
Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of EECS 
Vanderbilt University 
Nashville, Tennessee

SATURN Conference, May 9th, 2012

Reflections on 20 Years of Architecture 
for 

Distributed Real-time & Embedded Systems



Distributed Real-time & Embedded (DRE) Systems
In DRE systems the “right answer”

delivered too late becomes the “wrong 
answer”



DRE System Architecture: ~20 Years Ago

Abstracted away 
from key quality-of-
service properties

Overly 
hardware
-centric

Conflated design & 
implementation

Limited reuse 
across domains
Limited reuse 

across domains



DRE System Architecture: ~10 Years Ago
Pattern-Oriented 

Software Architecture

Handle
owns

dispatches
*

notifies*

*

handle set

Reactor

handle_events()
register_handler()
remove_handler()

Event Handler

handle_event ()
get_handle()

Concrete Event 
Handler A

handle_event ()
get_handle()

Concrete Event 
Handler B

handle_event ()
get_handle()

Synchronous
Event Demuxer

select ()

<<uses>>

Patterns decouple design 
& implementation

Optimization principle patterns address 
key quality-of-service properties

Pattern 
collections 
support 

multiple DRE 
system 
domains



DRE System Architecture: Past ~5 Years
Pattern languages for distributed 

computing & resource management

Resource 
Lifecycle
Manager

Caching

Pooling

Leasing

Evictor

Partial
Acquisition

Lazy
Acquisition

Coordinator

Lookup

Eager
Acquisition

Performance

Scalability

Consistency

Stability

Flexibility

Predictability

Pattern languages for distributed 
computing & resource management

Wrapper Facade

Layers

Component

internal
partitioning

Remoting Error

Lookup

Requestor

Object Adapter

Container

Facade

Business
Delegate

Invoker Client Proxy

OS abstraction

request
issuing

request
reception

error
notification

Broker
configuration

component
discovery

request
dispatching

request
dispatching

broker
access

component
access

component
access

component
creation

Message

Publisher-
Subscriber

Factory Method

request
encapsulation

publish-
subscribe
communication

Broker

Pattern languages for distributed 
computing & resource management

Model-driven 
engineering 

support for DRE 
systems

Model-driven 
engineering tools 

automate key patterns 
for DRE systems



Concluding Remarks

Careful study & leveraging of 
good patterns significantly 
improves architecture skills

Automation via model-driven 
engineering tools is helpful, but not 
(yet) a substitute for experience/insight

Our understanding of the key patterns 
necessary to architect net-centric DRE
systems-of-systems is still in its infancy


