time Code Review Time

Unit Test Dd IKLOC ‘Compile Defects/KLOC

Team Software Process

Carnegie Mellon

—e—Plan
Actual

© 2010 Carnegie Mellon University

Teamwork: Results

The project was completed 17 months later with these results.
Quality levels improved 20 times over prior projects.

Actual effort and schedule were within 8% of plan (early).

The product worked so well that the customer ended their relationship with the

competitor.

Size and Effort Plan Actual
Size (New and Changed LOC) 110,000 89,900
Effort (Task Hours) 16,000 14,711
Schedule Months 18 17
Product Quality (Defects/KLOC) Plan Actual
Integration Test 1.0 0.2
System Test 0.1 04
Field Trial 0.0 0.02
Operation 0.0 0.0

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Agenda
When [Topies

9:00 — Break «Case study: a project in trouble
*Team Software Process and its implementation strategy
*TSP concepts

Break — Lunch *Why projects fail
*Case study: launching the project

Lunch — Break *Case study: launching the project (continued)

Break — 5:30 *Case study: team-working framework
*Corporate experience with TSP
*TSP and CMMI

*Building internal support for TSP

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

User Experience and the Business Case for TSP

The principal costs of introducing TSP are training costs and lost
opportunity cost resulting from time spent in training.

The principal benefits are

lower development costs and shorter schedules

more functionality per release and improved productivity

lower defect density in both system test and in the delivered product
improved work-life balance for the developers

improved customer satisfaction

fast track to higher performance and higher maturity

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Adoption

Microsoft “Itut '\‘ ORACLE
Adobe
‘ eDs < Sun Tt
" % microsystem —_———_— =
MITSUBISHI
Cestngtoneraton 5> FUJIFILM FuliXerox) sorelk
e P
S
COLTan NEDBANK Bursatec.

1 i 1 . Team Software Pr
Software Engineering Institute ‘ Carnegie Mellon cam SOTHRIE Treess

© 2010 Carnegie Mellon University

Schedule Management

First-time TSP projects at Microsoft had a 10 times better mean schedule error
than non-TSP projects at Microsoft as reflected in the following table.

Microsoft Schedule Results Non-TSP Projects TSP Projects
Released on Time 42% 66%
Average Days Late 25 6

Mean Schedule Error 10% 1%

Sample Size 80 15

Team Software Process

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Managing Task Hours

Task hours are the hours that teams spend on planned tasks and do not include
unplanned but necessary tasks like meetings, courses, coordination, handling mail, etc.

When measured, tracked, and managed, the team can usually improve task hours, but

management can’t. Why?

1200.0

—e— Cumulative
Planned
Hours

Cumulative
Actual Hours

1000.0 A

800.0 o

Cumulative Planned Hours
(0)]
o
o
o
‘

Teams monitor actual vs. plan hours per
week and for the cycle

\

TSP Week Summary - Form WEEK

\

£ = o = O = S o =
B IS S S~ = ~ N

= = - N Task Hours %Change
Baseline 660.8
Current 745.5

200.0 A i
Name Consolidation Date
Team Voyager
00 ———— Status for Week ‘% 11 Selected Assembly Cycle
e R - - =N ———————
S S 8888828 & | Week Date 1/22/2007 SYSTEMA
S 2 a - & ey 888 Plan/ Plan -

Weekly Data Plan Actual Actual Actual

Schedule hours for this week 51.0 48.1 1.06

2.9

Schedule hours this cycle to date 344.0 395.0 0.87

-51.0

=== Software Engineering Institute | Carnegie Mellon

Team Software Process

© 2010 Carnegie Mellon University

Improving Task Hours

At Allied Signal average task hours per
developer per week were improved from 6
9.6 hours to 15.1 hours through quiet time,

process documentation, more efficient AW \,/\7\,/ 51
meetings, etc. 5 ;e
AN vt

Actual Task Hours per Week

ol RAVIVR A 2
o | | N YWy
This is equivalent to a 57% increase in s P
productivity. : 8/ K/ \/
i IV
6
4 4} ——Avg. Task Hours - Week
.|.570/° |_| Avg. Task Hours - Phase

Source: Allied Signal

Team Software Process

oftware Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Reviews and Inspections Save Time

Xerox found that TSP quality management practices reduced the cost of poor
quality by finding and removing defects earlier when costs are lower.

Defect Removal Time by Phase
1600 -
1405
1400
1200
o 1000
5
= 800
= 500
400
200
5 22 2 25 32
O T — T T e T T 1
Design Design Code Code Unit System
Review Inspect Review Inspect Test Test
Removal Phase

Team Software Process

Soitware Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Reduced Rework

TSP System Test Performance Range and Average

60%
R f
40%
= Max.
30% = Min.
1| * Avg.
20% 1
10% ; 1
0% % %
System Test Effort System Test Failure COQ
% of Total Schedule % of
Total

Source: CMU/SEI-TR-2003-014

o _m— Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Productivity Improvement

From data on over 40 TSP teams, Intuit has found that

post code-complete effort is 8% instead of 33% of the project

for TSP projects, standard test times were cut from 4 months to
1 month or less.

