
Dr. Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of EECS
Vanderbilt University
Nashville, Tennessee

SATURN Conference, May 10th, 2012

Meeting the Challenge of
Distributed Real-Time & Embedded

(DRE) Systems

Evolution in DRE Systems

Standalone real-time &
embedded systems
• Stringent quality of service

(QoS) demands
• e.g., latency, jitter,

footprint
• Resource constrained

The Past

This talk focuses on technologies & methods for
enhancing DRE system QoS, producibility, & quality

Distributed real-time & embedded (DRE)
systems
• Net-centric systems-of-systems
• Stringent simultaneous QoS demands

• e.g., dependability, security, scalability, etc.
• More fluid environments & requirements

The Present

Evolution of DRE Systems Development

Mission-critical DRE systems have
historically been built directly
atop hardware, which is
• Tedious
• Error-prone
• Costly over lifecycles

Consequence: Small
changes to legacy
software often have
big (negative)
impact on DRE
system QoS &
producibility

Technology Problems
• Legacy DRE systems are

often:
• Stovepiped
• Proprietary
• Brittle & non-adaptive
• Expensive
• Vulnerable

Air
Frame

AP

Nav HUD

GPS IFF

FLIR

Cyclic
Exec

CLI

SS7

SM CM

RX TX

IP

RTOS

Middleware

Middleware
Services

DRE
Applications

Operating Sys
& Protocols

Hardware &
Networks

Middleware

Middleware
Services

DRE
Applications

Operating Sys
& Protocols

Hardware &
Networks

Mission-critical DRE systems have
historically been built directly
atop hardware, which is
• Tedious
• Error-prone
• Costly over lifecycles

Technology Problems
• Legacy DRE systems are

often:
• Stovepiped
• Proprietary
• Brittle & non-adaptive
• Expensive
• Vulnerable

Evolution of DRE Systems Development

What we need are the means to

• Enhance integrated DRE system capability
at lower cost over the lifecycle & across the
enterprise

• Reduce cycle time of developing & inserting
new technologies into DRE systems

What’s So Hard About DRE Software?

• Organizational impediments

• Economic impediments

• Administrative impediments

• Political impediments

• Psychological impediments

Human Nature Technical Complexities

Accidental Complexities
• Low-level APIs & debug tools
• Algorithmic decomposition
Inherent Complexities
• Quality attributes
• Causal ordering
• Scheduling & synchronization
• Deadlock avoidance
• …

www.dre.vanderbilt.edu/~schmidt/reuse-lessons.html

Frameworks

Systematic Reuse Capabilities for DRE Systems

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Software Product-
lines

Model-Driven
Engineering Tools

Middleware Bus

Naming

LockingLogging

Events

Component-based &
Service-Oriented

Middleware

Patterns & Pattern
Languages

Nav Sensors

Expendable
Management

Data LinksMission
Computer

Vehicle
Mgmt

Expendables

Bold Stroke
Architecture

Radar

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Bold Stroke defined
• reference standards
• software interfaces
• data formats

• Systematic reuse platform for
Boeing avionics mission computing

DRE System Case Study: Boeing Bold Stroke

that enabled distributed
computing & allowed
distributed applications to
coordinate, communicate,
execute tasks, & respond to
events in an integrated &
dependable manner

• protocols
• system services &
• reusable components

splc.net/fame/boeing.html

Nav Sensors

Expendable
Management

Data LinksMission
Computer

Vehicle
Mgmt

Expendables

• DRE system with 100+ developers, 3,000+ software
components, 3-5 million lines of C++/C/Ada/Java

• Based on COTS hardware, networks, operating
systems, languages, & middleware

Bold Stroke
Architecture

Radar

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Used as an Open
Experimentation
platform (OEP) for
DARPA PCES, MoBIES,
SEC, NEST, & MICA
programs

DRE System Case Study: Boeing Bold Stroke

• Systematic reuse platform for
Boeing avionics mission computing

splc.net/fame/boeing.html

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

COTS & standards-based middleware,
language, OS, network, & hardware
platforms

• Real-time CORBA (TAO) middleware
• ADAPTIVE Communication Environment

(ACE)
• C++, C, Ada, & Real-time Java
• VxWorks operating system
• VME, 1553, & Link16
• PowerPC

www.dre.vanderbilt.edu/TAO

Applying COTS to Bold Stroke

www.dre.vanderbilt.edu/ACE

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Save a considerable amount of
time/effort compared with traditional
approach to handcrafting capabilities

