
© 2005 by Carnegie Mellon University page 1

Software Product Lines

Linda Northrop
Product Line Systems Program

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

This work is sponsored by the U.S. Department of Defense.

© 2005 by Carnegie Mellon University page 2

Today’s Talk

Introduction

Product Line Concepts
•What
•Why
•How

Conclusion

Introduction

Product Line Concepts
•What
•Why
•How

Conclusion

© 2005 by Carnegie Mellon University page 3

Business Success Requires
Software Prowess

Software pervades every sector.
Software has become the bottom line for many
organizations who never envisioned themselves
in the software business.

© 2005 by Carnegie Mellon University page 4

Universal Needs
Deploy new products (services) at a rapid pace

Accommodate a growing demand for new
product features across a wide spectrum of
feature categories

Exploit a rapidly changing technology base

Gain a competitive edge

© 2005 by Carnegie Mellon University page 5

Universal Business Goals
High quality

Quick time to market

Effective use of limited resources

Product alignment

Low cost production

Low cost maintenance

Mass customization

Mind share

 improved
 efficiency

 and
 productivity

© 2005 by Carnegie Mellon University page 6

Substantial

Quick

Sustainable

PROFIT

The Ultimate Universal Goal

© 2005 by Carnegie Mellon University page 7

Software (System) Strategies

Process Improvement

Technology Innovation

Reuse

© 2005 by Carnegie Mellon University page 8

Few Systems Are Unique

Most organizations produce families of
similar systems, differentiated by features.

© 2005 by Carnegie Mellon University page 9

Reuse History

1960’s
Subroutines

1970’s
Modules

1980’s
Objects

1990’s
Components

Focus was small-grained and opportunistic.
Results fell short of expectations.

© 2005 by Carnegie Mellon University page 10

Imagine Strategic Reuse

strategic
reuse

business strategy
and

technical strategy

© 2005 by Carnegie Mellon University page 11

CelsiusTech: Ship System 2000
A family of 55 ship systems

• Integration test of 1-1.5 million
SLOC requires 1-2 people.

• Rehosting to a new platform/OS
takes 3 months.

• Cost and schedule targets are
predictably met.

• Performance/distribution behavior
are known in advance.

• Customer satisfaction is high.
• Hardware-to-software cost ratio
changed from 35:65 to 80:20.

© 2005 by Carnegie Mellon University page 12

Cummins Inc.: Diesel Engine
Control Systems

Over 20 product groups with over
1,000 separate engine applications

• Product cycle time was slashed
from 250 person-months to a few
person-months.

• Build and integration time was
reduced from one year to one
week.

• Quality goals are exceeded.
• Customer satisfaction is high.
• Product schedules are met.

© 2005 by Carnegie Mellon University page 13

National Reconnaissance Office/
Raytheon: Control Channel Toolkit

Ground-based spacecraft
command and control systems

• increased quality by 10X
• incremental build time reduced

from months to weeks
• software productivity increased

by 7X
• development time and costs

decreased by 50%
• decreased product risk

© 2005 by Carnegie Mellon University page 14

Market Maker GmbH: MERGER
Internet-based stock market
software

• Each product is “uniquely”
configured.

• Putting up a customized
system takes three days.

© 2005 by Carnegie Mellon University page 15

Nokia Mobile Phones
Product lines with 25-30 new products
per year

Across products there are
• varying number of keys
• varying display sizes
• varying sets of features
• 58 languages supported
• 130 countries served
• multiple protocols
• needs for backwards compatibility
• configurable features
• needs for product behavior
change after release

© 2005 by Carnegie Mellon University page 16

How Did They Do It?

Software
Product

Lines

© 2005 by Carnegie Mellon University page 17

Reuse History: From Ad Hoc to
Systematic

1960s
Subroutines

1970s
Modules

1980s
Objects

1990s
Components

2000s
Software

Product Lines

© 2005 by Carnegie Mellon University page 18

Today’s Talk

Introduction

Product Line Concepts
•What
•Why
•How

Conclusion

IntroductionIntroduction

Product Line ConceptsProduct Line Concepts
••WhatWhat
••WhyWhy
••HowHow

ConclusionConclusion

© 2005 by Carnegie Mellon University page 19

What Is a Software Product Line?
A software product line is a set of software-
intensive systems sharing a common, managed
set of features that satisfy the specific needs of a
particular market segment or mission and that
are developed from a common set of core
assets in a prescribed way.

