

Project Management by Functional Capability

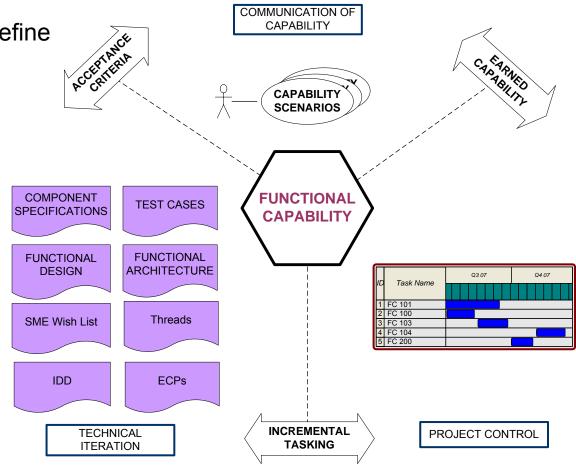
SEPG North America Conference 2008

Software Engineering Institute Carnegie Mellon

Fred Schenker Software Engineering Institute

Bob Jacobs Computer Systems Center Inc.

Introduction


- How many of your companies:
 - Manage projects?
 - What size (\$, # people)?
 - What technical scope (new development, modification, maintenance)?
 - What domain?
 - Use a size estimation method?
 - Follow a "CMMI" Project Management process?
- How do you define your projects?
 - At what level of management is your Project Management process applied?
 - How do you aggregate projects?
- How many are in "Product Line" organizations?
 - How does this affect your Project Management process?
 - How is the wbs applied?

Goals of this Presentation

- To introduce Functional Capabilities (FCs) as a mechanism for managing work in a complex product development environment
 - An efficient way to communicate anticipated functionality to the user, the developer, and other stakeholders
 - A structure of discrete artifacts and flows that define product development lifecycle activities
 - logical design
 - system analysis, design and implementation, and integration
 - testing
 - A scheme for planning, tasking, and tracking work
 - An effective generator of artifacts for CMMI
- To share experiences gained from initial deployment of this project management process

Functional Capability – Context

- Consider your *Program* to be a large amount of *functionality*, expressed as *capabilities*
- Functional decomposition will define increments of work to be accomplished, resulting in incremental capability
- We are proposing *functional capabilities* as a project management scheme to help deliver:
 - the right product
 - delivered on time and within budget

Agenda

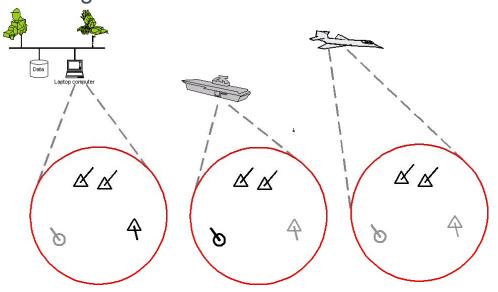
- Problem Statement
- SIAP
- Program Performance
- Functional Capability Overview
- Functional Capability Elaboration
- CMMI Mapping
- Summary

Problem Statement

- Product developers routinely fail to execute their projects
 - GAO Report 05/301, 2005
 - Defense Acquisition Performance Assessment, 2006
- How do acquirers (or sponsors) gain insight into their project's performance?
 - Does developer CMMI ML significantly affect project performance? If not, why not?
- How do contractors know they are producing what their customer wants?
- Do we need a different project context for Systems of Systems (SoS)?
 - CMU/SEI-2006-TR-017, Systems of Systems: "Scaling Up the Development Process"

Problem: Communication of Capability

- Capability must be expressed in user terms... What they want
 - Joint Capabilities Integration and Development System (JCIDS) is not sufficient
 - systems engineers need more expressive methods for requirements capture and development
- What they will get
 - "System" specifications (to drive developers) that users can relate directly to capabilities
- And how they know they are getting it
 - Earned value expressed in terms of capability, i.e., "earned capability"
 - performance-based earned value
 - assessment of functionality bow wave