• Leverage industry “best practices” &
patterns in pre-packaged (& ideally)
standardized form

Benefits of Using COTS

The use of COTS is
essentially “outsourcing,”

with many of the
associated pros & cons

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• QoS of COTS components is not always
suitable for mission-critical DRE systems

• COTS technologies address some, but by no
means all, domain-specific challenges
associated with developing mission-critical
DRE systems

Limitations of Using COTS

What was needed was a
systematic reuse technology
for organizing & automating
key roles & responsibilities
in an application domain

Air

Frame

GPS

FLIR

Legacy avionics mission computing
systems are:

• Stovepiped
• Proprietary
• Brittle & non-adaptive
• Expensive
• Vulnerable

Consequences:
• Small changes to

requirements &
environments can
break nearly anything

• Lack of any resource
can break nearly
everything

GPS

FLIRAP

Nav HUD

IFF

Cyclic

Exec
F-15

Air

Frame

AP
Nav HUD

GPSIFF

FLIR

Cyclic

Exec A/V-8B

Air

Frame

Cyclic

Exec

AP

Nav HUD

IFF

F/A-18

Air

Frame

AP

Nav HUD
GPS

IFF

FLIR

Cyclic

Exec UCAV

Motivation for Software Product-lines (SPLs)

F-15
product
variant

A/V 8-B
product
variant

F/A 18
product
variant UCAV

product
variant

Software
Produce-Line

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

OS & Network ProtocolsOS & Network Protocols
Host Infrastructure MiddlewareHost Infrastructure Middleware

Distribution MiddlewareDistribution Middleware
Common Middleware ServicesCommon Middleware Services

• SPLs factor out general-purpose & domain-
specific services from traditional application
responsibility in DRE systems

• Manage software variation while reusing
large amounts of code that implement
common features within a particular domain

Air

FrameAP
Nav

HUD GPS

IFF

FLIR

Domain-specific ServicesDomain-specific Services

• SPLs offer many opportunities to
configure product variants

• e.g., component distribution &
deployment, user interfaces &
operating systems, algorithms &
data structures, etc.

Motivation for Software Product-lines (SPLs)

• SPL characteristics are captured
via Scope, Commonalities, &
Variabilities (SCV) analysis
• This process can be applied to

identify commonalities &
variabilities in a domain to
guide development of a SPL

• Applying SCV to Bold Stroke
• Scope defines the domain & context of the

SPL
• e.g., Bold Stroke component architecture,

object-oriented application frameworks, &
associated components (GPS, Airframe, &
Display)

OS & Network ProtocolsOS & Network Protocols
Host Infrastructure MiddlewareHost Infrastructure Middleware

Distribution MiddlewareDistribution Middleware

Common Middleware ServicesCommon Middleware Services

Domain-specific ServicesDomain-specific Services

Air

FrameAP
Nav

HUD GPS

IFF

FLIR

Overview of Software Product-lines (SPLs)

Reusable Architecture
Framework

Reusable Application
Components

Commonalities describe the attributes that are common across all members of the
SPL family

• Common object-oriented frameworks & set of component types
• e.g., GPS, Airframe, Navigation, & Display components

• Common middleware
infrastructure

• e.g., Real-time CORBA
& Lightweight CORBA
Component Model
(CCM) variant called Prism

Applying SCV to the Bold Stroke SPL

OS & Network ProtocolsOS & Network Protocols
Host Infrastructure MiddlewareHost Infrastructure Middleware

Distribution MiddlewareDistribution Middleware

Common Middleware ServicesCommon Middleware Services

Domain-specific ServicesDomain-specific Services

Variabilities describe the attributes
unique to the different members of
the family

• Product-dependent component
implementations (GPS/INS)

• Product-dependent component
connections

• Product-dependent component
assemblies
• e.g., different packages for

different customers &
countries

• Different hardware, OS, &
network/bus configurations

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

OS & Network ProtocolsOS & Network Protocols
Host Infrastructure MiddlewareHost Infrastructure Middleware