© 2005 by Carnegie Mellon University page 20

Software Product Lines
Market strategy/

Application domain

Architecture

Components

pertain to

share an

are built from

is satisfied by

used to structure
Products

CORE
ASSETS

Product lines
• take economic advantage of commonality
• bound variability

© 2005 by Carnegie Mellon University page 21

How Do Product Lines Help?
Product lines amortize the investment in these
and other core assets:

• requirements and requirements analysis
•domain model
•software architecture and design
•performance engineering
•documentation
• test plans, test cases, and test data
•people: their knowledge and skills
•processes, methods, and tools
•budgets, schedules, and work plans
•components

product lines = strategic reuse

earlier
life cycle

reuse

more
benefit

© 2005 by Carnegie Mellon University page 22

The Key Concepts

Use of a core
asset base in production of a related

set of products

© 2005 by Carnegie Mellon University page 23

The Key Concepts

Use of a core
asset base in production of a related

set of products

Architecture Production Plan Scope Definition
Business Case

© 2005 by Carnegie Mellon University page 24

Software Product Lines Are Not - 1

Fortuitous Small-Grained Reuse
• Reuse libraries containing algorithms, modules, objects,

or components
• Benefits depend on

- software engineer’s predisposition to use what is in
the library

- suitability of library contents for particular needs
- successful adaptation and integration of library units

into the rest of the system
• Reuse is not planned, enabled, or enforced nor are

results predictable

© 2005 by Carnegie Mellon University page 25

Software Product Lines Are Not - 2

Single-System Development with Reuse
• Borrowing opportunistically from previous efforts
• Modifying as necessary for the single system only
• Asset base never cultivated

Just Component-Based Development
• Selection of components from an in-house library or the

marketplace
• Missing a product line architecture and a production

plan as well as management infrastructure

© 2005 by Carnegie Mellon University page 26

Software Product Lines Are Not - 3

Just a Configurable Architecture
• Involves use of a reference architecture or application

framework
• Does not involve the planned reuse of other assets
Versions of Single Products
• Involves sequential release of products over time.
• No simultaneous release/support of multiple products

Just a Set of Technical Standards
• Constraints to promote interoperability and to decrease

the cost associated with maintenance and support of
commercial components

• Does not provide assets and production capability

© 2005 by Carnegie Mellon University page 27

Product Lines Are
Software product lines involve strategic, planned
reuse that yields predictable results.

© 2005 by Carnegie Mellon University page 28

Commercial Examples
Successful software product lines have been built for families of
• mobile phones
• command and control ship systems
• ground-based spacecraft systems
• avionics systems
• command and control/situation awareness systems
• pagers
• engine control systems
• billing systems
• web-based retail systems
• printers
• consumer electronic products
• acquisition management enterprise systems

© 2005 by Carnegie Mellon University page 29

Today’s Talk

Introduction

Product Line Concepts
•What
•Why
•How

Conclusion

IntroductionIntroduction

Product Line ConceptsProduct Line Concepts
••WhatWhat
••WhyWhy
••HowHow

ConclusionConclusion

© 2005 by Carnegie Mellon University page 30

Real World Motivation
Organizations use product line practices to:
• achieve large scale productivity gains
• improve time to market
• maintain market presence
• sustain unprecedented growth
• compensate for an inability to hire
• achieve systematic reuse goals
• improve product quality
• increase customer satisfaction
• enable mass customization
• get control of diverse product configurations

© 2005 by Carnegie Mellon University page 31

Summary: Organizational Benefits
Improved productivity

by as much as 10x

Decreased time to market (to field, to launch...)
by as much as 10x

Decreased cost
by as much as 60%

Decreased labor needs
by as much as 10X fewer software developers

Increased quality
by as much as 10X fewer defects

Product line practice permits predictable
“faster, better, cheaper.”

© 2005 by Carnegie Mellon University page 32

Individuals Who Benefit
CEO

COO

Technical
Manager

End User Customer

Marketer

Core Asset
Developer

Architect

© 2005 by Carnegie Mellon University page 33

Costs of a Software Product Line
Core Assets Costs
architecture must support variation inherent in the

product line
software components must be designed to be general without

a loss of performance; must build in
support for variation points

test plans, test cases,
test data

must consider variation points and
multiple instances of the product line

business case and
market analysis

must address a family of software
products, not just one product

project plans must be generic or be made extensible
to accommodate product variations

tools and processes must be more robust
people, skills, training must involve training and expertise

centered around the assets and
procedures associated with the product
line

© 2005 by Carnegie Mellon University page 34

Economics of Product Lines

Weiss. D.M. & and Lai, C.T.R..
Software Product-Line Engineering:
A Family-Based Software Development Process
Reading, MA: Addison-Wesley, 1999.