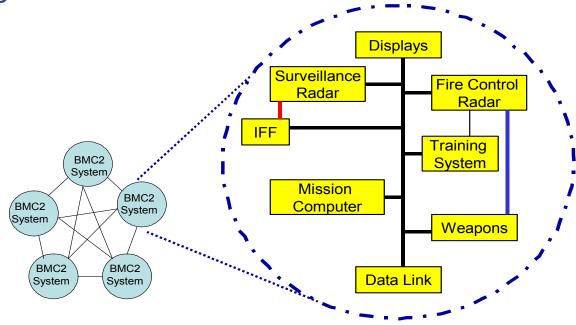

Problem: SoS Development Practices

- SoS: Collaborating systems developed by collaborating system acquisition teams
 - highly autonomous systems and teams
- Process challenges in:
 - organizational ownership, responsibilities, and technical team interactions
 - systems:
 - boundary definition
 - legacy systems and continuous technology evolution
 - continuous capability evolution
 - project definition, measurement, and reporting mechanisms
 - project execution processes
- Practical process methods are needed

Background: Single Integrated Air Picture

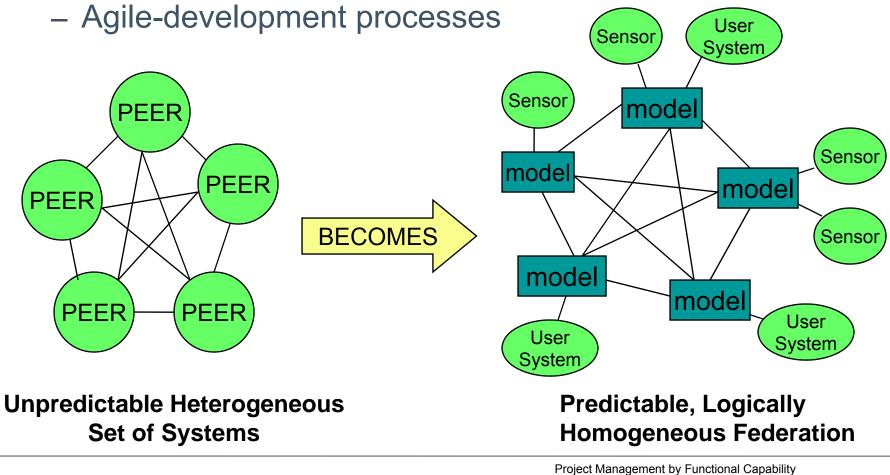
- Functional Capabilities (FCs) developed from experiences in SIAP

 SIAP is a Software Intensive System
 - FCs should apply to SoS in general



- SIAP Capability
 - user viewpoint: common, correct, complete, continuous, timely track situation presentation
 - system viewpoint: state of data consistency among distributed, replicated data stores, for objects of peer interest

DISCLAIMER: This presentation makes no statement concerning current SIAP engineering practices.


SIAP – Capability Material Challenge

- SIAP requires interactions of networked peers, each an operational node hosting multiple integrated systems
- Network connections are weak, with ad hoc, dynamic configurations

SIAP – Capability Material Solution

 Executable Object Model transformable to code, with core required functionality

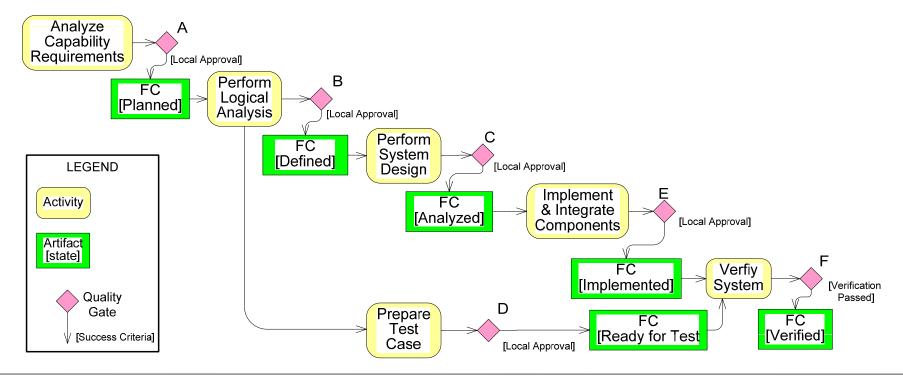
The Value of Capability

- Functional Capabilities express *functional* requirements
 - manageable abstraction level for SoS
 - meaningful to user and developer
- An FC identifies a value-chain
 - tangible artifacts
 - framework for measuring program process performance
- An FC represents value that can be earned against a planned-performance baseline