Distribution MiddlewareDistribution Middleware

Common Middleware ServicesCommon Middleware Services

Domain-specific ServicesDomain-specific Services
Patterns & frameworks are

essential for developing
reusable SPLs

Applying SCV to the Bold Stroke SPL

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Pattern-oriented domain-specific application
framework
• Configurable to variable infrastructure

configurations
• Supports systematic reuse of mission

computing functionality
• 3-5 million lines of C++, C, Ada, & Real-

time Java
• Based on many architecture & design

patterns

Applying Patterns & Frameworks to Bold Stroke

Patterns & frameworks
are also used throughout

Bold Stroke COTS
software infrastructure

• Present solutions to
common software
problems arising
within a particular
context

Overview of Patterns

• Capture recurring structures &
dynamics among software
participants to facilitate reuse of
successful designs

The Proxy Pattern

1 1
Proxy

service

Service

service

AbstractService

service

Client

• Help resolve
key software
design forces

• Flexibility
• Extensibility
• Dependability
• Predictability
• Scalability
• Efficiency

• Codify expert knowledge of design
strategies, constraints, & best practices

Overview of Pattern Languages

Benefits of Pattern Languages
• Define a vocabulary for talking about software

development problems
• Provide a process for the orderly resolution of

these problems
• Help to generate & reuse software architectures

Motivation
• Individual patterns & pattern

catalogs are insufficient
• Software modeling methods &

tools largely just illustrate
what/how – not why –
systems are designed

Board 1

VME

1553

Board 2

Avionics Mission
Computing Functions
• Weapons targeting

systems (WTS)
• Airframe & navigation

(Nav)
• Sensor control (GPS,

IFF, FLIR)
• Heads-up disSPLy

(HUD)
• Auto-pilot (AP)

1: Sensors
generate
data

2: I/O via
interrupts

3: Sensor
proxies
process data
& pass to
missions
functions

4: Mission
functions
perform
avionics
operations

Legacy Avionics Architectures

Key system characteristics
• Hard & soft real-time deadlines

• ~20-40 Hz
• Low latency & jitter between boards

• ~100 usecs
• Periodic & aperiodic processing
• Complex dependencies
• Continuous platform upgrades

Board 1

VME

1553

1: Sensors
generate
data

Board 2

2: I/O via
interrupts

3: Sensor
proxies
process data
& pass to
missions
functions

4: Mission
functions
perform
avionics
operations

Limitations with legacy avionics architectures
• Stovepiped
• Proprietary
• Expensive
• Vulnerable

Air

Frame

AP

Nav WTS

GPS IFF

FLIR

Cyclic Exec

• Tightly coupled
• Hard to schedule
• Brittle & non-adaptive

Key system characteristics
• Hard & soft real-time deadlines

• ~20-40 Hz
• Low latency & jitter between boards

• ~100 usecs
• Periodic & aperiodic processing
• Complex dependencies
• Continuous platform upgrades

Legacy Avionics Architectures

Decoupling Avionics Components

Context Problems Solution

• I/O driven DRE
application

•Complex
dependencies

•Real-time constraints

•Tightly coupled
components

•Hard to schedule
•Expensive to evolve

•Apply the Publisher-Subscriber
architectural pattern to distribute
periodic, I/O-driven
data from a single point of
source to a collection of
consumers

Event
*

Subscriber

consume

creates receives

Event Channel
attachPublisher
detachPublisher
attachSubscriber
detachSubscriber

pushEvent

Filter
filterEvent

Publisher

produce

Structure

attachSubscriber

produce

pushEvent
event

event
pushEvent

consume

detachSubscriber

: Event

: Subscriber: Event Channel: Publisher

Dynamics

Applying Publisher-Subscriber to Bold Stroke

Board 1

1553

1: Sensors
generate data

2: I/O via
interrupts

4: Event Channel
pushes events
to subscribers(s)

5: Subscribers
perform
avionics
operations

GPS IFF FLIR

HUD

Nav

WTS
Air

Frame

Publishers

Subscribers

push(event)

push(event)

Event
Channel

3: Sensor
publishers
push events
to event
channel

Implementing Publisher-Subscriber
pattern for mission computing:
• Event notification model

• Push control vs. pull data interactions

• Scheduling & synchronization
strategies
• e.g., priority-based dispatching &

preemption

• Event dependency management
• e.g., filtering & correlation mechanisms

Bold Stroke uses the Publisher-
Subscriber pattern to decouple sensor
processing from mission computing
operations
• Anonymous publisher & subscriber

relationships
• Group communication
• Asynchrony

Distributing Avionics Components

Context Problems Solution
•Mission
computing
requires
remote IPC

•Stringent DRE
requirements

•Applications need capabilities to:
•Support remote communication
•Provide location transparency
•Handle faults
•Manage end-to-end QoS
•Encapsulate low-level system details