With Product Line Approach

Current
Practice

Cumulative
Cost

Number of Products

© 2005 by Carnegie Mellon University page 35

Economics of Product Lines

With Product Line Approach

Current
Practice

Cumulative
Cost

Number of Products

Payoff Point Weiss. D.M. & and Lai, C.T.R..
Software Product-Line Engineering:
A Family-Based Software
Development Process
Reading, MA: Addison-Wesley, 1999.

© 2005 by Carnegie Mellon University page 36

Today’s Talk

Introduction

Product Line Concepts
•What
•Why
•How

Conclusion

IntroductionIntroduction

Product Line ConceptsProduct Line Concepts
••WhatWhat
••WhyWhy
••HowHow

ConclusionConclusion

© 2005 by Carnegie Mellon University page 37

Necessary Changes

Organizational Organizational
structure and structure and

personnelpersonnel

ManagementManagement

Business Business
approachapproach

ArchitectureArchitecture

Development Development
approachapproach

The product line architecture is the
foundation of everything.

© 2005 by Carnegie Mellon University page 38

Why is Software Architecture Important?

Represents earliest design decisions

• hardest to change
• most critical to get right
• communication vehicle among

stakeholders

First design artifact addressing
• performance
• reliability

• modifiability
• security

Key to systematic reuse • transferable, reusable abstraction

The right architecture paves the way for system success.
The wrong architecture usually spells some form of disaster.

© 2005 by Carnegie Mellon University page 39

Product Line Practice

 But there are
 universal essential
activities and
practices.

Contexts for product
lines vary widely, based
on

• nature of products
• nature of market or
mission

• business goals
• organizational
infrastructure

• workforce distribution
• process discipline
• artifact maturity

© 2005 by Carnegie Mellon University page 40

A Framework for Software
Product Line PracticeSM

A description of the essential activities and practice areas
form a conceptual framework for software product line
practice.

This Framework is evolving based on the experience and
information provided by the community.

Version 4.0 – in Software Product Lines: Practices and
Patterns

Version 4.2 – http://www.sei.cmu.edu/plp/framework.html

© 2005 by Carnegie Mellon University page 41

SEI Information Sources

Collaborations
with customers

on actual product lines

Case studies,
experience reports,
and surveys

Workshops
and
conferences

Applied research

© 2005 by Carnegie Mellon University page 42

The Three Essential Activities

Core Asset
Development

Management

Product
Development

© 2005 by Carnegie Mellon University page 43

The Nature of the Essential Activities
All three activities are interrelated and highly iterative.

There is no “first” activity.
• In some contexts, existing products are mined for core

assets.
• In others, core assets may be developed or procured for

future use.

There is a strong feedback loop between the core assets and
the products.

Strong management at multiple levels is needed throughout.

© 2005 by Carnegie Mellon University page 44

Management

Core Asset Development

Core Asset
Development

Product Constraints

Production Constraints

Production Strategy
Inventory of Pre-existing
Assets

Product Line Scope

Core Assets

Production Plan

© 2005 by Carnegie Mellon University page 45

Management

Attached Processes

Core Asset
Development

Core
Assets

Production
Plan

+ + +

Attached
Processes

Core Asset Base

© 2005 by Carnegie Mellon University page 46

Product Development

Management

Product
Development

Product Requirements
Product Line Scope

Production Plan
+ + +

Core Assets

Products

© 2005 by Carnegie Mellon University page 47

Management

Core Asset
Development

Management

Product
Development

© 2005 by Carnegie Mellon University page 48

Management
Management at multiple levels plays a critical role in the
successful product line practice by

• achieving the right organizational structure
• allocating resources
• coordinating and supervising
• providing training
• rewarding employees appropriately
• developing and communicating an acquisition strategy
• managing external interfaces
• creating and implementing a product line adoption plan
• launching and institutionalizing the approach in a

manner appropriate to the organization

© 2005 by Carnegie Mellon University page 49

Managing a Software Product
Line Requires Leadership
A key role for a software product line manager is that of
champion.

The champion must
• set and maintain the vision
• ensure that the appropriate goals and measures are in

place
• “sell” the product line up and down the chain
• sustain morale
• deflect potential derailments
• solicit feedback and continuously improve the approach

© 2005 by Carnegie Mellon University page 50

Essential Product Line Activities

Core Asset
Development

Product
Development

Management

Each of these is essential, as is the blending of all three.

© 2005 by Carnegie Mellon University page 51

Different Approaches - 1
Proactive: Develop the core assets first.
• Develop the scope first and use it as a “mission”

statement.
• Products come to market quickly with minimum code

writing.
• requires upfront investment and predictive knowledge

Reactive: Start with one or more products.
• From them, generate the product line core assets and

then future products; the scope evolves more
dramatically.

