

Pittsburgh, PA 15213-3890

Software Design-for-Six Sigma (SDFSS) and SEI Technologies meet!

By Robert W. Stoddard Motorola Six Sigma Master Black Belt Senior Member of Technical Staff Software Engineering Institute This material is approved for public release.

Sponsored by the U.S. Department of Defense © 2005 by Carnegie Mellon University

June 11-14, 2007

CMU Service Marks

The following are service marks of Carnegie Mellon University:

- Personal Software Process[™]
- PSPSM
- Team Software Process[™]
- TSPsm

The following are registered in the U.S. Patent & Trademark Office by Carnegie Mellon University:

- Capability Maturity Model®
- CMM®
- Capability Maturity Model Integration®
- CMMI®
- SEI's Architecture Tradeoff Analysis Method®
- ATAM®

Product Experience

2007 European SEPG

June 11-14, 2007

© 2005 by Carnegie Mellon University

page 3

SDFSS Opportunities

Impacts without SDFSS

- Multi-year development projects failed to deliver a working product (min cost=\$7M)
- Failure 1: Did not model performance of new chipset, processor or language
- Failure 2: Did not adequately characterize the market and business case
- Failure 3: Did not adequately test the product

Benefits with SDFSS

- Business cases modeling all reasonable uncertainties in market and customer segments
- Schedules with uncertainties modeled
- Req'ts identified, with KJ analysis, to delight customers
- Design of Experiments used to: optimize and patent fuel efficiency; test object-oriented software; test robustness with fault insertion testing; reduce flight test by 10x

Purpose of this Talk

- To proclaim that software DFSS, within a holistic DFSS approach to product development, is coming of age,
- To demonstrate that many gaps, in translating traditional DFSS concepts to software engineering, may be solved by the adoption of a number of Software Engineering Institute (SEI) technologies.

Thus, DFSS does not have to be re-invented for Software Engineering!

June 11-14, 2007

Target Audience

- Executives and Directors contemplating investing in Software DFSS
- Deployment champions who may be tasked with the training and roll-out of Software DFSS
- DFSS and Software Engineering Leaders who need to understand both disciplines, and who can lead in translating and interpreting key concepts and tools between the two disciplines.

A Philosophy

From the inception of Six Sigma, the overriding objective has been "the degree of confidence a customer has that his (or her) product and service-related expectations will be met by the producer."¹

Today, it is "a business process that allows companies to drastically improve their bottom line by designing and monitoring everyday business activities in ways that minimize waste and resources while increasing customer satisfaction."²

¹ Michael J. Harry & J. Ronald Lawson, "Six Sigma Producibility Analysis and Process Characterization," Addison-Wesley Publishing Company, Inc., 1992.

June 11-14, 2007

² Michael J. Harry, & Richard Schroeder, "Six Sigma: The Breakthrough Management Strategy Revolutionizing the World's Top Corporations", 2000.

Example Six Sigma Measures

The most-cited measure is "3.4 ppm." Other measures

- defect rate, parts per million (ppm)
- Sigma level
- defects per unit (dpu)
- defects per million opportunities (dpr
- yield

Alternative Six Sigma Approaches

DMAIC	Define-Measure- Analyze-Improve- Control	To solve problems and drive incremental business improvements (e.g. fine-tuning an existing process or product)
DMAD(O)V	Define-Measure- Analyze-Design- (Optimize)-Verify	To solve problems and drive radical improvement (e.g. blowing up and re- engineering an existing process or product)
Lean	5S's; Value Stream Mapping; Cycle Time Analysis	To lean a process by simplification, reducing non-value added tasks, optimizing cycle times
DFSS	Design-For-Six- Sigma	Applying the Six Sigma toolkit and intent to product development beginning with portfolio, marketing, engineering, research, sales, and supply chain

June 11-14, 2007

Holistic View of Software DFSS

Portfolio for Six Sigma

Marketing for Six Sigma

Product Commercialization for Six Sigma

Technology Platform R&D for Six Sigma

Sales & Distribution for Six Sigma

Supply Chain for Six Sigma

Holistic View of Software DFSS

Portfolio for Six Sigma

Using Statistical Methods:

* Adapted from Clyde Creveling, *Marketing for Six Sigma* and *Product Development with Six Sigma*

- 1. Identify Opportunities, Markets and Market Segments,
- 2. Gather Long Range Voice of the Customer,
- 3. Obtain Technology Roadmap and Technology Characterizations from the R&D / Platform Group,
- 4. Define Product Portfolio Requirements,
- 5. Generate Product Portfolio Architectures,
- 6. Support Portfolio decisions with Real-Options analysis
- 7. Evaluate and Select a Product Portfolio, and
- 8. Develop a Prioritized List of Products within a Product Line Strategy.

