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Reflections on 20 Years of Architecture 
for 

Distributed Real-time & Embedded Systems



Distributed Real-time & Embedded (DRE) Systems
In DRE systems the “right answer”

delivered too late becomes the “wrong 
answer”



DRE System Architecture: ~20 Years Ago
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DRE System Architecture: ~10 Years Ago
Pattern-Oriented 
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DRE System Architecture: Past ~5 Years
Pattern languages for distributed 

computing & resource management
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Pattern languages for distributed 
computing & resource management
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Pattern languages for distributed 
computing & resource management

Model-driven 
engineering 
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Concluding Remarks

Careful study & leveraging of 
good patterns significantly 
improves architecture skills

Automation via model-driven 
engineering tools is helpful, but not 
(yet) a substitute for experience/insight

Our understanding of the key patterns 
necessary to architect net-centric DRE
systems-of-systems is still in its infancy