• much lower cost of entry
• The architecture and other core assets must be robust,

extensible, and appropriate to future product line needs.

© 2005 by Carnegie Mellon University page 52

Different Approaches - 2
Incremental: In either a reactive or proactive approach, it
is possible to develop the core asset base in stages, while
planning from the beginning to develop a product line.
• Develop part of the core asset base, including the

architecture and some of the components.
• Develop one or more products.
• Develop part of the rest of the core asset base.
• Develop more products.
• Evolve more of the core asset base.
• …

© 2005 by Carnegie Mellon University page 53

Alternate Terminology

Our Terminology Alternate Terminology

Product Line Product Family
Core Assets Platform
Business Unit Product Line
Product Customization
Core Asset Development Domain Engineering
Product Development Application Engineering

© 2005 by Carnegie Mellon University page 54

Driving the Essential Activities

Beneath the level of the essential activities are
essential practices that fall into practice areas.

A practice area is a body of work or a collection
of activities that an organization must master to
successfully carry out the essential work of a
product line.

© 2005 by Carnegie Mellon University page 55

Practice Areas Categories

Software Engineering

Technical Management

Organizational Management

© 2005 by Carnegie Mellon University page 56

Relationships among Categories
of Practice Areas

Software
Engineering
Practice Areas

Organizational
Management
Practice Areas

manage and support enable and orchestrate

Technical
Management
Practice Areas

© 2005 by Carnegie Mellon University page 57

Framework

Essential Activities

Practice Areas

Software
Engineering

Technical
Management

Organizational
Management

Architecture Definition
Architecture Evaluation
Component Development
COTS Utilization
Mining Existing Assets
Requirements Engineering
Software System Integration
Testing
Understanding

Relevant Domains

Configuration Management
Data Collection, Metrics,

and Tracking
Make/Buy/Mine/Commission

Analysis
Process Definition
Scoping
Technical Planning
Technical Risk Management
Tool Support

Building a Business Case
Customer Interface Management
Implementing an Acquisition

Strategy
Funding
Launching and Institutionalizing
Market Analysis
Operations
Organizational Planning
Organizational Risk Management
Structuring the Organization
Technology Forecasting
Training

Core Asset
Development

Product
Development

Management

© 2005 by Carnegie Mellon University page 58

Architecture Definition
The software architecture of a software system is the
structure or structures of the system, which comprise
software elements, the externally visible properties of those
elements, and the relationships among them.1

Architecture is
• the blueprint for a project
• the carrier of most system quality attributes
• a forum for resource tradeoffs
• a contract that allows multi-party development
• an essential part of complex systems

Bass, L.; Clements, P. & Kazman, R. Software Architecture in Practice, 2nd Edition.
Reading, MA: Addison-Wesley, 2003.

© 2005 by Carnegie Mellon University page 59

Architecture Definition: Aspects
Peculiar to Product Lines
A product line architecture must

• apply to all members of the product line (even if their
functions and qualities differ)

• embody the commonalities and variabilities of the family
members

• include specific mechanisms for variation

© 2005 by Carnegie Mellon University page 60

Architecture Definition:
Specific Practices
Architecture variability mechanisms
• component replacement, omission, replication
• parameterization (including macros, templates)
• compile-time selection of different implementations

(e.g., #ifdef)
• OO techniques: inheritance, specialization, and

delegation
• configuration and module interconnection languages
• generation and generators
• aspect-oriented programming

- an approach for modularizing system properties that
otherwise would be distributed across modules

• application frameworks

© 2005 by Carnegie Mellon University page 61

Examples of Variability
Reference
architectures with
slots for plug-in
components

Tools

Subsystem Interaction Manager

User Interaction Manager
Development Manager

Repository Manager

Display
Station Name

Display
Frequency

Display
Station

use
Module B

Module C

frequency

use

Module D

Module E

name

choose 1

Variation points
within a family
of products:
Document with
a decision tree
that shows the
choices available

© 2005 by Carnegie Mellon University page 62

Important Concepts
Localization
Variability mechanism
Conditional process
Supporting elements
Dependencies

© 2005 by Carnegie Mellon University page 63

Dilemma: How Do You Apply the
29 Practice Areas?
Organizations still have to figure out how to put the
practice areas into play.

Twenty-nine is a big number.

