Meeting the Challenges of Ultra-Large-Scale
Distributed Real-time & Emhedded Systems
with QoS-enabled Middieware &
Model-Driven Engineering

Monday, December 10, 20017, Middieware 2007

Dr. Douglas C. Schmidt
d.schmidt@uanderbilt.edu
www.dre.vanderbilt.edu/~schmidt
48 Institute for Software Vanderhilt University

Integrated Systems Nashville, Tennessee

D -C-C

Evolution in Distributed Real-time & Embedded (DRE) Systems

The Past

Stand-alone real-time & Enterprise distributed real-time & embedded
embedded systems (DRE) systems
e Stringent quality of service ‘ « Network-centric “systems of systems”
(QoS) demands e Stringent simultaneous QoS demands
*e.g., latency, jitter, footprint *e.¢., dependability, security, scalability, etc.
* Resource constrained Dynamic context

This talk focuses on technologies for enhancing DRE system QoS, productivity, & quality

2

Evolution of DRE Systems Development

Technology Problems
e Legacy DRE systems
often tend to be:
» Stovepiped
* Proprietary
e Brittle & non-adaptive
* Expensive
» Vulnerable

Cyclic
Exec

Consequence: Small

changes to legacy

Mission-critical DRE systems
have historically been built
. software often have M
dlrectly atop hardware big (negative) impact [
* Tedious on DRE system QoS &

* Error-prone & maintenance
 Costly over lifecycles

3

Evolution of DRE Systems Development

DRE
Applications

Middleware
Services

Operating Sys
& Protocols

Hardware &
Networks

I‘.-E:f ° =

DRE
Applications

Middleware
Services

Operating Sys
& Protocols

Hardware &
Networks

* Middleware has effectively factored out
many reusable services from traditional
DRE application responsibility

*Essential for product-line architectures

* Middleware is no longer the primary DRE
system performance bottleneck

4

DRE Systems: The Challenges Ahead

RT-CORBA DRTSJ
Apps Apps Apps
RT-CORBA J2ME DRTSJ
Services Services Services

RT-CORBA J2ME DRTSJ

Operating System
& Protocols

Hardware &
Networks

 Limit to how much application
functionality can be refactored into
reusable COTS middleware

* Middleware itself has become very
hard to use & provision statically &
dynamically

Load Balancer Workload &
FT CORBA Replicas
RT/DP CORBA + DRTSJ |[RSSUEEIEE
priority bands

RTOS + RT Java

CPU & memory

i Network latency
IntServ + Diffserv [2 banduidth]

« Component-based DRE systems are
also very hard to deploy & configure

* There are many middleware platform

technologies to choose from

Middleware alone cannot solve large-scale DRE system challenges!

5

Promising Solution: Model-based Software Development

T 1 e o e i
i8] 214] _1ole) ZIELs|TIeTE u) STl
[=

] e L

* Develop, validate, &
standardize generative
B TP I = Sy software technologies that:

|
RT-CORBA DRTSJ
oR J2VE o 2. Analyze
3. Synthesize &

4. Provision

[

L

&

L

&

i
L
2| &
i

RT-CORBA J2ME DRTSJ

<CONFIGURATION_PASS>

<HOME>

<...>
<COMPONENT>
<ID> <...></ID>
<EVENT_SUPPLIER>
<...events this

component supplies...>

</EVENT_SUPPLIER>
</COMPONENT>
</HOME>

</CONFIGURATION_PASS>)
Uperating System
& Protocols

Hardware &
Networks

multiple layers of middleware &
application components that
require simultaneous control of
multiple QoS properties end-to-
end

* Partial specialization is
essential for inter-/intra-layer
optimization & advanced
product-line architectures

Goal is to enhance developer productivity & software quality by providing
higher-level languages & tools for middleware/application developers & users

Technology Evolution (1/4)

uonoe.ssqy Jo [9AT

Programming Languages Model-Driven Engineering (MDE)

s

& Platforms

Model
Generated osten.
Cde .~ ||l e |

1
[Platform . ~ ~

B T’

