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Agenda

Purpose:

• Become familiar with distributed problem-solving algorithms

– D-COP algorithms as “toolbox” for agent-based modeling

From CSP to DisCSP to DCOP

• Basic concepts and techniques of constraint satisfaction problems (CSP)

• Extension of CSP to a distributed setting using agents

• Main algorithms for distributed CSP (DisCSP)

• Extension of DisCSP to distributed constraint optimization (DCOP)

• Main algorithms for DCOP

• Tradeoffs in DCOP
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y1, y2, …

Why CSP + Agents?

An agent is an autonomous entity with a decision-making capability

• An agent manipulates a set of variables to reach some objective

• For now, we assume that agents are cooperative

CSP is a problem-solving framework for determining the values of a set 
of variables, subject to constraints on the variables

• Satisfaction of constraints involves costs/utilities (optimization)

Inter-related 

agent communities 

resonate with 

SoS/ULS ideas

x1, x2, …

y1, y2, …
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Approaches to Distributed Agent Assignment

1. Constraint satisfaction

• Find a value assignment for all the variables that fulfills all constraints

2. Constraint optimization

• Find a value assignment for all the variables that optimizes an objective 
function f → R

– maximize utility or minimize cost

• In practice, large agent networks lead to tradeoffs 

– find a quasi-optimal solution quickly

– find an optimal solution sharing as little information as possible

– find an optimal solution with little communication overhead (among agents)

– find an optimal solution with fixed memory sizes in each agent

– …
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Types of Problems

N-queens

Graph coloring

Meeting scheduling

Several real-life problems can be modeled as constraint satisfaction or 
constraint optimization problems

• Sensor networks

• Robot patrolling

• Distributed resource allocation

• Distributed planning

• …
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The Path to D-COP

Technique Problem type Planning 

Algorithm

Knowledge

CSP Satisfaction

• hard constraints

Centralized Total knowledge in a single 

agent

Dis-CSP Satisfaction

• hard constraints

Distributed

• agents

• synchronous or 

asynchronous

• Knowledge distributed 

among agents

• Each agent knows its 

neighborhood

•Partial centralization is 

possible

DCOP Optimization

• soft constraints

• objective function to be 

maximized/minimized

Distributed

• agents

• asynchronous

• Knowledge distributed 

among agents

• Each agent knows its 

neighborhood

•Partial centralization is 

possible
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Features in D-COP Algorithms

Control & degree of distribution

• Partially-centralized control, distributed control

• Priority schema

Constraint graph structure

• Dense versus sparse graphs

• Tree-shaped graphs (e.g., DAGs, or 
DFS-induced ordering) 

– If cycles, translate graph to a cycle-free form

– No constraints among siblings

Communications

• Number of messages sent, size of messages

• Links to neighboring agents

Quality of solutions

• Complete versus incomplete (heuristic) algorithms

• Bounds on solution cost

CSP

n/a

--

--

X

--

x

n/a

--

--

X

x

--

DIS-CSP

X

x

x

X

x

x

X

x

--

X

x

--

DCOP

X

x

x

X

x

x

X

x

x

X

x

x
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Map of Algorithms

DCOP

backtracking

local search

...

DIS-CSP

CSP

ABT

AWCS

Distributed 

breakout

branch & 

bound

ADOPTDPOP FamilyOptAPO

NCBB
PC-DPOP

DTree

M-POP

A-POP

…

(partial centralization 

+backtracking)
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Part I: Constraint Satisfaction 

(CSP)
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CSP Formulation

set of variables X1, X2, …, Xn

each variable has a non-empty domain D(Xi) of possible values
(usually discrete variables with finite domains)

set of constraints C1, C2, …, Cm
each constraint involves some subset of variables and specifies 
allowable combinations of values for that subset

The constraints define a constraint network

C2(X2,Xn)

C1(X1,X2)

Cm(X1,Xn)

X1 ?

X2 ?

Xn ?

X3 ?

C3(X2,X3)

C(Xi, Xj) = Xi ≠ Xj

(true/false)

D(X1) = { a, b, c, …}

D(X2) = { a, d, e, …}

D(X3) = { b, e, f, …}

D(Xn) = { g, … }
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Solving CSP

C2(X2,Xn)

=> d ≠ g

C1(X1,X2) 

=> a ≠ d

Cm(X1,Xn) => a ≠ g

C3(X2,X3) 

=> d ≠ e

X1 a

X2 d

Xn g

X3 e

D(X1) = { a, b, c, …}

D(X2) = { a, d, e, …}

D(X3) = { b, e, f, …}

D(Xn) = { g, … }

state of the problem: assignment of values to some (or all) variables

• consistent: an assignment that does not violate any of the constraints

• complete: an assignment that mentions all the variables

A solution is an assignment that is both consistent and complete

Finding a solution involves search (in the domain space)
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Centralized CSP Approach

Traditionally, there is one central agent for solving the problem that

• Knows about all the variables, domains, and constraints of the problem

• Executes an algorithm to find a solution 

Main technique: Backtracking

• Depth-first search for possible assignments of variables to values

• Start with a valid assignment for one variable, and progressively add 
assignments to variables without violating any constraint
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Complexity of Solving CSP

Related to the structure of constraint graph

• Tree-structured problems can be solved in linear time (in # variables)

• Strategy: try to reduce problems to trees

1) Remove nodes

• assign values to variables so that the remaining nodes form a tree. 