© 2005 by Carnegie Mellon University page 64

Help to Make It Happen

Probe

Software
Engineering

Technical
Management

Organizational
Management

PatternsCase Studies

Essential Activities

Practice Areas

Guidance

© 2005 by Carnegie Mellon University page 65

Case Studies
CelsiusTech – CMU/SEI-96-TR-016
http://www.sei.cmu.edu/publications/documents/01.reports/96.tr.016.html
Cummins, Inc. Software Product Lines: Practices and Patterns

Market Maker Software Product Lines: Practices and Patterns

NRO/Raytheon – CMU/SEI-2001-TR-030
http://www.sei.cmu.edu/publications/documents/01.reports/02tr030.html

NUWC – CMU/SEI-2002-TN-018
http://www.sei.cmu.edu/publications/documents/02.reports/02tn018.html

Salion, Inc. – CMU/SEI-2002-TR-038
http://www.sei.cmu.edu/publications/documents/02.reports/02tr038.html

© 2005 by Carnegie Mellon University page 66

Help to Make It Happen

Probe

Software
Engineering

Technical
Management

Organizational
Management

PatternsCase Studies

Essential Activities

Practice Areas

Guidance

© 2005 by Carnegie Mellon University page 67

Patterns Can Help

Patterns are a way of expressing common context
and problem-solution pairs.

Patterns have been found to be useful in building
architecture, economics, software architecture,
software design, software implementation, process
improvement, and others.

Patterns assist in effecting a divide and conquer
approach.

© 2005 by Carnegie Mellon University page 68

Software Product Line Practice
Pattern

Pattern
Context – organizational situation
Problem – what part of a product line

effort needs to be accomplished
Solution grouping of practice areas

relations among these practice
areas (and/or groups if there
is more than one)

© 2005 by Carnegie Mellon University page 69

What to Build Pattern - 1

Name:
The What to Build pattern helps an
organization determine what products ought to
be in its software product line – what products
to build.

Context:
An organization has decided to field a software
product line and knows the general product
area for the set of products.

© 2005 by Carnegie Mellon University page 70

What to Build Pattern - 2

Understanding
Relevant
Domains

Market Analysis Technology
Forecasting

Building a
Business Case

Scoping

Domain
Models

Product
Set

Market
Climate

Product
Line

Scope

Justification

Product Set

Business
Case

Technology
Predictions

Technology
Predictions

Market
Climate

Dynamic Structure

© 2005 by Carnegie Mellon University page 71

Factory Pattern - 1

Name:
The Factory patterns is a composite pattern
that describes the entire product line
organization.

Context:
An organization is considering (or fielding) a
product line.

© 2005 by Carnegie Mellon University page 72

Factory Pattern - 2

Product Builder

Each Asset

Informs

What to Build Product
Parts

Assembly Line

MonitorIn MotionCold Start

Dynamic Structure

© 2005 by Carnegie Mellon University page 73

Current Set of Patterns

Analysis
Forced March

What to Build

Green Field
Barren Field
Plowed Field

Product Parts
Product GenProduct Builder
Process ImprovementProcess

Monitor
In Motion

Adoption FactoryFactory
Essentials Coverage

Each Asset Apprentice
Evolve Each Asset

Each Asset
Curriculum

Warm StartCold Start
Assembly Line

VariantsPattern

© 2005 by Carnegie Mellon University page 74

Help to Make It Happen

Probe

Software
Engineering

Technical
Management

Organizational
Management

PatternsCase Studies

Essential Activities

Practice Areas

Guidance

© 2005 by Carnegie Mellon University page 75

What Is a Product Line Technical
Probe?

A method for examining an
organization’s readiness to adopt or
ability to succeed with a software
product line approach
• diagnostic tool based on the SEI

Framework for Software Product Line
Practice

• Practice areas are the basis of data
collection and analysis.

© 2005 by Carnegie Mellon University page 76

PLTP Outcomes
Set of findings that portray organizational
• strengths
• challenges

with regard to a product line approach

Findings can be used to develop an action plan
with the goal of making the organization more
capable of achieving product line success.

© 2005 by Carnegie Mellon University page 77

PLTP Applicability
When an organization
• is considering adopting a software product line

approach
• has already initiated a software product line

approach

© 2005 by Carnegie Mellon University page 78

Getting There
Product line adoption involves moving from
some form of developing software-intensive
systems with a single-system mentality to
developing them as a software product line.

© 2005 by Carnegie Mellon University page 79

The Adoption Endgame
Effectively achieve an operational product line.
• have

- a core asset base
- supportive processes and organizational

structures
• develop products from that asset base in a

way that achieves business goals
• improve and extend the software product line

adoption effort as long as it makes sense

© 2005 by Carnegie Mellon University page 80

Barriers to Product Line Adoption

Cost, cost, and
cost

© 2005 by Carnegie Mellon University page 81

Barriers to Product Line Adoption

Time, time,
and time

© 2005 by Carnegie Mellon University page 82

Time Needed for Product Line Adoption

Time is needed to
• launch the product line effort

- educate
- address cultural barriers

• define supportive processes and
organizational structures

• develop a core asset base
• lead the organization to an operational

product line
• continue to do business

An organization can’t go out of business while
adopting a product line approach.