=Lsunch_iitiated_Linbuided

d atiedpan_Launched

> ~ e State chart

OO
& Data & process flow
&
7~ \ Large « Petri Nets
Semantic
Gap
Operating C/Fortran o
Systems Assembly
Hardware Machine code

=

Technology Evolution (2/4)

uonoeNsqy JO [N

Programming Languages |eNewer 3'd-generation languages &

& Platforms platforms have raised abstraction level
:NT . significantly
amw | e e «“Horizontal” platform reuse
It alleviates the need to redevelop
@ common services

NE
SKELETONS
Qo$ EAL-TIME
INTERFACE PORTABLE OBJECT ADAPTER

Application Code

Framework
Pattern Language

Platform

*There are two problems, however:

 Platform complexity evolved faster
than 3r9-generation languages

| C/Fortran

Operating o |
Systems Assembly *Much application/platform code still

Hardware Machine code (unnecessarily) written manually

=

;

Technology Evolution (3/4)

uonoeNSqy Jo [9A3T

Programming Languages
& Platforms

Saturation!!!!

TS E— Domain-specific
= modeling languages
a * ESML
s e = T +PICML
sememe o S e Mathematica
= «Excel

translation ...

Operating C/Fortran
Systems Assembly
Hardware Machine code

Model-Driven Engineering (MDE)

» Metamodels

w, ~ Domain-independent
«.modeling languages

e State Charts
e e * Interaction Diagrams
!

_ . « Activity Diagrams
Semi-automated

%

Model Driven)
Architecture } 3 g
o, o“‘é

=

Technology Evolution (3/4)

uonoe)sqy Jo |9

Programming Languages
& Platforms

Price $1.50

Aug.4,1986 THE

NEW YORKER

Model-Driven Engineering (MDE)

T e — Domain-specific
E] = modeling languages

« ESML
=sse—:___ | *PICML

M

translation ...

=5 =i « Mathematica
= e«Excel

anual _,_.__* -~ . * Metamodels

. Domain-independent
W ..modeling languages
y « State Charts

* Interaction Diagrams

* Activity Diagrams

* OMG is standardizing MDE via MIC
PSIG
e mic.omg.org

=

10

Technology Evolution (3/4)

uonoeNSqy Jo [9A3T

Programming Languages
& Platforms

Model

I
@ Generated Code
Framework
Pattern Language

Platform

P

Operating C/Fortran
Systems Assembly
Hardware Machine code

PSIG

Manual |————
translation

Manufacturing

Model-Driven Engineering (MDE)

g~]

7 & p—

Finance

A

More.

E-Commerce

Semi-automa{ted

* OMG is standardizing MDE via MIC

* mic.omg.org

~__ 7 «PICML

= <Excel

«.modeling languages

Domain-specific
modeling languages
* ESML

 Mathematica

» Metamodels

Domain-independent

« State Charts
* Interaction Diagrams
* Activity Diagrams

=

11

Technology Evolution (4/4)

Programming Languages
& Platforms

Needs

Automation
—>

Model

I
3
I

Generated Code

Platform

uonoeNsqy Jo [9A3T

Model-Driven Engineering (MDE)

s e Domain-specific

7 & p—

modeling languages
& « ESML
[“‘“‘"—* — —— - *PICML
s e e e Mathematica
' * Excel
Needs feSmt « Metamodels

Automation ...
<— A

Manufacturing E-Commerce

Domain-independent

g - . modeling languages
 Architecturs |42 >
S - State Charts

, “me s |nteraction Diagrams
* Activity Diagrams

\.\ Q'ﬂﬂvssea% /“f

Transportation HealthCare
\

More...

C/Fortran
Assembly

Operating
Systems

Machine code

Hardware

Needs Automation

Research is needed to automate
DSMLs & model translators

See February 2006 IEEE Computer special issue on MDE techniques & tools

Crossing the Chasm

nnnnnnnnnnnnnnnnnnnnnn

Software
Factories

Assembling
Applications =
with Patterns, .