• cycle cutset (when the graph is nearly a tree)

• in general, finding the smallest cycle cutset is NP-hard (heuristics exist)

2) Collapse nodes together

• construct a “tree decomposition” of the constraint graph into a set of 
connected components (sub-problems), and solve each sub-problem 
independently

• each sub-problem should be as small as possible (tree width)

• finding a good tree decomposition is NP-hard (heuristic exist)
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Note: “Binarization” of Constraints

A constraint can affect any number of variables

If all the constraints are binary, the variables and constraints can be 

represented in a constraint graph 

• CSP algorithms can exploit graph search techniques

A constraint of higher arity can be expressed in terms of binary 

constraints. Hence, binary CSPs are representative of all CSPs

• Choice between binary or non-binary constraints depends 

on the algorithm and the supporting toolkit

notEqual

notEqual

notEqual

allDifferent(X,Y,Z)
Y

Z

X
X

Y

Z
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Map of Algorithms - CSP

DCOP

backtracking

local search

...

DIS-CSP

CSP

ABT

AWCS

Distributed 

breakout

branch & 

bound

ADOPTDPOP FamilyOptAPO

NCBB
PC-DPOP

DTree

M-POP

A-POP

…

(partial centralization 

+backtracking)
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Example: 4-queens

Variables: A, B, C, D

Domain: {1, 2, 3, …, N} N = 4

Constraints: for all pairs of queens  noThreat(Qi, Qj)

A

B

D

CnoThreat(A,C)

noThreat(A,B)

noThreat(B,C)

noThreat(C,D)

noThreat(A,D)

noThreat(B,D)

A = {1, 2, 3, 4}

B = {1, 2, 3, 4}

C = {1, 2, 3, 4}

D = {1, 2, 3, 4}

1    2    3    4
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4-queens: Solutions

A = {2}

B = {4}

C = {1}

D = {3}

1    2    3    4

1    2    3    4

A = {1}

B = {3}

C = X

D = X

1    2    3    4

A = {1}

B = {3}

C = {2}

D = X

legal

solution

no

solution

A = {1, 2, 3, 4}

B = {1, 2, 3, 4}

C = {1, 2, 3, 4}

D = {1, 2, 3, 4}

1    2    3    4
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4-queens: Search tree

1

1 2 3 4

2

1 2 3 4 1 2 43

1 2 43

1 2 3 4

1

1 2 3

A

B

C

D

A = {2}

B = {4}

C = {1}

D = {3}

1    2    3    4

Backtracking algorithm

• Start with a “partial solution” that assigns values to some variables in such a 
way it satisfies the constraints

• Expand the partial solution by adding variables one by one, until you have a 
complete solution

• Backtracking operation: when the value of variable doesn‟t satisfy a 
constraint, change the value. If no values are left, then fail.
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Alternative to Backtracking: Iterative search

“Improve what you have until you can’t make it better”

Assign a value to every variable, and try to “repair” a 
flawed solution and produce a valid one

• At each step, apply local search to change the value 
of one variable

• Select the value that minimizes the number of 
violated constraints  min-conflict heuristic

A = {?}

B = {4}

C = {1}

D = {3}

1    2    3    4

A = {1}

B = ?

C = {1}

D = {3}

1    2    3    4

3 1    0

A = {1}

B = {2}

C = {1}

D = ?

1    2    3    4

2 0 2

A = {1}

B = {2}

C = {1}

D = {2}

1    2    3    4

A = {1}

B = {4}

C = {1}

D = {3}

1    2    3    4

0 3    1
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Observations on Iterative Search

The algorithm works well, given a “reasonable” initial state 

The structure of the constraint network is important

• e.g., the n-queens defines a “dense” space

Tradeoff between efficiency and completeness

• Local search is faster than a systematic search using backtracking

• but finding a valid solution cannot be guaranteed

Local search techniques can be used in a setting where the problem 
changes (e.g., queens, positions, dimensions of chessboard) over time

• Local search will “repair” the current solution

• not need to start search from scratch for every change
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Complexity of Solving CSP

CSP is a combinatorial problem

• Time complexity is exponential in the number of variables/size of domains  
in the worst case

However, there are heuristics to make search more efficient

• Order the variables and their values

– Select variable with the fewest “legal” values

– Min-conflict: each variable has a tentative value that should satisfy as 
many constraints as possible

• Use consistency checks to prune infeasible values of domains

Structure of the constraint graph

• Tree-shaped problems can be solved in time linear in number of variables

• Strategy: try to reduce graphs to trees 

– Remove nodes in cycles to form “trees” (cut set)