© 2005 by Carnegie Mellon University page 83

More Barriers
Lack of knowledge
Need for organizational change
Cultural resistance
Lack of sufficient management support
Lack of necessary talent
Incompatible development processes
Globalization of workforce
Stove-piped mentality
No clear path to follow
Others?????

page 84
© 2005 by Carnegie Mellon University

Organizational Context

product line readiness

barriers

enablers

unique characteristics

other ongoing activities

culture

Factors Influencing Adoption

page 85
© 2005 by Carnegie Mellon University

. . .

Organizational Context Adoption Support

product line readiness

barriers

enablers

unique characteristics

other ongoing activities

culture
change models

product line adoption
roadmap

product line approaches

planning process

change management
mechanisms

Product Line Adoption Plan

Product Line
Action Plans

The Framework

Factors Influencing Adoption

page 86
© 2005 by Carnegie Mellon University

. . .

Organizational Context Adoption Support

product line readiness

barriers

enablers

unique characteristics

other ongoing activities

culture
change models

product line adoption
roadmap

product line approaches

planning process

change management
mechanisms

Product Line Adoption Plan

Product Line
Action Plans

The Framework

Factors Influencing Adoption

© 2005 by Carnegie Mellon University page 87

Factory Pattern Revisited

Product Builder

Each Asset

Informs

What to Build Product
Parts

Assembly Line

MonitorIn MotionCold Start

Dynamic Structure

© 2005 by Carnegie Mellon University page 88

A Variant for Adoption
The Factory pattern is already a roadmap for the entire
product line organization:
• a top-down view of the product line organization
• a blueprint for a divide-and-conquer strategy

Organizations that lack the ability to define and follow
processes, even lightweight or agile ones, need to
address that deficiency early in their adoption path.

Even though the “Process Definition” practice area is part
of the Assembly Line pattern, it is called out separately in
a variant on the Factory pattern.

The variant is called the Adoption Factory pattern.

© 2005 by Carnegie Mellon University page 89

Adoption Factory Pattern

Product Builder

Each Asset

Informs

What to Build Product
Parts

Assembly Line

MonitorIn MotionCold Start

Process
Definition

Dynamic Structure

© 2005 by Carnegie Mellon University page 90

Adoption Factory Pattern

Product Builder

Each Asset

Informs

What to Build Product
Parts

Assembly Line

MonitorIn MotionCold Start

Adoption
Factory Pattern

Operate
Product Line

Establish
Context

Establish
Production
Capability

Process
Definition

Product

Process

Organization

© 2005 by Carnegie Mellon University page 91

Using the Adoption Factory Pattern- 1

To use the Adoption Factory pattern as a
roadmap
• Elaborate the practice areas associated with

its subpatterns.
• Plan to master these practice areas in a

continuous way that begins at the phase
where they first appear.

The Adoption Factory pattern applies
regardless of the adoption strategy chosen –
proactive, reactive, or incremental.

© 2005 by Carnegie Mellon University page 92

Associated Practice Areas

Product

Process

Organization

Establish
Context

Establish Production
Capability

Operate
Product Line

Marketing Analysis
Understanding Relevant

Domains
Technology Forecasting
Building a Business Case
Scoping

Requirements Engineering
Architecture Definition
Architecture Evaluation
Mining Existing Assets
Component Development
COTS Utilization
Software System Integration
Testing

Process Definition Make/Buy/Mine/Commission
Configuration Management
Tool Support
Data Collection, Metrics, Tracking
Technical Planning
Technical Risk Management

Launching and Institutionalizing
Funding
Structuring the Organization
Operations
Organizational Planning
Customer Interface Management
Organizational Risk Management
Developing an Acquisition

Strategy
Training

Data Collection, Metrics
and Tracking

Technical Risk
Management

Organizational Risk
Management

Customer Interface
Management

Organizational Planning

Requirements Engineering
Architecture Definition
Architecture Evaluation
Mining Existing Assets
Component Development
COTS Utilization
Software System Integration
Testing

Launching and Institutionalizing
Funding
Structuring the Organization
Operations
Organizational Planning
Customer Interface Management
Organizational Risk Management
Developing an Acquisition

Strategy
Training

© 2005 by Carnegie Mellon University page 93

Using the Adoption Factory Pattern - 2

You can also use the Adoption Factory pattern
to gauge where in the adoption process by
phase your organization is and benchmark your
activities by measuring yourself against the
practice areas in that phase.
• We use the Adoption Factory pattern in the

analysis part of the PLTP and also in framing
recommendations.