Models, / g"‘si,-n
Frameworks, f P

and Tools éj’

o ck Greenfield a :tx 1h$hrl EET/
iy

vith Steve Cook and
.Fm—m pard by John C ~u i

» Software Factories go beyond “models as documentation” by

» Using highly-tuned DSL & XML as source artifacts &

» Capturing life cycle metadata to support high-fidelity model

transformation, code generation & other forms of automation
www.softwarefactories.com

* The Graphical Modeling Framework (GMF) forms
a generative bridge between EMF & GEF, which
linkes diagram definitions to domain models as
iInput to generation of visual editors

 GMF provides this framework, in addition to tools

Model-Driven
Software
Development

Technology,
Engineering,
Management

=
=
=3
=

for select domain models that illustrate its
capabilities

www.eclipse.org/gmf/

* openArchitectureWare (0AW) is a modular MDA/MDE generator
framework implemented in Java

* It supports parsing of arbitrary models & a language family to check &
transform models, as well as generate code based on them

www.openarchitectureware.orq

1

New Challenges: Ultr

a

i

-

Key ULS solution space ch

e Enormous accidental & inherent
complexities

« Continuous evolution & change

* Highly heterogeneous platform, lan
tool environments

——

—

guage,

Mapping problem space requirements
to solution space artifacts is very hard

-Large-Scale (ULS) Systems

Key ULS problem space challenges

* Highly dynamic & distributed
development & operational
environments

* Stringent simultaneous quality of
ervice (QoS) demands

diverse & complex network-

t lication domains
tions| Le heater
oNqpan licatio ands
& f !
: LX { = Autonomous
_ sage |Downd{ Teams
N ASS J load
= ah > S Crypto Crypto}/
Nt | | QREA_Yrackipan| ToN e =
ﬁle 3 a € |[Sockel R File ARMI V1
ELARRNE o= X b E T ;
= sage TP Trackl: e s
adle e o Message |/ % :
atewa eue]
Loyisti Browser - ; XM/
Down- HTTP
End-Us M load
Developme % S-S e JSIGEPC
|\ Coalition
Support g Partners
Systems : :

14

Key R&D Challenges for ULS Systems

Developers & users of ULS systems face
challenges in multiple dimensions

Logical Process
View View

Physical 4 Development
View ' View

Of course, developers of today’s large-scale DRE systems also face
these challenges, but they can often “brute force” solutions...

:

Key R&D Challenges for ULS Systems

Logical
View

Physical
View

Developers & users of ULS systems face
challenges in multiple dimensions

Process
View

Development
View

Solving these challenges requires much more than simply
retrofitting our current tools, platforms, & processes!

16

Key R&D Challenges for ULS Systems

Physical
View

Developers & users of ULS systems face
challenges in multiple dimensions

Process

View

17

Serialized Phasing iIs Common in ULS Systems

System sensor \'l | «'Aror recovery effector
infrastructure | / | |
[R— planner planner [e— —
components ./ \
i figuration effector
developed first =Rhsar con
\JEVEIOPEA st) Aoplicat
Do, \er pplication components
j ' %\K -~ developed after infrastructure
_\\&S* Pool Layk i is sufficiently mature
[- -— ‘ |
//
L Rw Layer | v

Level of Abstraction

v

=

Development Timeline

"

Serialized Phasing iIs Common in ULS Systems

/System integration g) fl— R
testing is performed sensor \jl] '—“'Aror covery ector
after application - /m er f— p—
development is finished :
\ // 7;(sor ation ector
c
)
©
o
1%
Q
< E _.:.
2 cyrati S
0) P =Sy
() ; -
o =
AW] i @
'\i’@) AL
Development Timeline { X“ . N
LA R