Productivity improved by 30%.

Non-TsP Development
Development -

TSP

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Intuit Productivity Improvement

By putting a quality product into system test Intuit improved productivity and
reduced cost while delivering 33% more functionality than planned.

Results at Intuit: Productivity

= During 2007 over 60% of Intuit’s Small Business
Division used TSP

= TSP was a major contributor to the QuickBooks 2007
release

= |t was the smoothest release anyone can remember:
= On time delivery of all planned scope

* 13 new features were added during the cycle(33%
of initial scope)

» Saved $700K in temporary testing staff expenses

= Level of automated testing coverage was doubled
compared to previous year

Focused improvements helped deliver a great release

Source: Intuit

_—Emwe—n Team Software Process

S LTI

=== Sortware Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Intuit Quality Improvement

TSP reduced defects found in system test by 60% over the previous two
releases of QuickBooks 2007 release.

Intuit has also recently reported a savings of $20M from a reduction in
customer support calls on QuickBooks 2007.

Results at Intuit: Improved Quality

Cumulative Defects Found — 200¢ 2006 — 2007

In 2007 ~60% fewer defects were found
in System Test than the previous two releases

Source: Intuit

Team Software Process

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Work-Life Balance

Finding and retaining good people is critical to long-term success.

Intuit found that TSP improved work-life balance, a key factor in job
satisfaction.

Results at Intuit: Improved Work-Life Balance

* Half as many weekend source check-ins
(<3%)

= Reduced $ on dinners as measured by PSS -
“Pizza Slices Served”

12,000 pizza slices <
served last year ==

VS . .
~30 pizza slices
this year
TSP helped improved employee work life balance Source: Intuit

Team Software Process

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

A Process for Managers and Developers

3

“Ir was nice to be associated with a pro-
Jject that had few defects.”

“The Sysiem rest eng ineers became con-

vinced that TSP was worthwhile when they

realized that they were going from track-

ing down software bugs in the lab to just

confirming functionaliry. Our first pro-
Jject: certified wi
quality with significant drop in cost to de-
velop. Follow-on project: certified with

1 fen fimes increase in

NO software defects delivered to system
rest or cusromer.”’

“One of my first projects as an embedded
systems programmer finished on the day
we planned to finish six months eariier. I

atiribute the success to planning at a bet-

ng fill use of the
earned value tracking. T/

ter granularity and mak

e day we got
100% earned value was the day we
planned to get 100% value, and we as a
ream celebrated like we had won a bas-
ketball game.”

Source: CMU/SEI-TR-2003-014

“My first TSP-based team recently fin-
ished their system test. They had three sys-
rem test defects in 7400 lines of code. No
defects were code- or design-related; the)
were either install or documentation—
each of which took about five minutes to
fix. System rest took less than five percent

of the overall projecr effort.”
“Multiple projects in our organization
schedules (+/- three weeks) over a six-

month span. This is something we [had]
not been able to accomplis

1 in the past.
This is one of the reasons that manage-
ment is very happy with the TSP process.”

“Our schedule reliability is now +/- ren

percent from —50/+200 percent and our
defect density at the team level has been
reduced by over 50 percent.”

“Measuri

1g progress helps generate pro-
gress.”

“...[TSPis a] transparent project man-
agement paradigm—everybody has a
common understanding of the plan and
everyone knows what is going on in the
project and where we are in the project at

any time.”

“Our plans are much more detailed and
all the involved developers understand
them. As a consequence, we deliver what
we planned, on time.”

“PSP really sells you on the idea about
finding defects early in the process. It
really does make a difference at the end.
We thought it wasn't going to work. But
we all became converts. In doing the
work, you are producing valuable data
along the way. We improved productiv-
ity...improved it greatly. Iworried be-
cause I have seen too imany people more
interested in the process than in the prod-
uct. You are finishing smaller products at
more regular intervals.”’

Team Software Process

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Impact of TSP at Adobe

What's Important and How are We Doing?

Industry
Goal Question (Typical)
How satisfied are your customers?

Improved
(Net Promoter Score)

Customer
Experience

20%

Improved % of dev effort spent testing/bug fixing? 50%

Productivity o/ f jefects found before system test? 10%

Increased Effortrequired to do afull test cycle? ~ Varies
Agility '
Automated test code coverage level? ~ Varies

Sources: Caper Jones, Applied Software Measurement,, 1996.; Software Assessments, Benchmarks, and Best Practices., 2000.

Sharing what's possible and rewarding/recognizing improvement drives progress

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential 9 Adobe

Team Software Process

Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Quality Improvements at Adobe

Early Quality Results for our TSP Projects Are Impressive

W TSP

- s on P

Total Cost of Quality Post-Dev Yield (2)

Source: Quality Data for Six Adobe TSP Pilots

= Total Cost of Quality = Quality Activities (e.g. Peer Reviews, Unit
Testing) + Effort for Defect Rework (System Testing + Bug Fixing)

= TSP teams average of 9% is four times less rework than typical

= Teams found 93% of all defects before integration and system
test

Adoption of TSP is a great way for teams to improve both quality and productivity

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 16

=== Software Engineering Institute ‘ Carnegie Mellon

Team Software Process

© 2010 Carnegie Mellon University

TSP Implements CMMI -1

CMMI Process Categories
100%
& 75% .
[T,
o
)
) 50% —
£
=
o
s 25% —
(- ™%
OO/O I I I I |
X X . X Q
\@\\ Q\Q)@ Qﬁ\«\% $ ¥
& Ko 6§Q' ‘)QQ
Q@o &< Process Category

Unrated - out of scope
for TSP.