•Apply the Broker
architectural pattern to
provide platform-neutral
communication between
mission computing
boards

Wrapper Facade

Layers

Component

internal
partitioning

Remoting Error

Lookup

Requestor

Object Adapter

Container

Facade

Business
Delegate

Invoker Client Proxy

OS abstraction

request
issuing

request
reception

error
notification

Broker
configuration

component
discovery

request
dispatching

request
dispatching

broker
access

component
access

component
access

component
creation

Message

Publisher-
Subscriber

Factory Method

request
encapsulation

publish-
subscribe
communication

Broker

Structure & Dynamics

Distributing Avionics Components

Context Problems Solution
•Mission
computing
requires
remote IPC

•Stringent DRE
requirements

•Applications need capabilities to:
•Support remote communication
•Provide location transparency
•Handle faults
•Manage end-to-end QoS
•Encapsulate low-level system details

•Apply the Broker
architectural pattern to
provide platform-neutral
communication between
mission computing
boards

Applying the Broker Pattern to Bold Stroke

Board 1

VME

1553

1: Sensors
generate
data

Board 2

2: I/O via
interrupts

5: Event Channel
pushes events
to
subscribers(s)

6: Subscribers
perform
avionics
operations

4: Sensor
publishers
push events
to event
channel

Bold Stroke uses the Broker
pattern to shield distributed
applications from environment
heterogeneity, e.g.,
• Programming languages
• Operating systems
• Networking protocols
• Hardware

3: Broker
handles I/O
via upcallsBroker

A key consideration for
implementing the Broker pattern for
mission computing applications is
QoS support
• e.g., latency, jitter, priority

preservation, dependability,
security, etc.

GPS IFF FLIR

HUD

Nav

WTS
Air

Frame

Publishers

Subscribers

push(event)

push(event)

Event
Channel

Key Patterns Used to Implement Broker

www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf

• Wrapper facades enhance
portability

• Proxies & adapters simplify
client & server applications,
respectively

• Component Configurator
dynamically configures Factories

• Factories produce Strategies
• Strategies implement

interchangeable policies
• Concurrency strategies use

Reactor & Leader/Followers
• Acceptor-Connector decouples

connection management from
request processing

• Managers optimize request
demultiplexing

Enhancing Broker Flexibility with Strategy

Context Problem Solution
•Multi-domain
reusable
middleware
Broker

•Flexible Brokers must support multiple
policies for event & request demuxing,
scheduling, (de)marshaling, connection
mgmt, request transfer, & concurrency

•Apply the Strategy pattern
to factory out commonality
amongst variable Broker
algorithms & policies

Hook for the
concurrency
strategy

Hook for
the request
demuxing
strategy

Hook for
marshaling
strategy

Hook for the
connection
management
strategy

Hook for the
underlying
transport
strategy

Hook for the event
demuxing strategy

Consolidating Strategies with Abstract Factory
Context Problem Solution
• A heavily
strategized
framework or
application

• Aggressive use of Strategy pattern creates
a configuration nightmare
•Managing many individual strategies is
hard

• It’s hard to ensure that groups of
semantically compatible strategies are
configured

• Apply the Abstract
Factory pattern to
consolidate multiple
Broker strategies into
semantically
compatible
configurations

Concrete factories create groups of strategies

Configuring Factories w/ Component Configurator
Context Problem Solution
• Resource

constrained
systems

• Prematurely commiting to a Broker
configuration is inflexible & inefficient
• Certain decisions can’t be made until

runtime
• Users forced to pay for components they

don’t use

• Apply the Component
Configurator pattern
to assemble the
desired Broker factories
& strategies more
effectively

• Broker strategies are
decoupled from when
the strategy
implementations are
configured into
Broker

• This pattern can
reduce the memory
footprint of Broker
implementations

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Enables reuse of software
architectures & designs