– Collapse nodes together into “strongly connected components”
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Part II: Distributed Constraint 

Satisfaction 

(Dis-CSP)
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Distributed CSP (Dis-CSP)

Variables/constraints are distributed among agents

• first studied by Yokoo et al. [Yokoo98]

An agent is an autonomous entity that

• makes “local” decisions 
to assign its variables

• communicates with neighboring
agents via messages

A = {1, 2, 3, 4}

B = {1, 2, 3, 4}

C = {1, 2, 3, 4}

D = {1, 2, 3, 4}

1    2    3    4

1    2    3    4

B = {1, 2, 3, 4}

1    2    3    4

C = {1, 2, 3, 4}

1    2    3    4

D = {1, 2, 3, 4}

1    2    3    4

A = {1, 2, 3, 4}
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Motivation behind Dis-CSP

Dis-CSP provides a framework for modeling distributed problems with 
constraint satisfaction characteristics

• distributed resource allocation (e.g., in a communication network)

• distributed scheduling

• sensor networks

• …

Dis-CSP (and DCOP!) can be a suitable problem-solving approach for 
different reasons:

• Take advantage of knowledge that is inherently distributed among agents

• Exploit potential parallelism in constraint networks that define loosely-
connected sub-problems

• A central “authority” is not practical or feasible

• Privacy/security concerns

• Robustness against failures

• …
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Naïve Approach – Synchronous Backtracking (ST)

Basic algorithm

• Order the agents based on a priority schema

– priorities impose a total order for the agents

• “token passing” protocol

• Each agent receives a partial solution from its 
previous agent(s), and either

– pass its assignment to the following agent

– or send a “nogood” message (back to a 
previous agent) if no legal value is found

• The agent that receives a “nogood” message 
performs a backtracking step and changes its 
value

SB distributes the knowledge of the problem, 
but does not take advantage of parallelism

B = {1, 2, 3, 4}

C = {1, 2, 3, 4}

D = {1, 2, 3, 4}

A = {1, 2, 3, 4}

Priorities: A < B < C < D

Priority link
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4-queens: Synchronous Backtracking

B = {1, 2, 3, 4}

C = {1, 2, 3, 4}
A = {1, 2, 3, 4}

B = {1, 2, 3, 4}

C = {1, 2, 3, 4}

D = {1, 2, 3, 4}

ok? sol {1, ?, ?, ?}

ok sol {1, 3, ?, ?}

ok ? sol {1, 4, ?, ?}

nogood

ok? sol {1, 4, 2, ?}

1    2    3   4

1    2    3   4 1    2    3   4

X

1    2    3   41    2    3   4

A

B

C

D

A

B

C

D
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Map of Algorithms - DIS-CSP

DCOP

backtracking

local search

...

DIS-CSP

CSP

ABT

AWCS

Distributed 

breakout

branch & 

bound

ADOPTDPOP FamilyOptAPO

NCBB
PC-DPOP

DTree

M-POP

A-POP

…

(partial centralization 

+backtracking)
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Asynchronous Backtracking (ABT)

First described in [Yokoo98] 

Idea: Allow agents to run concurrently and asynchronously

• Every constraint is a directed link between a first agent that is assigned to 
the constraint and a second agent that receives the first agent‟s value

• Agents are assigned to priorities 

– define directionality of constraints (links) in the constraint graph

– create a fixed hierarchy among agents

Ag1 Ag2
constraint(Ag1,Ag2)

Ag1 Ag2

High priority

(value sender)

Low priority

(constraint evaluator)

constraint(Ag1,Ag2)

Ag1 Ag2
notEqual(Ag1,Ag2)

Ag1 = A Ag2 = B

notEqual(A,B)?
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4-queens: Constraint Graph with Priorities

Variables: A, B, C, D

Domain: {1, 2, 3, 4 }

Constraints: 

for all pairs of queens

 noThreat(Qi, Qj)

Priority schema:

Alphabetic order of 
variable identifiers

A

B

D

C

noThreat(A,C)

noThreat(A,B)

noThreat(B,C)

noThreat(C,D)

noThreat(A,D)

noThreat(B,D)

A < B < C < D
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Assumptions in Dis-CSP 

Additional assumptions made by Yokoo et al. [Yokoo98] 

• An agent can send messages if it knows the addresses of the recipients

• Possible random delay in message transmission

• Messages are received in the order in which they are sent

• Each agent has exactly one variable (*)

• All constraints are binary (*)

• Each agent knows all constraint predicates relevant to its variable

(*) can be relaxed in some formulations, although at the expenses of efficiency.
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ABT: Agent Communications

IN messages

OUT messages

Assignments 

of neighbors

my Priority = H

my Constraints

value sender

ok? (A value)

nogood (Avalue)

IN messages

OUT messages

var B …

my Priority = L

evaluator

Assignments 

of neighbors

my Constraints

var A  value

var C …
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ABT: Messages and Algorithm

Types of messages

• ok?: a value-sending agent asks whether its assignment is acceptable

• nogood: a constraint-evaluating agent indicates a constraint violation

• add_link: request to add a new link (constraint discovered 
while solving the problem)