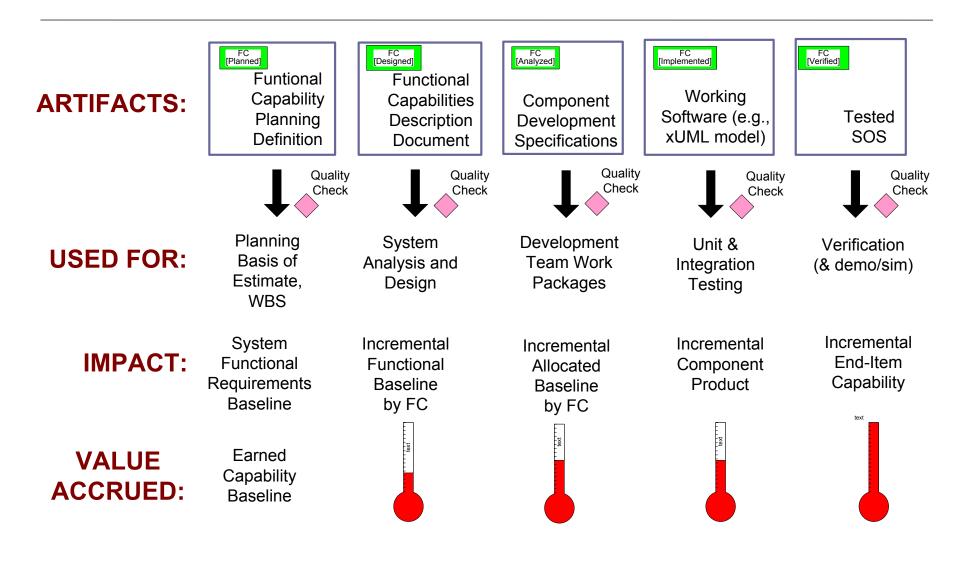
– an example of Performance-Based Earned Value®

Functional Capability – Earned Capability (Value)

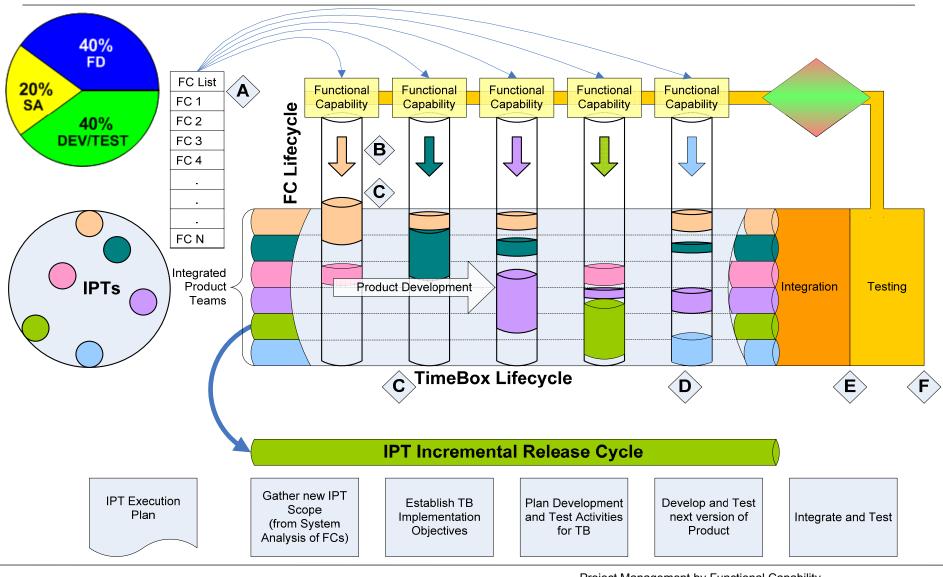
FC #	Description	# Req	# Use Cases	# Scenarios	# IPT Affected	Pol. Vis.	Total	Status	
FC 1		5	3	1	1	Hot	26		-
FC 2		49	8	3	3	Hot Hot	88		
FC 2.1		18	2	2	1	Hot	24		
FC 2.2		22	4	1	1	Hot Hot	34		
FC 2.3		9	2	3	2	Medium	14		
FC 3		13	6	2	2	Medium	39		FA
FC 4		45	9	4	3	Hot	81		E
FC 4.1		33	6	2	2	Hot	46		
FC 4.2		12	3	2	1	Medium	22		D U