• Improves development team
communication

• Convey “best practices” intuitively

• Transcends language-centric
biases/myopia

• Abstracts away from many
unimportant details

Benefits of Patterns

GPS IFF FLIR

HUD
Nav WTS Air

Frame

Publishers

Subscribers

push(event)

push(event) Event
Channel

Broker

www.dre.vanderbilt.edu/
~schmidt/patterns.html

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Require significant tedious &
error-prone human effort to
handcraft pattern
implementations

• Can be deceptively simple

• Leaves many important details
unresolved, particularly for DRE
systems

Limitations of Patterns

GPS IFF FLIR

HUD
Nav WTS Air

Frame

Publishers

Subscribers

push(event)

push(event) Event
Channel

Broker

www.dre.vanderbilt.edu/
~schmidt/patterns.html

We therefore need more
than just patterns to

achieve effective
systematic reuse

Overview of Systematic Reuse Paradigms

Class Library Architecture
ADTs

Strings

Locks

IPC
Math

LOCAL

INVOCATIONS
APPLICATION-

SPECIFIC

FUNCTIONALITY

EVENT

LOOP

GLUE
CODE

Files

GUI

• A class is a unit of abstraction &
implementation in an OO programming
language, i.e., a reusable type that often
implements patterns

• Classes are typically passive

Framework Architecture
• A framework is an integrated set of

classes that collaborate to produce a
reusable architecture for a family of
applications

• Frameworks implement pattern languages

Middleware Bus

Component/Service-Oriented Architecture
• A component/service is an encapsulation

unit with one or more interfaces that
provide clients with access to its services

• Components/services can be deployed &
configured via assemblies

Naming

LockingLogging

Events

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Application-specific functionality

Networking Real-time
Database

GUI

• Frameworks provide
integrated domain-
specific structures &
functionality

Sensor
Management

Route
Planning Heads-up

Display

• Frameworks are “semi-
complete” applications

Framework
characteristics

www.dre.vanderbilt.edu/
~schmidt/frameworks.html

Applying Frameworks to Bold Stroke

• Frameworks exhibit
“inversion of control” at
runtime via callbacks

Benefits of Frameworks

• Design reuse
• e.g., by implementing patterns that

guide application developers
through the steps necessary to
ensure successful creation &
deployment of avionics software

Board 1

VME

1553

Board 2

Broker

GPS IFF FLIR

HUD

Nav

WTS
Air

Frame

Publishers

Subscribers

push(event)

push(event)

Event
Channel

package org.apache.tomcat.session;

import org.apache.tomcat.core.*;
import org.apache.tomcat.util.StringManager;
import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
* Core implementation of a server session
*
* @author James Duncan Davidson [duncan@eng.sun.com]
* @author James Todd [gonzo@eng.sun.com]
*/

public class ServerSession {

private StringManager sm =
StringManager.getManager("org.apache.tomcat.session");

private Hashtable values = new Hashtable();
private Hashtable appSessions = new Hashtable();
private String id;
private long creationTime = System.currentTimeMillis();;
private long thisAccessTime = creationTime;
private int inactiveInterval = -1;

ServerSession(String id) { this.id = id; }

public String getId() { return id; }

public long getCreationTime() { return creationTime; }

public ApplicationSession getApplicationSession(Context context,
boolean create) {
ApplicationSession appSession =

(ApplicationSession)appSessions.get(context);

if (appSession == null && create) {

// XXX
// sync to ensure valid?

appSession = new ApplicationSession(id, this, context);
appSessions.put(context, appSession);

}

// XXX
// make sure that we haven't gone over the end of our
// inactive interval -- if so, invalidate & create
// a new appSession

return appSession;
}

void removeApplicationSession(Context context) {
appSessions.remove(context);

}

Benefits of Frameworks

• Design reuse
• e.g., by implementing patterns that

guide application developers
through the steps necessary to
ensure successful creation &
deployment of avionics software

• Implementation reuse
• e.g., by amortizing software

lifecycle costs & leveraging
previous development &
optimization efforts

• Design reuse
• e.g., by implementing patterns that

guide application developers
through the steps necessary to
ensure successful creation &
deployment of avionics software

• Implementation reuse
• e.g., by amortizing software

lifecycle costs & leveraging
previous development &
optimization efforts

• Validation reuse
• e.g., by amortizing the efforts of

validating application- & platform-
independent portions of software,
thereby enhancing software
reliability & scalability

www.dre.vanderbilt.edu/
scoreboard

Benefits of Frameworks

www.dre.vanderbilt.edu/~schmidt/PDF/Queue-04.pdf

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Frameworks are powerful, but hard to
develop & use effectively