! k?:““ '| } e b \]
19 cMandy

Complexities of Serialized Phasing

| Still in development L /’]
sensor \r‘- [error recovery effector

[—=/ planner Iplanner \rg= ———

sensor configuration effector
- Ready for testingﬁ o
O - Complexities
"5 - -]
© - siv o System infrastructure cannot be
— espurce Pool Layer y - . .
@ ,—-—-A" o — p— tested adequately until applications
< __— are done
"6 v RWLayer | v
— [r— [N < . [R—
()
>
)]
—

v

Development Timeline

2

Complexities of Serialized Phasing

End-to-end — | \System bowir?; e
performance Of sensor i - AFOF covery ector

critical path? —

/pl nner plariner e
7(sor ation /efféctor

- - 7/ 7/ Complexities
\~_ « System infrastructure cannot be

/

h\ e Poo a"W / tested adequately until applications
T s are done
- \\ﬂ\"’@ Y5y

AN /

» Entire system must be deployed &
configured (D&C) properly to meet
end-to-end QoS requirements

 Existing tools & platforms have poor
support for realistic “what if”
evaluation

Level of Abstraction

Development Timeline

QoS needs of components in ULS systems often unknown until late in lifecycle

Unresolved QoS Concerns with Serialized Phasing

[Meet QoS lg\ |
requirements? e ~—— — Amr covery

nner plariner

Key QoS concerns
* Which D&C’s meet the QoS

- Domaln Lasﬁr -
| \x 1 7// /
\[&e*“mi"_f" leyer / & requirements?
e R 7
¥ bsourte La |
e\, WF— i

Level of Abstraction

v

Development Timeline

22

=

Unresolved QoS Concerns with Serialized Phasing

Performance [rm—
metrics? sepsor) O

Key QoS concerns

* Which D&C’s meet the QoS
requirements?

Domain Layer /
| / '
\"""-.._
\ /

E%

l \\\I& urce P00|| Lllayer/ |
A / /

‘ * What is the worse/average run-time

Y \R%ﬁmﬂf(ﬁ La
' \\ \\ — //'/57 / for various workloads under various
\ \ / / -

D&C’s & processing models?

Level of Abstraction

v

Development Timeline

2

Unresolved QoS Concerns with Serialized Phasing

System " plgnner

overload?
Key QoS concerns

ain Layer
R .
- 'J\ Y 7/7/ . * Which D&C’s meet the QoS
;—\Tr—Y\ \i' y// ,,L/ requirements?
/ .

4 * What is the worse/average run-time

\J ce La / v
'—\ \\'_\\TA\F % for various workloads under various
\ /

D&C’s & processing models?

\\

Level of Abstraction

 How much workload can the system
handle until its end-to-end QoS
requirements are compromised?

»
»

Development Timeline

It can take a /ong time (years) to address QoS concerns with serialized phasing

Related ULS System Development Problems

Release X Release X+1
_I piannerz . ,
sensor 1 error recovery effector 1
sensor ¥'_F / error recovery effector (mam) planne” COﬂfguratlon iy
/plannef planner _ ' sensor2 [T effector2
sensor configuration effector
sensor 3 planner 3 effector 3
Domain Layer Domain Layer
P? P\ P\ FI PI Pl Pw P]
~. | s
e —— 1 .
\.&esburce Pool Layer 4 Resourc&fool Layer
F'*—F“‘—*P‘ PI r‘i I‘__,

/

v ;ouﬁ Layer
P-

Level of Abstraction

- New hardware,
networks, operating
systems, middleware,
application

»
»

Deve|opmem\components, etc./

=

25

Related ULS System Development Problems

Release X+1

Release X

{,,,_,-—u

f_‘_""'\ / r%’:] ; — F;'a”__"ei? €error recovery effector 1
sensor \f] 1,/ error 18 Evolution : - congla_non r(m_aln_)n
f=,,.‘/lf:rlanner planner " SU rprises! | | e - _._ <| H ctor 2
sensor configuns

er3 effector 3

=

-

(@) Domain Layer Domain Layer

-': fgkrr ?ﬂ r;?z . | l T —

O

(40] e | e /
-13 . \.liesburqe Pool Layer Resour}{ool Layer /
< i

"6 jouﬁ Layer R(ﬁo/ Urce Layer

[

>

(O}

—

- New hardware,
networks, operating
systems, middleware,
application

v

Deve|opmem\components, EtC./

”