• You can use the Adoption Factory pattern as
an easily understood adoption vocabulary that
can be shared across an organization and
marks organizational progress.

© 2005 by Carnegie Mellon University page 94

Implementing the Adoption Plan
Everyone in the product line organization is
responsible for implementing the Product Line
Adoption Plan.
• Each person has a stake.
• Each person has a role.
• Each person needs to contribute.

Coordination and cooperation are fundamental
to successful adoption.

© 2005 by Carnegie Mellon University page 95

Roles View - 1
Another instructive view of the Adoption Factory pattern
depicts the type of people who need to be involved in the
product line adoption effort.

The Roles View lists the typical roles associated with each
quadrant of the Phases and Focus Areas view.

This view can be used for identifying staffing needs and
making assignments.

Some roles may appear in multiple phases, but the tasks
those roles perform will vary with the phase.

© 2005 by Carnegie Mellon University page 96

Roles View - 2

product developer:
• requirements engineer
• architect
• architecture evaluator
• component developer
• tester
• software integrator

core asset developer:
• requirements engineer
• architect
• architecture evaluator
• component developer
• tester
• software integrator

• marketer
• market analyst
• domain expert
• product manager
• senior manager
• technology scout
• architect

Product-
related roles

Operate Product Line
Phase

Establish Production
Capability Phase

Establish Context
Phase

© 2005 by Carnegie Mellon University page 97

Roles - 3

• technical manager
• process owner
• process group
member
• technical support
• tool specialist
• measurement
specialist

• technical manager
• process owner
• process group
member
• technical support
• tool specialist
• measurement
specialist

• technical manager
• process owner
• process group
member

Process -
related roles

Operate Product Line
Phase

Establish Production
Capability Phase

Establish Context
Phase

© 2005 by Carnegie Mellon University page 98

Roles - 4

• product line
manager
• product manager
• business unit or

organization
manager
• customer field

representative
• salesperson

• product line manager
• software manager
• business unit or

organization
manager
• financial manager
• training developer
• trainer

• product line
manager
• software manager
• business unit or

organization
manager
• product manager
• acquisition expert
• financial manager
• human resource

manager
• training planner
• training developer
• trainer

Organization-
related roles

Operate Product Line
Phase

Establish Production
Capability Phase

Establish Context
Phase

© 2005 by Carnegie Mellon University page 99

Today’s Talk

Introduction

Product Line Concepts
•What
•Why
•How

Conclusion

IntroductionIntroduction

Product Line ConceptsProduct Line Concepts
••WhatWhat
••WhyWhy
••HowHow

ConclusionConclusion

© 2005 by Carnegie Mellon University page 100

In a Nutshell

Software product lines epitomize the concept of
strategic, planned reuse.

The product line concept is about more than a
new technology. It is a new way of doing one’s
software business.

There are essential product line activities and
practices areas as well as product line patterns
to make the move to product lines more
manageable.

© 2005 by Carnegie Mellon University page 101

The Entire Picture

Probe

Software
Engineering

Technical
Management

Organizational
Management

PatternsCase Studies

Essential Activities

Practice Areas

Guidance

Adoption Factory

© 2005 by Carnegie Mellon University page 102

What’s Different About Reuse with
Software Product Lines?

Business dimension

Iteration

Architecture focus

Preplanning

Process and product connection

© 2005 by Carnegie Mellon University page 103

At the Heart of Successful Product
Lines
A pressing need that addresses the heart of the business

Long and deep domain experience

A legacy base from which to build

Architectural excellence

Process discipline

Management commitment

Loyalty to the product line as a single entity

© 2005 by Carnegie Mellon University page 104

The Time is Right
Rapidly maturing, increasingly sophisticated software development
technologies including object technology, component technology, and
standardization of commercial middleware.

A global realization of the importance of architecture

A universal recognition of the need for process discipline

Role models and case studies that are emerging in the literature and trade
journals

Conferences, workshops, and education programs that are now including
product lines in the agenda

Company and intercompany product line initiatives

A rising recognition of the amazing cost/performance savings that are
possible

© 2005 by Carnegie Mellon University page 105

Evidence of Progress - 1
1. More companies are reporting software product line
efforts including
• John Deere (tractor manufacturer) went from turning out

one software product in ten years to turning out two
products in one year.

• Agilent (a telecom company) is using SEI Product Line
Practice Patterns as a way to successfully navigate its
geographically dispersed product line effort.

• Argon Engineering (developer of communication
systems that search, identify, and capture signals):
reports increased customer satisfaction, shorter
development cycles, and decreased costs from its
software product lines.