• Significant time required to evaluate
applicability & quality of a framework
for a particular domain

• Debugging is tricky due to inversion of
control

• Verification & validation is tricky due to
dynamic binding

• May incur performance overhead due to
extra (unnecessary) levels of indirection

Limitations of Frameworks

We thus need something
simpler than frameworks

to achieve systematic
reuse for DRE systems

The Evolution of Middleware

Historically, mission-critical DRE apps were built
directly atop hardware
• Tedious, error-prone, & costly over lifecycles

Standards-based COTS DRE middleware helps:
• Control end-to-end resources & QoS
• Leverage hardware & software technology

advances
• Evolve to new environments & requirements
• Provide a wide array of reusable, off-the-

shelf developer-oriented services

There are layers of middleware, just like
there are layers of networking protocols

Hardware

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

& OS

Operating Systems
& Protocols

DRE Applications

Middleware is pervasive in enterprise domain
& is becoming pervasive in DRE domain

Operating System & Protocols

• Operating systems & protocols provide mechanisms to manage endsystem resources,
e.g.,
• CPU scheduling & dispatching
• Virtual memory management
• Secondary storage, persistence, & file systems
• Local & remote interprocess communication (IPC)

• OS examples
• UNIX/Linux, Windows, VxWorks, QNX, etc.

• Protocol examples
• TCP, UDP, IP, SCTP, RTP, etc.

RTP

DNS

HTTP

UDP TCP

IP

TELNET

Ethernet ATM FDDI

Fibre Channel

FTP

INTERNETWORKING ARCH

TFTP

20th Century

Win2K Linux LynxOS

Solaris VxWorks

Middleware

Middleware
Services

Middleware
Applications

MIDDLEWARE ARCH

21st Century

www.dre.vanderbilt.edu/~schmidt/ACE.html

Host Infrastructure Middleware
• Host infrastructure middleware encapsulates & enhances native OS

mechanisms to create reusable network programming objects
• These components abstract away many tedious & error-prone

aspects of low-level OS APIs

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Synchronization

Memory
Management

Physical
Memory
Access

Asynchronous
Event Handling

Scheduling

Asynchronous
Transfer of

Control

www.rtj.org

• Examples
• Java Virtual Machine (JVM), Common Language Runtime

(CLR), ADAPTIVE Communication Environment (ACE)

Distribution Middleware
• Distribution middleware defines higher-level distributed

programming models whose reusable APIs & components
automate & extend native OS capabilities

Distribution middleware avoids hard-coding client & server application
dependencies on object location, language, OS, protocols, & hardware

• Examples
• OMG Real-time CORBA & DDS, Sun RMI, Microsoft DCOM,

W3C SOAP

Client OBJ
REF

Object
(Servant)

in args
operation()

out args + return

IDL
STUBS

IDL
SKEL

Object Adapter

ORB CORE GIOP

Protocol Properties

End-to-End Priority
Propagation

Thread
Pools

Standard
SynchronizersExplicit

Binding
Portable Priorities

Scheduling
Service

en.wikipedia.org/wiki/Data_Distribution_Servicerealtime.omg.org

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Common Middleware Services
• Common middleware services augment distribution middleware

by defining higher-level domain-independent services that focus
on programming “business logic”

• Common middleware services
support many recurring
distributed system capabilities,
e.g.,
• Transactional behavior
• Authentication & authorization,
• Database connection pooling &

concurrency control
• Active replication
• Dynamic resource management

• Examples
• W3C Web Services, CORBA Component Model & Object Services,

Sun’s J2EE, Microsoft’s .NET, etc.

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Domain-Specific Middleware

Modalities
e.g., MRI, CT, CR,
Ultrasound, etc.