Holistic View of Software DFSS

Portfolio for Six Sigma

Using Statistical Methods:

* Adapted from Clyde Creveling, Marketing for Six Sigma and Product Development with Six Sigma

- 1. Understand Customer Value and create a Customer Value Dashboard,
- 2. Develop the Value Stream analysis,
- 3. Conducting Marketing FMEA risk analysis and Business SWOT,
- 4. Creating Marketing Process measures and data collection methods,
- 5. KJ and Kano Analysis,
- 6. Marketing Composite Design and Product Line Strategies
- 7. Market Forecasting, Price Model Planning, Channel Analysis,
 - Portfolio Management, Branding Decision-making and Promotion Analysis

8

Holistic View of Software DFSS

Portfolio for Six Sigma

Marketing for Six Sigma

Product Commercialization for Six Sigma

Using Statistical Methods:

* Adapted from Clyde Creveling, Marketing for Six Sigma and Product Development with Six Sigma

- 1. Participate in KJ and QFD Voice of the Customer Activities,
- 2. Develop functional models, architecture and behavioral models,
- 3. Generate product solution concepts and identify critical parameters for CTQs,
- 4. Develop mathematical and statistical models of CTQs,
- 5. Select solution, implement robust design and track Critical Parameters,
- 6. Create optimized designs using designed experiments,
 - Establish critical parameter tolerances, and verify CTQ achievement.

Holistic View of Software DFSS

Portfolio for Six Sigma

Marketing for Six Sigma

Product Commercialization for Six Sigma

Technology Platform R&D for Six Sigma

Using Statistical Methods:

- 1. Characterize existing technologies, capabilities, gaps, risks, expected life
- 2. Identify and evaluate anticipated technology breakthroughs including probabilistic assessment of timing and capability
- 3. Optimize the portfolio of technologies to be pursued in context of the business strategy and latest product portfolio
- 4. Develop robust platforms that are optimized for the Customer Req'ts and CTQs of product lines
 - Develop performance models of platform technology and it's capabilities

Sales & Distribution for Six Sigma

Supply Chain for Six Sigma

CMMI & Six Sigma (DFSS) Connections

- Many connections exist, specifically with the following basic process areas:
 - RD, REQM, TS
 - VER, VAL
 - DAR, RSKM, MA
- •Connections are further highlighted on the following slides with CMMI High Maturity Process Areas:
 - QPM, OPP
 - CAR, OID

CMMI OPP and Six Sigma

SP1.1 Processes

Big Y Business Goal-to-Vital x Process; Processes driving central tendency and variation

Critical Parameter Management; CTQ factors; Root

Cause Analysis of subprocess factors

SP1.2 Measures

KJ Analysis®; Analytic Hierarchy Process; Categorical Survey Data Analysis; Six Sigma Scorecards

SP1.4 Baselines

SP1.5 Models

Control Charts; Graphical Summaries in Minitab; Central Tendency and Variation; Confidence and Prediction Intervals

ANOVA; Regression; Chi-Square; Logistic Regression; Monte Carlo Simulation; Discrete Event Process Simulation; Design of Experiments; Response Surface Methodology; Multiple Y Optimization; Probabilistic Models

June 11-14, 2007

CMMI QPM and Six Sigma

SG1 Quantitatively Manage the Project	KJ Analysis®; Analytic Hierarchy Process; Categorical Survey Data Analysis; Six Sigma Scorecards; Big Y Business Goal-to-Vital x Process; Process Mapping Methods and Value- Stream Analysis; Processes driving central tendency and variation; Critical Parameter Management; CTQ factors; Root Cause Analysis of Sub-process factors; Cockpit
SG2 Statistically Manage Subprocess Performance	Control Charts; Graphical Summaries in Minitab; Central Tendency and Variation; Confidence and Prediction Intervals; ANOVA; Regression; Chi- Square; Logistic Regression; Monte Carlo Simulation; Discrete Event Process Simulation; Design of Experiments; Response Surface Methodology; Multiple Y Optimization; Probabilistic Models