Two phases:

• Each agent instantiates its variable 
concurrently and sends the value to 
agents connected by outgoing links 
with an ok? message

• Agents wait for and respond to messages

Ag1 Ag2

HP 

(value sender)
LP 

(evaluator)

ok? (X1 value)

nogood (Xk=value)

add_link (X1X2)
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ABT: Rules for Handling Messages

1. When an agent changes its value, it sends an ok? message to its 
(lower-priority) neighboring agents

2. An agent changes its assignment if its current value is not consistent 
with the assignments of higher priority agents

3. If there´s no possible assignment that is consistent with the higher 
priority agents, then the agent sends a nogood message to the 
higher priority agents

4. After receiving a nogood message, the higher priority agent tries to 
change its value
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Example of ABT - 1

B = {1}

C = {1}

D = {1}

A = {1}

B = {3}

C = {4}

D = {2}

C = {4}

D = {2}

B = {3} B = {4}

C = {2}

D = {2}

A

B

C

D

D = {3}

C = {2}

A

A

A,C

B

C

Indicates reason for move

priorities: A < B < C < D
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Example of ABT - 2

B = {4}

C = {2}

D = {2}

B = {4}

C = {2}

D = {3}

A = {1}

B = {4}

C = {2}

D = {3}

A = {2}

A

B

C

D

A = {1}

C = {1}

D = {3}C

B, {C,D}

A,D

{}: Implicit consideration

Indicates reason 

for move
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ABT: Adding New Links

A nogood message can be seen as a constraint derived from the 
original constraints

• by incorporating derived constraints, agents can avoid repeating the 
same mistake

• The full constraint network doesn„t need to be specified at the beginning 
of the algorithm

High-priority agents X1 and X2 

communicate their values 

to low-priority agent X3

Agent X3 cannot find 

a feasible value, so it asks 

their “superiors” to get an 

agreement

A new constraints between 

X2 and X1 is established
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ABT: Detecting Termination Conditions

The agents will reach a stable state (if such state exists)

• All the assignments of variables to values satisfy all the constraints 

• All the agents are waiting for an incoming message

• Determining whether the agents as a whole have reached a stable state is 
not contained in the ABT algorithm

– a separate (distributed) termination algorithm is needed for this
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Asynchronous Weak-Commitment Search (AWCS)

In ABT, if a high priority agent makes a bad value choice, the lower priority 
agents need to perform an exhaustive search to “revise” the bad decision

Intuition: teams with flexible hierarchies (i.e., a priority schema) perform 
better (converge quicker to a solution) than teams with rigid hierarchies

Idea: Use min-conflict heuristic (local search) in ABT for ordering values

• An agent prefers the value that minimizes the number of constraint violations 
with variables of lower priority agents

• Rules for allowing an agent to increment its priority at runtime

– priorities are initially set to 0

– a priority value is changed if and only if there‟s no consistent value for the 
agent‟s value (i.e., a new nogood is found)

– the new priority value is communicated to the rest of the agents
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Example of AWCS

B = {1}

C = {1}

D = {1}

A = {1}

C = {4}

D = {3}

C = {1}

D = {3}

B = {4}B = {4}

A = {1} A = {1}

C = {1}

D = {3}

B = {4}

A = {2}

p0

p0

p0

p0

p1

p2

0 3   1A

B

C

D

2   1   0

2   1   0

1   1   1
1 1   3

C = {4}
p0

B = {4}
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Observations on ABT and AWCS

Empirical results show that AWCS performs better than ABT in practice

Both algorithms are complete

• Completeness: The algorithm finds a solution if one exists, and terminates 
with failure when there is no solution

• ABT is worst-case time exponential in the number of variables, and its 
space complexity depends on the number of values to be recorded for a 
variable (i.e., polynomial)

• AWCS is also worst-case time exponential in the number of variables, but 
its space complexity is exponential in the number of variables

– In practice, the number of nogoods recorded by each agent can be 
limited to a fixed number (~ 10). If so, space complexity is improved but 
the theoretical completeness cannot be guaranteed
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Extension: Handling Multiple Local Variables

Method 1: Each agent finds all solutions to its local problem

• The problem can be re-formalized as a Dis-CSP in which each agent has 
one local variable whose domain is the cross product of the domains of the 
local solutions 

– when a local problem is large/complex, finding all solutions is difficult

Method 2: An agent creates multiple virtual agents

• Each virtual agent corresponds to one local variable

• The concurrent activities of these virtual agents are simulated by the 
parent agent 

– simulating concurrent activities at the local level can be expensive

Both methods are neither efficient nor scalable to larger problems
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Part III: Distributed Constraint 

Optimization

(DCOP)
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Distributed Constraint Optimization (DCOP)

set of variables X1, X2, …, Xn

each variable has a non-empty domain D(Xi) of possible values

set of valued constraints C1, C2, …, Cm

Constraints quantify a “degree of satisfaction” (soft constraints)

each constraint maps any instantiation of its variables to a real number 
(cost or utility)

C(Xi, Xj)

C(a, a) = 0

C(a, d) = 2

C(a, g) = 1

C(b, b) = 1

C(d, e) = 2

C(d, g) = 3

…

C2(X2,Xn)

C1(X1,X2)

Cm(X1,Xn)

X1 ?