Siemens MED Syngo
• Common software platform for

distributed electronic medical systems
• Used by all Siemens MED business

units worldwide

• Domain-specific middleware services are tailored to the
requirements of particular domains, such as telecom, e-commerce,
health care, process automation, or aerospace

Boeing Bold Stroke
• Common software

platform for Boeing
avionics mission
computing systems

• Examples

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Product-line component model

• Configurable for product-specific functionality
& execution environment

• Single component development policies

• Standard component packaging mechanisms

• 3,000+ software components

Applying Component Middleware to Bold Stroke

Benefits of Component Middleware

• Creates a standard “virtual
boundary” around
application component
implementations that
interact only via well-defined
interfaces

• Define standard
container mechanisms
needed to execute
components in generic
component servers

• Specify the infrastructure
needed to configure &
deploy components thruout
a distributed system

<ComponentAssemblyDescription id="a_HUDDisSPLy"> ...
<connection>

<name>GPS-RateGen</name>
<internalEndPoint><portName>Refresh</portName><instance>a_GPS<
/instance>

</internalEndPoint>
<internalEndPoint>

<portName>Pulse</portName><instance>a_RateGen</instance>
</internalEndPoint>

</connection>
<connection>

<name>NavDisSPLy-GPS</name>
<internalEndPoint><portName>Refresh</portName><instance>a_NavDi
sSPLy</instance>

</internalEndPoint>
<internalEndPoint><portName>Ready</portName><instance>a_GPS</i
nstance>

</internalEndPoint>
</connection> ...

</ComponentAssemblyDescription>

Container

…
…

…

…

…

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Limit to how much application
functionality can be refactored into
reusable COTS component middleware

Middleware

Middleware
Services

DRE Applications

Operating System
& Protocols

Hardware &
Networks

Limitations of Component Middleware

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Limit to how much application
functionality can be refactored into
reusable COTS component middleware

•Middleware itself has become hard to
provision/use

IntServ +
Diffserv

RTOS + RT
Java

RT CORBA + DRTSJ

Load Balancer
FT CORBA

Network latency
& bandwidth

Workload &
Replicas

CPU & memory

Connections &
priority bands

Limitations of Component Middleware

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Limit to how much application
functionality can be refactored into
reusable COTS component middleware

•Middleware itself has become hard to
provision/use

•Large # of components can be tedious &
error-prone to configure & deploy without
proper integration tool support

Limitations of Component Middleware

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Limit to how much application
functionality can be refactored into
reusable COTS component middleware

•Middleware itself has become hard to
provision/use

•Large # of components can be tedious &
error-prone to configure & deploy without
proper integration tool support

• There are many middleware technologies
to choose from

Middleware

Middleware
Services

DRE Applications

Operating System
& Protocols

Hardware &
Networks

RT-CORBA

RT-CORBA
Services

RT-CORBA
Apps

J2ME

J2ME
Services

J2ME
Apps

DDS

DDS
Services

DDS
Apps

Limitations of Component Middleware

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Model-driven engineering
(MDE)
•Apply MDE tools to

• Model
• Analyze
• Synthesize
• Provision
middleware & application
components

•Configure product variant-
specific component assembly
& deployment environments

•Model-based component
integration policies

<CONFIGURATION_PASS>
<HOME>

<…>
<COMPONENT>
<ID> <…></ID>
<EVENT_SUPPLIER>
<…events this

component
supplies…>

</EVENT_SUPPLIER>
</COMPONENT>
</HOME>

</CONFIGURATION_PASS>

Instrument Cluster

Positioning Unit

GUIDisplay
Refresh

GPSLocation

LEDDisplay
Refresh

GetLocation

RateGen
Pulse

Rate

GPS

MyLocation

Refresh Ready

www.isis.vanderbilt.edu/
projects/mobies

Applying MDE to Bold Stroke

ANALYSIS TOOLS

CODE GENERATORS

Stateflow

Real-time Java

Statecharts

Ptolemy

C/C++

SMV

SPIN

Simulink

XML Ptolemy

APPLICATION MODELING
TOOLS

EMBEDDED PLATFORM MODEL

Interaction is
based on mission-
specific ontologies

& semantics

Formal mission specs,
subsystem models, &

computational constraints
combined into integrated
MDE tool chain & mapped

to execution platforms

UML/Rose
ESML/GME

PICML/GME

ARIES

TimeWeaver

TimeWiz

Cadena

PowerPC

ACE+TAO

Bold
Stroke

www.rl.af.mil/tech/
programs/MoBIES/Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Applying MDE to Bold Stroke

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Benefits of MDE
• Increase expressivity

• e.g., linguistic support to better
capture design intent

• Increase precision
• e.g., mathematical tools for cross-

domain modeling, synchronizing
models, change propagation across
models, modeling security & other
QoS aspects

• Achieve reuse of domain semantics
• Generate code that’s more “platform-

independent” (or not)!
• Support DRE system

development & evolution

..