CMMI CAR and Six Sigma

CMMI OID and Six Sigma

SG1 Select Improvements

Six Sigma Big Y to Vital x semi-annual workshops; Business Goal simulation and optimization models; Benchmarking; Capability data sharing; Theory of Inventing (TRIZ) methods; Usage of performance models to identify the major opportunities for improvement with innovation; Assumption Busters; Empowered innovative thinking; Incentives for Innovation; Strong Teaming for Innovation; Various decision models such as AHP, Pugh Method, Probabilistic decision trees

Process and Design FMEA; Organizational Readiness for Change; Change Agents; Sponsors; Champions; Influence Leaders; Adoption Curve; Piloting; Risk-based deployment; Before and After comparisons with Hypothesis tests; Results compared to prediction models; Proactive mitigation of risks © 2005 by Carnegie Mellon University

June 11-14, 2007

The CMMI, TSP and PSP

SEI Technologies Boost DFSS!

Portfolio for Six Sigma

Marketing for Six Sigma

Product Commercialization for Six Sigma

Technology Platform R&D for Six Sigma

The SEI Team Software Process (TSP) and Personal Software Process (PSP) significantly enhance the software development teaming within Product Commercialization and Technology Platform R&D for Six Sigma!

June 11-14, 2007

The Personal Software Process

page 23

TSP Builds Software Teams

June 11-14, 2007

The TSP Launch Process

SEI Technologies Boost DFSS!

Sales & Distribution for Six Sigma

Supply Chain for Six Sigma

Software Product Lines

Product Line Practice Framework

Core As Develop	set ment Essential Activities	ct opment Product Lines", Paul Clements, Linda Northrop 2003.
Architecture Definition Architecture Evaluation Component Development COTS Utilization Mining Existing Assets Requirements Engineering Software System Integration Testing Understanding Relevant Domains	Configuration Management Data Collection, Metrics, and Tracking Make/Buy/Mine/Commission Analysis Process Definition Scoping Technical Planning Technical Risk Management Tool Support	Building a Business Case Customer Interface Management Implementing an Acquisition Strategy Funding Launching and Institutionalizing Market Analysis Operations Organizational Planning Organizational Risk Management Structuring the Organization Technology Forecasting Training
Software Engineering	Technical Management	Organizational Management
luna 11 11 2007	© 2005 by Corporio Mollon Universi	

June 11-14, 2007

SEI Technologies Boost DFSS!

Software Architecture Technology (SAT) Initiative's Focus

Ensure that business and mission goals are predictably achieved by using effective software architecture practices throughout the development lifecycle.

Axioms Guiding Our Work

- Software architecture is the bridge between business and mission goals and a software-intensive system.
- Quality attribute requirements drive software architecture design.
- Software architecture drives software development throughout the life cycle.

Reference: "Future Directions of the Software Architecture Technology Initiative", Second Annual SATURN Workshop, Mark Klein, 2006

June 11-14, 2007

 $\ensuremath{\textcircled{}^\circ}$ 2005 by Carnegie Mellon University

SEI's Architecture Tradeoff Analysis Method[®] (ATAM[®])

ATAM is an architecture evaluation method that

- focuses on multiple quality attributes
- illuminates points in the architecture where quality attribute tradeoffs occur
- generates a context for ongoing quantitative analysis
- utilizes an architecture's vested stakeholders as authorities on the quality attribute goals

Reference: "Future Directions of the Software Architecture Technology Initiative", Second Annual SATURN Workshop, Mark Klein, 2006

June 11-14, 2007

© 2005 by Carnegie Mellon University

page 31

Conceptual Flow of the ATAMSM

Reference: "Future Directions of the Software Architecture Technology Initiative", SATURN Workshop, Mark Klein, 2006June 11-14, 2007© 2005 by Carnegie Mellon Universitypage 32

ATAM Led to the Development of Other Methods and Techniques

In Summary

Software DFSS, within a holistic DFSS approach to product development, is coming of age,

Many gaps, in translating traditional DFSS concepts to software engineering, may be solved by the adoption of a number of Software Engineering Institute (SEI) technologies.

Thus, DFSS does not have to be re-invented for Software Engineering!

June 11-14, 2007

Contact Information

Robert Stoddard Software Engineering Institute (Office 3110) 4500 Fifth Avenue Pittsburgh, PA 15213 412.268.1121 <u>rws@sei.cmu.edu</u>

Or, contact SEI Customer Relations:

Customer Relations Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213-3890 FAX: (412) 268-5800 customer-relations@sei.cmu.edu

June 11-14, 2007

Questions