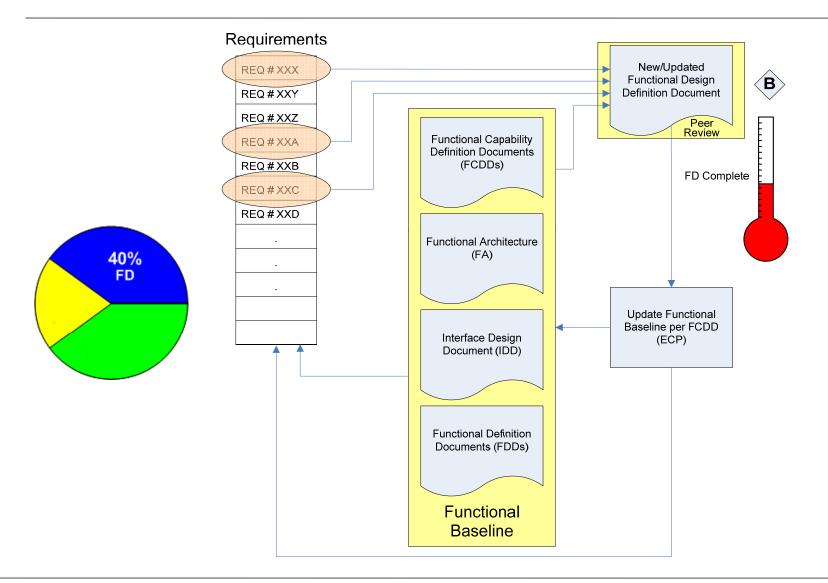

- · Establish relative size measures for each capability
- Establish dependencies between capability projects
- Establish the approved list of capability (or value)
- Release work as appropriate and accrue "value" against the project capability "baseline" at Management reviews
- Measure project lifecycle task duration and effort to refine estimation process and establish project historical parametric data
- Capability can be "re-scoped", but deviations from the baseline are easily recognizable as the "bow-wave" of functionality