X2 ?

Xn ?

X3 ?

C3(X2,X3)

D(X1) = { a, b, c, …}

D(X2) = { a, d, e, …}

D(X3) = { b, e, f, …}

D(Xn) = { g, … }
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Solving DCOP is more than “Satisfaction”

C2(d,g) => 3

C1(a,d) 

=> 2

Cm(a,g) => 1

C3(d,e) => 2

F = C1 + C2 + … + Cm = 2 + 2 + 1 + 3 = 8 minimize F = ∑ Cij

C(Xi, Xj)

C(a, a) = 0

C(a, d) = 2

C(a, g) = 1

C(b, b) = 1

C(d, e) = 2

C(d, g) = 3

…

X1 a

X2 d

Xng

X3 e

D(X1) = { a, b, c, …}

D(X2) = { a, d, e, …}

D(X3) = { b, e, f, …}

D(Xn) = { g, … }

A solution is an assignment of all the variables to values

Finding a solution still involves search, but the goal is not just to find any 
solution

Goal: find the best solution such that the sum of the constraint costs is 
minimized (or the sum of the utilities is maximized)  objective function
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DFS Tree Ordering of the Constraint Graph

In D-COP algorithms, the agents need to be prioritized in a depth-first 
search (DFS) tree, such that

• Each agent has a single parent and multiple children

• Constraints are only allowed between agents that are in an ancestor-
descendant relationship in the tree

• An agent has only information about ancestors it shares a constraint with

The purpose of the DFS tree is to 
decompose the global cost function

• Given the assignments to all ancestors, 

• an agent in a given sub-tree can work 
on minimizing its part of the solution 

• this work can be done independently 
of agents in other sub-trees

agent1

agent2 . . .
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Example of DFS Ordering

X13

X6

X0

X2

X12

X5

X11

X4

X1

X10X9

X8X7

X13

X13

X6

X0 X2

X12

X5
X11

X4

X1

X10
X9

X8

X7

X13

Any constraint graph can be 
ordered into some DFS tree 
using a distributed algorithm

• finding the best DFS 
ordering is NP though
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DCOP: Requirements and Issues

1. Agents need to optimize a global objective function in a distributed 
fashion using local communication (neighbors)

2. Allow agents to operate asynchronously (as in Dis-CSP)

3. Quality guarantees

• A method to find provably optimal solutions (cost/utility) when possible

Main challenge: combining items 2) & 3) 

Building consensus among agents

• Top-down: higher-rank agents decide first, lower-rank agents have to find 
ways to comply with higher-rank agents

• Bottom-up: agents build solutions starting with small pieces (produced by 
lower-rank agents) that get bigger and bigger as the reach higher-rank 
agents

(A tree structure that organizes the agents is assumed)
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Two Search Strategies for a DFS Tree

Backtracking (top-down)

• Assumes an ordering of the variables/agents

• Control shifts between different agents during selection of values

• Requires little memory

• Exponential number of messages - with linear message size

• e.g., ADOPT [Modi05], OptAPO [Mailler04]

Dynamic programming (bottom-up)

• Assumes an ordering of the variables/agents

• Agents incrementally compute all partial solutions (i.e., all possible 
values), when the solutions are complete, agents pick the best solution

• Requires more memory

• Linear number of messages - but with exponential message size (vectors)

• e.g., RTree, DPOP [Petcu04] and variants
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Backtracking Skeleton

1. Receive value message from ancestor agents (if not root)

2. Choose a feasible value for my variable

3. Inform value choice to children agents (if not leaf)

4. Wait for cost messages from children (if not leaf)

– If costs are not good enough, ask children to change their values

– If children cannot find good values, change current value and go to 3)

5. Combine costs and report my aggregated cost to parent

– cost received from children (if not leaf) 

– plus cost of my constraints with the ancestor agents

6. Wait for further messages from ancestors

7. Go to 1) 

...

8.  At some point, root agent decides that the optimum has been found or that 
there‟s no solution, and stops the algorithm

Agent doesn‟t 

know (a-priori)

the value its children 

will pick
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Example of Values/Costs in Top-down Search

root (*)

int1 (*)

int2 (*)

cost-msgleaf = 4

value-msgroot= a

leaf

constraintb,a= 4

constraintb,b = 2

value-msgint1= b

value-msgint2= b

valueleaf= a

cost-msgint2 = o (4, 2, 3)

constrainta,b = 5

cost-msgint1 = o (o (4, 2, 3), 5)

constrainta,b = 3

(*) Each agent can perform backtracking (pick a different value)

if the costs reported by its children are too high

Domain = {a, b, c }

aggregated 

cost

aggregated 

cost
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Dynamic Programming Skeleton