© 2005 by Carnegie Mellon University page 106

Evidence of Progress - 2
2. Others have product line efforts underway, including
• Caterpillar
• Delphi
• Lockheed Martin
• Northrop Grumman
• Raytheon
• Robert Bosch
• Siemens
• Visteon

© 2005 by Carnegie Mellon University page 107

Evidence of Progress - 3
3. U.S. Department of Defense product line efforts that
were begun in the late 1990s are now showing
quantifiable benefits:
• The Naval Undersea Warfare Center (NUWC)

developed the RangeWare product line concept and
asset base.

• The U. S. Army Technology Applications Program
Office (TAPO) and Rockwell Collins successfully
developed a software product line for the cockpit
software for the Army’s special operations helicopters.

© 2005 by Carnegie Mellon University page 108

Evidence of Progress - 4
4. A software product line approach is being chosen for
two major U.S. Army efforts.
• Force XXI Battle Command Brigade and Below

(FBCB2)
• Future Combat System (FCS)

5. Both IBM and Microsoft have gotten interested in
software product lines.
• IBM included “Software Product Lines” in its 2003

Global Technology Outlook.
• Microsoft uses software product lines as the underlying

motivator for its proposed software factories tool
environment.

© 2005 by Carnegie Mellon University page 109

Evidence of Progress - 5
6. Mainstream U.S. conferences and magazines for
software developers now feature software product lines:
• OOPSLA
• Software Development East
• ICSE
• AOSD
• IEEE Software
• Software Development Times

© 2005 by Carnegie Mellon University page 110

Evidence of Progress - 6
7. Many new technology movements have a direct
relationship to software product lines and may provide
additional catalysts.
• OMG’s Model-Driven Architecture (MDA)
• generative programming
• aspect-oriented development
• UML 2.0
• predictable assembly from certifiable components

(PACC) from the SEI

8. SPLC 2004 was a resounding success with
representation and presentations from major companies
across the globe.

© 2005 by Carnegie Mellon University page 111

Remaining Challenges
Definition and implementation of appropriate variation
mechanisms

Evolution of product line architectures and assets

Funding and business models to support strategic reuse
decisions

Effective production plans that meet production constraints

Product line tool support

Ways to lower the initial cost of adoption

© 2005 by Carnegie Mellon University page 112

Summary of SEI Contributions
Practice integration

• A Framework for Software Product Line PracticeSM,
Version 4.1, http://www.sei.cmu.edu/plp/framework.html

Techniques and methods
• product line analysis
• architecture definition – Attribute-Driven Design (ADD)
• architecture evaluation – Architecture Tradeoff Analysis MethodSM

(ATAMSM)
• mining assets – Options Analysis for ReengineeringSM (OARSM)
• Product Line Technical ProbeSM (PLTP)
• Product Line Quick Look (PLQL)
• Product line practice patterns and the Adoption Roadmap

Book
Software Product Lines: Practices and Patterns

Curriculum and Certificate Programs
• Five courses and three certificate programs

Conferences and Workshops
SPLC 1, SPLC2, SPLC 2004; Workshops 1997 - 2004

© 2005 by Carnegie Mellon University page 113

Ongoing SEI Product Line Research

Product derivation
• variability mechanisms
• production plan definition and implementation

Product line sustainment
• asset evolution

Product line adoption strategies
• economic models

© 2005 by Carnegie Mellon University page 114

Software Product Line Strategy in Context

Business Goals

Process
Improvement

Improved
Architecture

Practices

Software
Product Linesprocess

quality

product
quality

process and
product quality

System
(Software)
Strategies

© 2005 by Carnegie Mellon University page 115

Software Product Line Strategy in Context

Business Goals

Process
Improvement

Improved
Architecture

Practices

Software
Product Linesprocess

quality

product
quality

process and
product quality

System
(Software)
Strategies

© 2005 by Carnegie Mellon University page 116

Final Word
If properly managed, the benefits of a product
line approach far exceed the costs.

Strategic software reuse through a well-
managed product line approach achieves
business goals for:

• efficiency
• time to market
• productivity
• quality

Software product lines: Reuse that pays.

© 2005 by Carnegie Mellon University page 117

Linda Northrop
Director
Product Line Systems Program
Telephone: 412-268-7638
Email: lmn@sei.cmu.edu

U.S. mail:
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

World Wide Web:
http://www.sei.cmu.edu/ata
http://www.sei.cmu.edu/plp

SEI Fax: 412-268-5758

Business Development
Product Line Systems Program
Jay Douglass
Telephone: 412-268-6834
Email: jcd@sei.cmu.edu

Questions – Now or Later