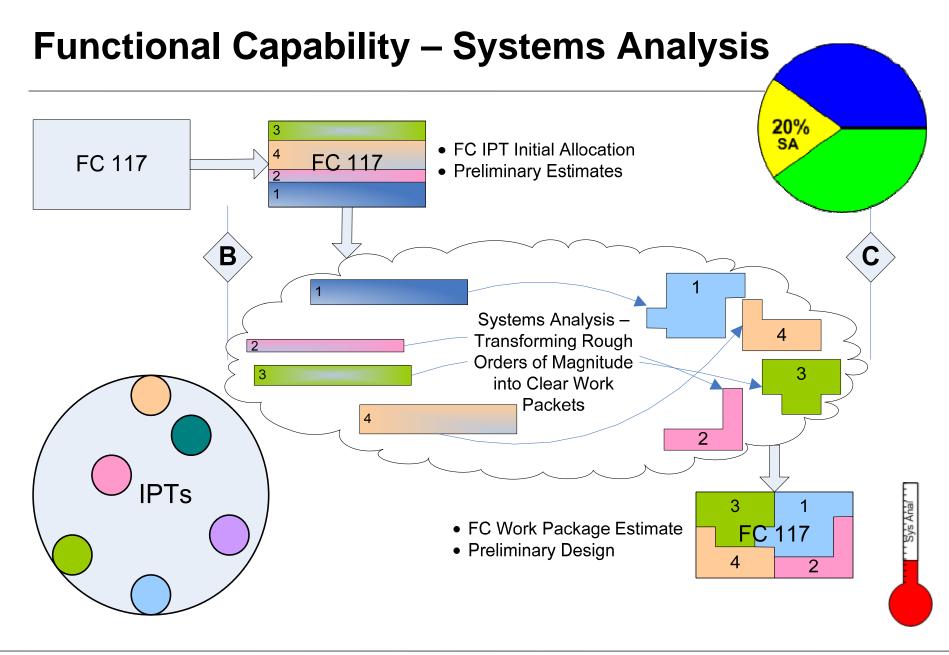
Capabil-


o-meter

Functional Capability Life Cycle


- Each FC advances through lifecycle phases, representing states of completion, defined by artifacts
- Artifacts are reviewed at Quality gates, providing evidence of value


FC Artifacts and Value

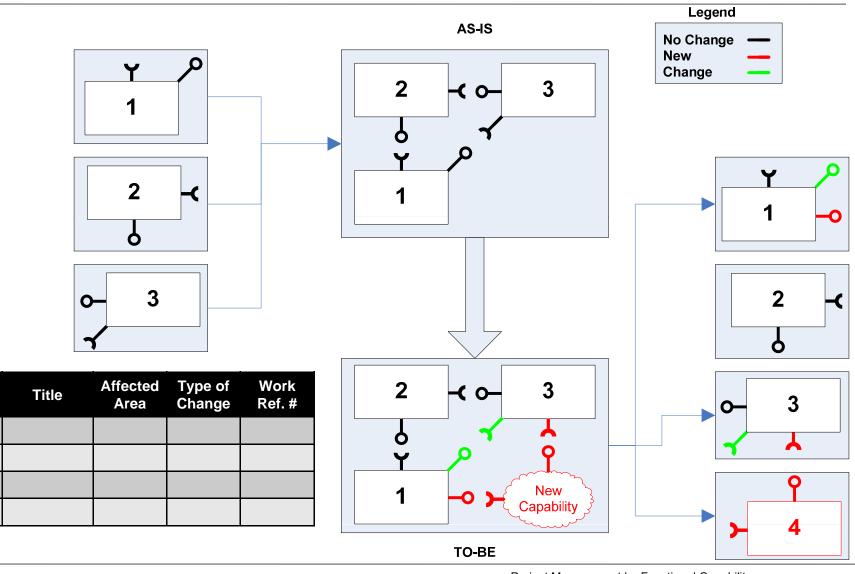


Functional Capability – Overview

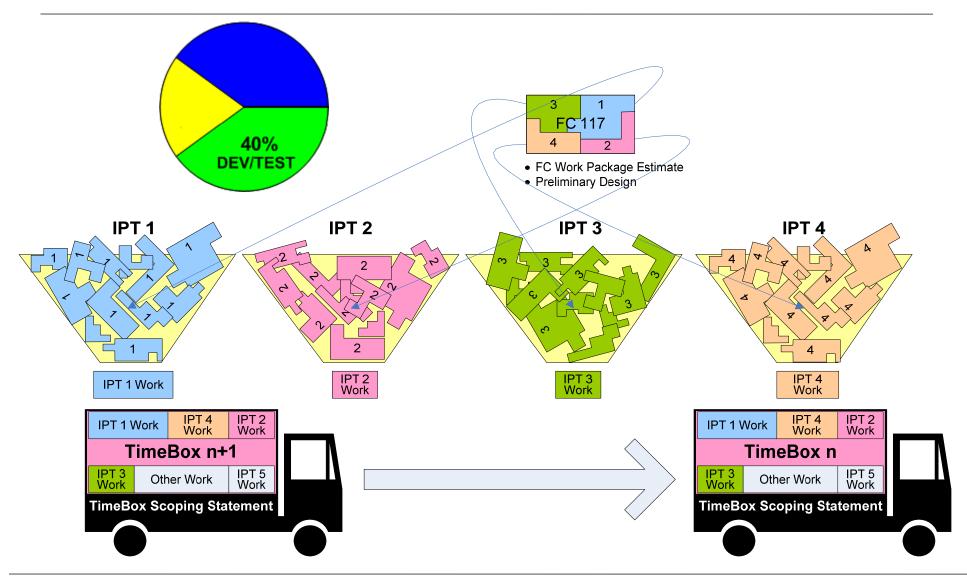
Functional Capability – Functional Definition