1. Leaf agent:  Send utility vector for its possible values to parent agent

2. Intermediate agent: Receive utility vectors from children

– Combine these utilities with my own utility table 
(based on constraints with my parent) 
 construct intermediate utility table

– Send aggregated utility vector to parent agent

3. Root agent: Receive all the utility vectors and construct 
a global utility table

– Pick my optimal value from the global utility table

– Inform my value choice to children agents

4. Intermediate agent: 

– Pick my (local) optimal value, based on the value message from my 
parent and my intermediate utility table 

– Inform my value choice to children agents

5. Leaf agent: Pick my (local) optimal value and stop

Agent doesn‟t 

know the value 

its parent 

will pick

Agent doesn‟t 

know the value 

its parent 

will pick
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Example of Costs/Values in Bottom-up Search

root

int1

int2

costs-msgleaf2 = [4, 3, 1]

value-msgroot= a

leaf2

value-msgint1= b

value-msgint2= b

valueleaf1= a

costs-msgint2 = o ([2, 6, 2], [4, 3, 1], …) = [5, 7, 12]

costs-msgint1 = o ([5,7, 12]. …) =  [8, 10, 23]

leaf1

Domain = {a, b, c }

costs-msgleaf2 = [2, 6, 2]

valueleaf2= c

aggregated 

cost vectors

aggregated 

cost vectors
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Map of Algorithms - DCOP

DCOP

backtracking

local search

...

DIS-CSP

CSP

ABT

AWCS

Distributed 

breakout

branch & 

bound

ADOPTDPOP FamilyOptAPO

NCBB
PC-DPOP

DTree

M-POP

A-POP

…

(partial centralization 

+backtracking)



55

Distributed Constraint Satisfaction and 

Optimization (for internal use) - March 2010

© 2010 Carnegie Mellon University

Asynchronous Distributed Optimization (ADOPT)

Developed by Modi et al. [Modi05], 

• Combination of ideas from ABT (satisfaction) and Branch & Bound 
(optimization)

Previous approaches backtrack only when sub-optimality is proven

• Branch and bound: It backtracks when cost exceeds upper bound

– Limitations

• sequential, 

• synchronous,

• computing cost upper bounds requires global information

• Asynchronous backtracking: It backtracks when a constraint is 
unsatisfiable

– Limitations

• only “hard constraints” are allowed



56

Distributed Constraint Satisfaction and 

Optimization (for internal use) - March 2010

© 2010 Carnegie Mellon University

Relaxing Backtracking

A root agent aggregates global costs

Weak backtracking: Opportunistic best-first search 

• Agents can go ahead and make decisions based on local information

• Cost lower bounds of solutions are suitable for asynchronous search

– an initial lower bound is computable based on local information

– each agent chooses an assignment with smallest lower bound  

• ADOPT backtracks when a lower bound gets too high 

– instead of when quality of best solution of sub-problem is determined 
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ADOPT: Problem Formulation

Given

• Variables {x1, x2, …, xn}, each assigned to an agent

• Finite, discrete domains D1, D2, … , Dn, 

• For each xi, xj, valued constraint fij: Di x Dj N (binary constraint)

Goal: Find complete assignment A that minimizes F(A) where

F(A) = fij(di,dj),  xi di, xj dj in A

x1

x2

x3 x4

F(A) = 0

x1

x2

x3 x4

F(A) = 4

x1

x2

x3 x4

F(A) = 7
1

0 0

0 0

1
1

1 1

2

2 2

Constraint Graph

x1

x2

x3 x4

di dj   f(di,dj)

1

2

2

0

Adapted from slides [Modi05], Agents@USC
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ADOPT: Assumptions

Aggregation operator

• The sum of the constraints is associative, commutative and monotonic

• Monotonicity requires that the cost of a solution can only increase as more 
costs are aggregated

Constraints are (at most) binary

• This can be extended to non-binary constraints

Each agent is assigned to a single variable

• This can be extended to several variables

Preprocessing

• At the beginning, all the agents must be arranged in depth-first-search 
(DFS) tree structure
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Agents are ordered in a tree

• constraints happen between 
ancestors/descendents

• no constraints between siblings

Basic algorithm:

• choose value with minimum cost

• loop until termination-condition true:

– when receive message: 

• choose value with min cost 

• send VALUE message to 
descendants (like ok? in ABT)

• send COST message to parent 
(like nogood in ABT)

• send THRESHOLD message to child

ADOPT: Algorithm

Constraint Graph

x1

x2

x3 x4

x1

x2

x4x3

VALUE messages

COST messages

THRESHOLD messages

Tree Ordering

x1

x2

x3 x4

Adapted from slides [Modi05], Agents@USC
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Example  of ADOPT

concurrently choose value,

send value to descendents

x1

x2

x3 x4

report lower 

bounds (costs)

x1

x2

x3 x4

LB =1LB=2

LB =1

x4

x1 switches 

value to 

“white” and 

propagates it

x1

x2

x3

x2, x3 switch 

value and 

report new 

lower bounds

x1

x2

x3 x4

LB=0

LB=2

optimal solution

x1

x2

x3 x4

LB=0

x2, x4 report new lower bounds

x1

x2

x3 x4LB=0

LB=0

Constraint Graph

x1

x2

x3 x4

di dj   f(di,dj)