Promising Approach for ULS System Challenges:
System Execution Modeling (SEM) Tools

Tools to express & validate design
rules

* Help applications & developers
adhere to system specifications at

design-time
Tools to ensure design rule
conformance Express & \ "
_ 2 Validate
* Help properly deploy & configure Design

applications to enforce design rules Rules

throughout system lifecycle Conduct
_ _ * “What If’
Tools to conduct “what if” analysis Analysis

* Help analyze QoS concerns priorto
completing the entire system, i.e., >~ B oo
before system integration phase = T——

SEM tools should be applied continuously when developing software elements

SEM Tool Example: Component Deployment & Configuration

A

SW
Creator
1

A

SW
Creator,

AL A2

Implementations

]

Deployment
requirements

Deployment & configuration (D&C) Goals
* Promote component reuse

 Build complex applications by assembling
existing components

» Automate configuration of common services

» Declaratively inject QoS policies into
applications

» Dynamically deploy components to target
heterogeneous domains

» Optimize systems via global component
configuration & deployment settings

Shipping l l

g — N

SW Deployer

Deployment

Deployment Interfaces

Tools (generic)

cg

Infrastructure
Interfaces

Deployment
Infrastructure

SEM Tool Example: Component Deployment & Configuration

Specification & Implementation
 Defining, partitioning, & implementing app functionality as

standalone components To! Chain ===
Pac kag|ng Speciica ion =t e ' a
« Bundling a suite of software binary modules & metadata | —— o
representing app components I Model)/
|nSta||ati0n Installsinn g o
 Populating a repository with packages required by app e ‘f;}fr—b
T alien alysis
Configuration B FENEE 2
- Configuring packages with appropriate parameters to satisfy| |™""™ j={
functional & systemic requirements of an application without | [z k-
constraining to physical resources R
Plannlng = Launching
» Making deployment decisions to identify nodes in target NI i
environment where packages will be deployed ' —] rSyntresiS r |
Preparation o
» Moving binaries to identified entities of target environment Example D&C specifications

Launching include | |
« Triggering installed binaries & bringing app to ready state * OMG Lightweight CORBA

: Component Model (CCM) &
QoS Assurance & Adaptation + IBM Service Component

* Runtime (re)configuration & resource management to Architecture (SCA)
maintain end-to-end QoS

All software is open-source at www.dre.vanderbilt.edu/cosmic

Challenge 1: The Packaging Aspect

sensor _r—‘—_'l—“ - Aror recovery effector

[e— *—/ planner planner \r—s— = [—

sensor configuration effector

« Application components are bundled
_ together into assemblies

* Different assemblies tailored to
deliver different end-to-end QoS
and/or using different algorithms can
be part of a package

* ULS systems will require enormous #
(10°-107) of components

» Packages describing assemblies can
be scripted via XML descriptors

30

Packaging Aspect Problems (1/2)

Inherent Complexities

®

Ad hoc techniques for ensuring component
syntactic & semantic compatibility

.

J
ve

Container

Distribution &
deployment done in
ad hoc manner

mechanisms

Ad hoc means to
determine pub/sub

31

Packaging Aspect Problems (2/2)

Accidental Complexities ﬁxistmg oractices

involve handcrafting
XML descriptors

<I- Associate components with impls -->
<assemblylmpl>
<instance xmi:id="Sensor">
<name>Sensor Subcomponent</name>
CxMLfilein) <_package href="Sensor.cpd"/>
excess of 3,000 [/Instance>
lines, even for Kinstance xmi:id="Planner">
medium sized | <name>Planner Subcomponent</name>

scenarios <package href="Planner.cpd"/>
</instance>
<instance xmi:id="Effector">

<name>Effector Subcomponent</name> L
. N Modifications to the
<package href="Effector.cpd"/> assemblies requires