Functional Capability – Systems Analysis

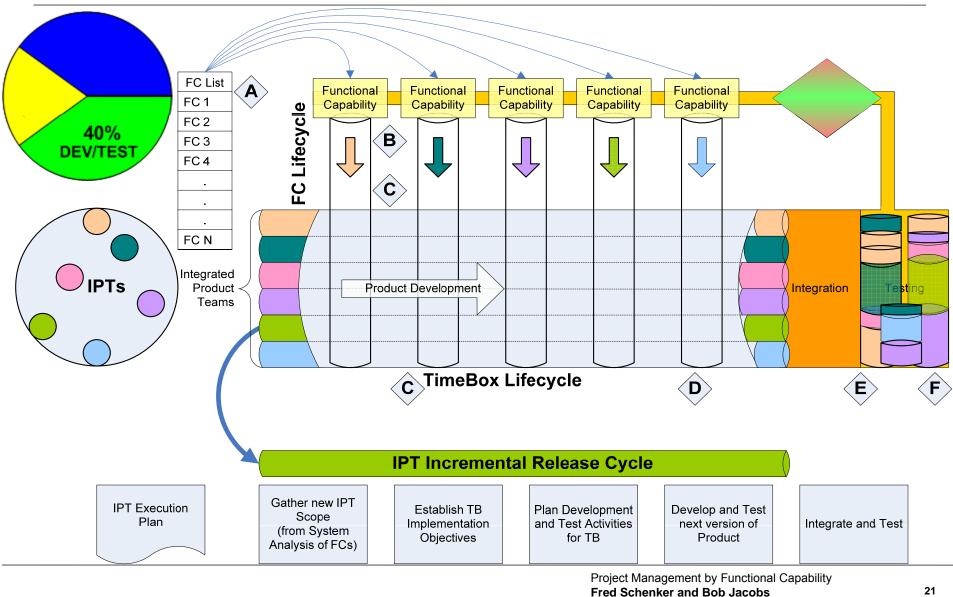
Para.


#

1.1


1.2

1.3


2.1

Functional Capability – Dev. & Int.

Functional Capability – System Test

© 2008 Carnegie Mellon University

Q: So what does this have to with CMMI anyway?

This is the SEPG North America conference, right?

A1: If you adopt the Functional Capability lifecycle, you get a lot of CMMI credit...

A2: If you managed your projects this way you could use CMMI practices (esp. M&A) to help you

- Produce what your customers want
- Make sure your contractor is performing

- Project Planning (SG 1, SG 2, SG 3)
 - Estimation of FC scope (size, complexity, effort, priority)
 - Standard FC WBS
 - Defined FC lifecycle
 - FC implementation risks
 - Stakeholder identification and involvement (FC prioritization)
 - FC Implementation Budget and Schedule (FC Owners ≈ CAMs)
 - Summation of FC Planning Definitions (Baseline Plan)
 - Commitments established between IPTs
- Project Monitoring and Control (SG 1)
 - Defined project milestones (Q-Gates)
 - "Earned" Capability to calibrate program performance

- Requirements Development (SG 1, SG 2, SG 3)
 - Stakeholder "needs" documented (or referenced) in FCDD, and validated via peer review
 - Context for requirement implementation and acceptance criteria provided in FCDD
 - Basis for product component and interface requirements
 - Definition of required functionality
 - Basis for requirements validation
 - Use cases documented in the FCDD (Operational concepts and scenarios)

• Technical Solution (SG 1, SG 2, SG 3)

- Alternative solutions documented in FCDD and propagated through System Analysis of FC
- FCDD represents documentation of Functional design

- Requirements Management (SG 1)
 - FCDD helps to develop an understanding of requirements
 - FCDD to Requirements trace useful for identifying impact of changes
- Verification (SG 1, SG 2, SG 3)
 - Requirements Verification acceptance criteria defined in FCDD
 - Defined artifacts represent obvious opportunities for Peer Review
- Validation (SG 1, SG 2)
 - Defined artifacts are used to interpret, communicate and validate product design
 - Product lifecycle defines artifacts, essential for planning validation activities