1

2

2

0

Adapted from slides [Modi05], Agents@USC

x1

x2

x3 x4

X2 propagates 

its new value
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Key Ideas in ADOPT

Opportunistic best-first search

• No global information is required, only local interactions

• Allow each agent to change a variable value whenever it detects there is 
a possibility that some other solution may be better than the current 
under investigation

– this doesn‟t  guarantee the new value to be better though

• Each agent picks the value with smallest lower bound

Backtrack threshold

• When an agent has to revisit a previous solution, it uses a stored lower 
bound to increase efficiency

• A variable/agent doesn‟t change its assignment as long as its total cost 
(i.e., lower bound) is less that the backtrack allowance

Bounded error approximation

• Sort of “quality control” for approximate solutions
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Weak Backtracking

parent

Explore “white” first

LB(w) = 0

LB(b) = 0

parent

Receive cost message

LB(w) = 2

LB(b) = 0

parent

Now explore “black”

LB(w) = 2

LB(b) = 0

parent

Receive cost message

LB(w) = 2

LB(b) = 3

parent

Go back to “white”

LB(w) = 2

LB(b) = 3

parent

Termination Condition True

LB(w)=10 =UB(w)

LB(b)=12
. . .

Suppose a domain with 2 possible values: “white” and “black”

Adapted from slides [Modi05], Agents@USC
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Computing Lower/Upper Bounds for Costs

For a given agent/variable Xi

• Xi calculates cost as local cost plus any cost feedback received from its 
children

• δ( value) = sum of the costs from constraints between Xi and higher 
neighbors

• LB(value) = lower bound for the subtree rooted at Xi, when Xi chooses 
the value

• UB(value) = upper bound for the subtree rooted at Xi, when Xi chooses 
the value

The lower bound (LB) for Xi is the minimum LB(value) over all value 
choices for Xi

The upper bound (UB) for Xi is the minimum UB(value) over all value 
choices for Xi
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Backtracking Threshold – Parent

parent

Explore “white” first

LB(w) = 10

LB(b) = 0

parent

Now explore “black”

LB(w) = 10

LB(b) = 11

parent

Return to “white

Parent informs children nodes about lower bound (for search)

Adapted from slides [Modi05], Agents@USC

. . . . . .

Backtrack

threshold 

= 10

The parent knows (from previous 

experience) that cost >= 10

So, it informs its children not to bother 

searching for solutions whose cost is 

less than a threshold of 10 
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Backtracking Threshold – Child

Suppose Agent x received threshold = 10 from its parent

Adapted from slides [Modi05], Agents@USC

agent

Explore “white” first

LB(w) = 0

LB(b) = 0

threshold = 10

agent

Receive cost message

LB(w) = 2

LB(b) = 0

threshold = 10

agent

Stick with “white”

LB(w) = 2

LB(b) = 0

threshold = 10

agent

Receive more cost messages

LB(w) = 11

LB(b) = 0

threshold = 10

agent

Now try “black”

LB(w) = 11

LB(b) = 0

threshold = 10
. . .

Key point: 

Agent doesn‟t change 

value until 

LB(current value) > 

threshold
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ADOPT: Termination Condition

Termination is a built-in mechanism in the algorithm

• Bound intervals for tracking progress towards the optimal solution

• When the size of the bound interval shrinks to zero, the cost of the 
optimal solution has been determined and agents can safely terminate

• Intervals are also used for bound-error approximation

Caveat

• Some centralization is needed: a root agent aggregates global costs 
and detects termination

root

Termination condition (cost = 10)

LowerBound(w)=10 =UpperBound(w)

LowerBound(b)=12
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ADOPT: Bounded Error Approximation

Generate solutions whose quality is within a user-specified distance 
from the optimal solution

• It usually takes less time than required to find the optimum

• Based on lower bound kept during search

Example: If an optimal solution 

to an over-constrained graph 

coloring requires violating 

3 constraints,  b = 5 indicates 

that 8 constraints is an 

acceptable solution for the user

If user provides error bound b
Find any solution S where 

cost(S) cost(optimal solution) + b

Adapted from slides [Modi05], Agents@USC

root

Lower bound = 10

Threshold = 10 + b
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Observations on ADOPT

Algorithm is proven to be sound and complete

Worst-case time complexity is exponential in the number of variables

• but it only requires polynomial space at each agent

• Experiments show that sparse graphs can be solved optimally and 
efficiently (communication messages grow linearly in low density graphs)
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Map of Algorithms - DCOP

DCOP

backtracking

local search

...