Avionics Mission Computing
Modeling Languages

Artifact

Generator

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Modeling technologies are
still maturing & evolving

• i.e., non-standard
tools

• Magic (& magicians) are
still necessary for success

Model & Component
LibraryApplications

$ $ $

Limitations of MDE

Model-driven
Software

Development

Standard
Middleware,

Frameworks, &
Components

Patterns &
Pattern

Languages

Experienced Senior Architects

• Responsible for communicating
completeness, correctness, &
consistency of all parts of the
software architecture to the
stakeholders

Solid Key Developers

• Design responsibility
(maintenance, evolution) for a
specific architectural topic

Enlightened Managers

• Must be willing to defend the
sacrifice of some short-term
investment for long-term payoff

Accepted Business Drivers

• i.e., need a “succeed or die”
mentality

Key Technologies

It’s crucial to have an effective process for growing architects & key developers

Ingredients for Success with Systematic Reuse

Process Traits
• Death through quality

• “Process bureaucracy”
• Analysis paralysis

• “Zero-lines of code seduction”
• Infrastructure churn

• e. g., programming to low-level
APIs

Organizational Traits
• Disrespect for quality developers

• “Coders vs. developers”
• Top-heavy bureaucracy

Sociological Traits
• The “Not Invented Here” syndrome
• Modern method madness

Traits of Dysfunctional Software Organizations

www.dre.vanderbilt.edu/~schmidt/editorials.html

Traits of Highly Successful Software Organizations

Strong leadership in business & technology

• e.g., understand the role of software
technology

• Don’t wait for “silver bullets”

Clear architectural vision

• e.g., know when to buy vs. build

• Avoid worship of specific tools &
technologies

Effective use of prototypes & demos

• e.g., reduce risk & get user feedback

Commitment to/from skilled developers

• e.g., know how to motivate software
developers & recognize the value of
thoughtware

• More emphasis on integration rather than
programming

• Increased technology convergence &
standardization

• Mass market economies of scale for technology
& personnel

• More disruptive technologies & global
competition

• Lower priced—but often lower quality—
hardware & software components

• The decline of internally funded R&D

• Potential for complexity cap in next-generation
complex systems

Consequences of COTS & IT Commoditization

Not all trends bode
well for long-term
competitiveness of
traditional leaders

Hardware

Domain-Specific Services

Common
Middleware Services

Distribution Middleware

Host Infrastructure
Middleware

Operating Systems
& Protocols

Applications

Ultimately, competitiveness
depends on success of long-term
R&D on complex distributed real-
time & embedded (DRE) systems

Concluding Remarks
• The growing size & complexity of DRE

systems requires significant innovations
& advances in processes, methods,
platforms, & tools

• Not all technologies provide precision of
legacy real-time & embedded systems

• Advances in Model-Driven Engineering
& component/SOA-based DRE system
middleware are needed to address
future challenges

• Significant groundwork laid in DARPA &
NSF programs • Much more R&D needed to assure key

quality attributes of DRE systems

See blog.sei.cmu.edu for coverage of SEI R&D activities

Further Reading

ULS systems are socio-technical ecosystems
comprised of software-reliant systems, people,
policies, cultures, & economics that have
unprecedented scale in the following dimensions:
• # of lines of software code & hardware

elements
• # of connections & interdependencies
• # of computational elements
• # of purposes & user perception of purposes
• # of routine processes & “emergent

behaviors”
• # of (overlapping) policy domains &

enforceable mechanisms
• # of people involved in some way
• Amount of data stored, accessed, &

manipulated
• … etc …

www.sei.cmu.edu/uls

See blog.sei.cmu.edu for discussions of software R&D activities

Sponsored by Office of the Secretary of Defense (OSD)
with assistance from the National Science Foundation
(NSF), & Office of Naval Research (ONR),
www.nap.edu/openbook.php?record_id=12979&page=R1

Focus of the report is on ensuring the DoD
has the technical capacity & workforce to
design, produce, assure, & evolve innovative
software-reliant systems in a predictable
manner, while effectively managing risk,
cost, schedule, & complexity

NRC Report Critical Code: Software Producibility for Defense (2010)

Further Reading

See blog.sei.cmu.edu for discussions of software R&D activities