- Integrated Project Management (SG 2)
 - FC Definition Document provides basis for management of stakeholder involvement, dependencies, and identification (and resolution) of coordination issues
- Measurement and Analysis (SG 1, SG 2)
 - FC baseline represents program commitment
 - Tracking of FC progress connects tasks execution to management information needs
- Quantitative Project Management (SG 1, SG 2)
 - FC baseline represents the program's performance objective
 - Tracking of FC progress helps to determine whether the program's objectives for performance are being satisfied, and are used to identify appropriate corrective actions

Summary

- Functional Capability provides a useful framework for managing projects
 - In a complex environment (SoS)
 - As a significant contributor of value-adding artifacts
 - As a starting point for introducing quantitative methods into the project management process
 - As a means of communicating capability, both desired and earned
 - As an effective means to deliver relevant technical and project management content to external stakeholders
 - As a method of assessing the "bow-wave" on a project, and calibrating the reported earned value

Thank you for your attention!!

Questions

Contact Information

Fred Schenker

Software Engineering Institute 4500 5th Avenue Pittsburgh, PA 15213-3890

Robert Jacobs

Computer Systems Center Inc. 6225 Brandon Ave. Springfield, VA 22150

412-268-9145 703-866-4000 ars@sei.cmu.edu bjacobs@csci-va.com

• Back-up

Functional Capability – Planning Definition

- Early in the Program Lifecycle, Functional Capability planning definitions are needed:
 - Based on End-to-End mission scenarios
 - No more than one or two pages per FC
 - Preliminary allocation of requirements
 - High-level textual description
 - Basis of estimates for effort, resource, and schedule planning (use cases, complexity, requirements, etc.)
 - Use historical data where possible (and practical)
 - Establish FC priority and FC-FC dependencies
- Use the planning definitions to establish Earned Capability baseline and to scope project deliverables and dates

Functional Capability – Functional Definition

- Refine the scenarios to specify the capabilities
- Finalize allocation of functional requirements to the notional FC
- Elaborate the FC
 - Create a contextual description of the functionality
 - Create sequence diagrams, use cases, behavior diagrams
 - Ensure the allocated requirements are explained adequately in the context of the functionality
 - Provide criteria for FC acceptance
- Validate the FC
 - Peer review
 - Customer review
 - Management review (Q-Gate)

Functional Capability – Systems Analysis

- Start with validated functional design
- Allocate functionality to legacy components
 - Identify and analyze design alternatives as necessary, especially for risk mitigation
 - Update existing / create new design documentation, component specifications
 - Create work packages to implement the new designs
 - Update previous estimates of effort and schedule
 - Identify task dependencies, establish need for commitments for inter-component deliverables
- Validate the Analysis
 - Peer review
 - Customer review
 - Management review (Q-Gate)

Functional Capability – Test Preparation

- Start with Functional Capability Definition
 Document requirements acceptance criteria
 - Review the acceptance criteria
 - New scenarios that need to be instantiated
 - New requirements that need to be verified
 - Legacy requirements that have been further clarified
 - Develop/modify test cases based on the criteria
 - If necessary, create new scenario (data set)
 - Identify need for additional test tools, and develop those tools
- Validate the Test Preparation
 - Peer review test cases and scenarios
 - Management review (Q-Gate)

Functional Capability – Dev. & Int.

- Start with validated System Analysis
- Coordinate the tasks so that the Functional Capability is achieved
 - Identify and negotiate commitments between development teams
 - Establish development goals for the next increment of production (TimeBox)
 - Execute tasks in accordance with the plan
 - Perform verification tasks and pass on to integration
- Integrate the new products
 - Check interfaces, build new integrated product
 - Verify new build (smoke test)
- Validate the Development and Integration
 - Management Review (Q-Gate)

Functional Capability – System Test

- Start with stable production build
 - Regression test (with new test cases)
 - Log bugs/defects
 - Perform SoS simulated testing (if possible)
 - Evaluate performance bottlenecks; potential SoS issues
 - Produce test report
- Validate the results
 - Management review (Q-gate)