DIS-CSP

CSP

ABT

AWCS

Distributed 

breakout

branch & 

bound

ADOPTDPOP FamilyOptAPO

NCBB
PC-DPOP

DTree

M-POP

A-POP

…

(partial centralization 

+backtracking)
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NCBB: No Commitment Branch and Bound

Improvement over ADOPT, developed by [Chechetka06]

Speed up the search by exploiting the distributed aspect of the problem

• have different agents exploring non-intersecting regions of the search 
space simultaneously

Ideas: Reduce synchronization overhead and prune the search space 
faster

• A (new) Search message allows each agent to search different sub-trees 
than its siblings

• Computation of tighter upper bounds on solution

• Eager propagation of changes in cost lower bounds

NCBB performance is better than ADOPT, and memory is still polynomial
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Map of Algorithms - DCOP

DCOP

backtracking

local search

...

DIS-CSP

CSP

ABT

AWCS

Distributed 

breakout

branch & 

bound

ADOPTDPOP FamilyOptAPO

NCBB
PC-DPOP

DTree

M-POP

A-POP

…

(partial centralization 

+backtracking)
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Distributed Tree-shaped Networks (DTree)

DTree algorithm described in [Petcu04]

Ideas: 

• Use a dynamic-programming style of exploration (utility vectors)

• Tree-shaped constraint networks (no cycles, yet)

Algorithm has two phases (assuming a tree structure)

1. UTIL propagation from the leaves of the tree all the way up to the root

– Each utility message summarizes the optimal values that can be 
achieved by the sub-tree rooted at the agent‟s node for each domain 
value of the parent agent

2. VALUE propagation from the root of the tree downwards to the leaves

– Once all the utility messages are received from the neighboring 
agents, the parent agent can choose the optimal value
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DTree: K-1 Propagation Rule

If node (agent) Xi has k neighbors

• Xi will send out a message to its kth neighbor only after having received the 
other k-1 messages

• Xi will send out the rest of the m-1 messages after having received the 
messages from the kth neighbor

x3x2

x1

x0

x6x5

x4

x7

k neighbors 

for X1

Each node knows 

whether it is a leaf 

or not

utility 

propagation
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DTree: Example of Flow of Messages

Adapted from slides [Petcu04], IJCAI’05
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DTree: Utility Computation Example - 1

From slides [Petcu04], IJCAI’05
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DTree: Utility Computation Example - 2

From slides [Petcu04], IJCAI’05
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DTree: Utility Computation Example - 3

From slides [Petcu04], IJCAI’05
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Distributed Pseudo-tree Optimization (DPOP)

Application of DTree phases to arbitrary constraint topologies

• Constraint graphs can have cycles (agents other than parent/children)

• Dynamic programming technique is still useful with some modifications

Ideas: Transform graph into a pseudo-tree by traversing it in DFS order

• Phase 0: Topology probing to fix the pseudo-tree arrangement

• Break the problem into cycle-free parts  choice of cycle cutset

• Utility messages are now “multi-dimensional”

Message size is still exponential, but reduced from domn to domk

• where n = #nodes and k = #induced width of the DFS (tree) arrangement

• the more a problem has a tree-like structure, the lower its induced width

• n >> k for large and loosely coupled problems
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DPOP Variants – Efficiency

Approximations on solution quality

• Tradeoff between solution quality and computational effort

• The user can specify a maximal error bound on the solution

• A-DPOP: Approximation of the solution by adapting the message size

Local search 

• Start with some (random) solution and gradually improve it

• LS-DPOP: Nodes make decisions based only on local information

• Applicable in large neighborhoods

Partial centralization

• Use mediation (like in OptAPO) for tightly connected clusters

• Each mediator can take advantage of an efficient CSP solver

• PC-DPOP: Identify difficult sub-problems and centralize them in relevant 
nodes of the problem 

Time-space tradeoff

• MB-DPOP: memory bound extension
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DPOP Variants – Dynamic Problems

Self-stabilization property: Given enough time between changes/failures, 
the algorithm will converge to the optimal D-COP solution, and then will 
maintain that state

• Changes in topology

• Changes in the valuations of the agents

• Temporary communication problems

DPOP extensions: Apply self-stabilization protocols to DPOP phases

• SS-DPOP: based on self-stabilizing algorithm introduced by Kollin et al.

• RS-DPOP: continuous-time problem by reacting to problem changes and 
generating new solutions with low costs

– DynDCOP:  DCOP formulation extended with “stability constraints” and 
“commitment deadlines”
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Thoughts: Hybrid Algorithms

In practice, D-COP algorithms have to make different tradeoffs among

• Message size, number of messages, memory usage 

• Degree of distribution (mediation vs. full decentralization) 

• Solution quality (complete vs. incomplete algorithms)

• Adaptation to changes in (dynamic) environments

• Agents that might be not cooperative 

• Privacy concerns when the agents reveal information

How to deal with non-binary constraints and local variables efficiently?

How to model “social choice” or “agent preferences” using D-COP?

Incomplete algorithms can be a scalable option for agents that form small 
groups and optimize within these groups
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Some Implementations

Choco (CSP in Java)

ADOPT (Java)

Frodo (DPOP platform in Java)
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