Not addressed -
project practice that

TSP does not cover.

8 Unrated
Partially addressed -

B Not Addressed project practices that

O Partially Addressed|| TSP addresses with
some weakness of

[SUPPOpTed omission

@ Directly Addressed || Supported -
organizational
practices that TSP
supports.

Directly Addressed -
TSP practices meet the
intent of the CMMI
specific practice (SP)
without significant
reservations.

Based on a SCAMPI C of the latest version of TSP

=== Software Engineering Institute

Carnegie Mellon

Team Software Process

© 2010 Carnegie Mellon University

TSP Implements CMMI -2

An organization using TSP has directly
addressed or implemented most
specific practices (SP). 80% .

100% -

60%

85% of SPs at ML2

78% of SPs at ML3

54% of SPs at ML4

25% of SPs at ML5 0%

80% of ML2 and ML3 SPs Lovel 2 Level 3 Level 4 Level 5 All Levels
CMMI Maturity Level

75% of SPs through ML5

40%

Percentage of SPs

20%

Most generic practices are also
addressed.

Based on a SCAMPI C of the latest version of TSP

%% Software Engineering Institute | Carnegie Mellon

Team Software Process

© 2010 Carnegie Mellon University

NAVAIR AV-8B TSP/CMMI Experience

AV-8B is a NAVAIR System
Support Activity.

They integrate new features
Into the Marine Harrier
aircraft.

They used TSP to reduce

the time to go from CMMI
Level 1 to CMMI Level 4.

SEI Average 6 Years

AV-8B 2.5 Years

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

Fast Track to High Maturity and High Performance

Team Software Process

oftware Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Implementation Strategy

TSP is implemented on a project-by-project or team-by-team basis

Start with two or three teams.

train the team members and their managers
launch these teams with TSP

evaluate and fine tune the approach

From the time of starting the first training session, a team can be
launched and up and running within 1 month.

This cycle is then repeated, increasing scope at a sustainable pace.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Selecting Pilot Projects

Pick 2 to 3 pilot projects.
3 to 15 team members
4 to 18 month schedule
software-intensive new development or enhancement
representative of the organization’s work
important projects
Select teams with members and managers who are willing to participate.

Consider the group relationships.
contractors
organizational boundaries

internal conflicts

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Deployment Timeline

Feb Mar Apr May Jun

Ju Aug Sep Oct Nov Dec

TSP Executive Strategy Seminar

Leading Development Teams

PSP Fundamentals ¢
Launch Initial Teams ¢

Cycle Postmortem for Initial Teams ¢
Re-launch Initial Teams ¢
Train instructors and coaches “~

Project Postmortem for Initial Teams

Train and launch remaining projects and
teams at a sustainable pace.

N B S ———

The training schedule can be compressed to as short as one week for a faster start.

The gating factor for most organizations is the availability of projects.

SEIl recommends training internal coaches as soon as possible.

=== Software Engineering Institute

Carnegie Mellon

Team Software Process

© 2010 Carnegie Mellon University

Build Internal Capability

Organizations should develop internal capability to support TSP.

SEl-certified TSP coaches are essential

SEl-authorized trainers are optional as training can be outsourced

The initial pilot projects provide the “hands-on” experience with
TSP.

Training and authorization requirements
Coach — one week training course, exam, and a launch observation

Instructor — one week training course and an exam

SEI does offer a support program where SEI leads the effort
initially and internal staff observe, then internal staff lead and
SE| mentors.

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Training for Participants

Participant CBT Course Notes
Option

Executives and No TSP Executive Strategy Seminar 1 day + optional %2 day strategic planning session.

senior management

Middle and first-line No Leading Development Teams 3 days

managers

Software developers | Yes PSP Fundamentals 5 days

PSP Advanced 5 days (optional)

Team members TSP Team Member Training 2.5 days (will replace Introduction to Personal Process

other than software in 2009)

developers

Instructors No PSP Instructor Training 5 days
Pre-requisite training: PSP Fundamentals and PSP
Advanced or PSP | and PSP Il

Coaches No TSP Coach Training 5 days

Pre-requisite training: PSP Fundamentals and PSP
Advanced or PSP | and PSP Il

Software Engineering Institute

Team Software Process

Carnegie Mellon

© 2010 Carnegie Mellon University

Summary

TSP is an agile, high-performance, high maturity process
for development teams.

It addresses the cost, schedule, quality, and predictability
issues that most organizations face

TSP can be introduced quickly with near-term ROI.

TSP complements CMMI and has compelling results.

Team Software Process

=== Software Engineering Institute ‘ Carnegie Mellon

Questions?

———= Software Engineering Institute | CarnegieMellon

Team Software Process

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