</instance> modifying XML file
</assemblylmpl> |

o

SEM Tool Approach for Packaging Aspect

Approach:

e Develop the Platform-

Independent Component

to address complexities of
assembly packaging

 Capture dependencies visually rin
» Define semantic constraints using %
ConStraJ ntS -'«A:mz:f r!;mp;nrm,uem igm - [Ci E]_@nl
e e.g., Object Constraint Language — |ym=i s ittt 0 0
> B C—
(OCL) = | EE
 Generate domain-specific artifacts || = N L
VS
from models] o [[
* .., metadata, code, simulations, i S—
etc. -
» Uses Generic Modeling Environment
(GME) to meta-model & program

PICML helps to capture & validate design rules for assemblies

Example Metadata Generated by PICML

» Component Interface Descriptor (.ccd) Component
—Describes the interface, ports, properties of a single Packaging
component
* Implementation Artifact Descriptor (.iad) CompEa &
—Describes the implementation artifacts (e.g., DLLs, OS, etc.) HOE PEPENES
of one Component Implementation
. / Component Artifact
 Component Package Descriptor (.cpd) DLLs I DG
—Describes multiple alternative implementations of a single > packaging (iad)
component Tools
; ; ; Component Component
» Package Configuration Descriptor (.pcd) . Package
. . . g Descriptors
—Describes a configuration of a component package R (cpd)
» Top-level Package Descriptor (package.tpd) |
_ . _ : C t
Describes the top-level component package in a package ASTSSSTSW |mp?§npe°nr;§[}on
(Cpk) Descr.iptor
« Component Implementation Descriptor (.cid) ' H D)
—Describes a specific implementation of a component Component
interface o
.cpk)
—Implementation can be either monolithic- or assembly-based
—Contains sub-component instantiations in case of assembly o
based implementations Component & Application
]]) .] Home Properties Assembly
—Contains inter-connection information between components
* Component Packages (.cpk) Based on OMG (D&C)
—A component package can contain a single component specification (ptc/05-01-07)

—A component package can also contain an assembly

www.cs.wustl.edu/~schmidt/PDF/RTAS-PICML.pdf

Example Output from PICML Model

A Component

Implementation o
Descriptor (*.cid) file | = Tw,; i
» Describes a specific I ot o
Implementatlon Of a : ________ ::Diw ___________ | "mj ______ - eff status —F .E?“:ma S
component interface E— S - o2
» Describes component
Interconnections ¥
<mono|ithic|mp|_> [...] <connection> <name>Effector</name>
<dep|oyR|(:a>(|J|U|reme/nt> <internalEndpoint>
<name>Planner</name>
<resourceType>Planner</resourceType> .<portName>R"eady</ po:tName>
<property><name>vendor</name> <instance href="#Planner"/>
<value> </internalEndpoint>
<type> <kind>tk_string</kind> </type> <internalEndpoint>
</§;/ﬁjl(l;§> <string>My Planner Vendor</string> <portName>Refresh</portName>
</property> <_instance hreff"#Effector"/>
</deployRequirement> [... Requires VxWorks ...] </internalEndpoint>
</monolithicimpl> </connection>

PICML supports better expression of domain intent & “correct-by-construction”

Challenge 2: The Configuration Aspect

ULS systems are characterized by a large configuration space
that maps known variations in the application requirements space
to known variations in the software solution space

NN IS0

DN

i: \\.\ __.‘\-!\' \\\g\q_ Legacy - Theater
S R\ i catonagBOmMancy -

Autonomous
Teams

1
~ \
X

= gl
Engi KO Y Messag
Development' = E ‘«- g

5
36

Coalition
Partners

Support
Systems

Challenge 2: The Configuration Aspect

ULS systems are characterized by a large configuration space
that maps known variations in the application requirements space
to known variations in the software solution space

in args

o—
operation()

OBJECT
(SERVANT)

Hook for

marsha“ng ’r out args + return value 1I:—|f|1()eorkef(:;'est

strategy demuging
Hook for the event strategy
demuxing strategy

@

Hook for the
connection

management
strategy

OBJECT
ADAPTER

(Hook for the
concurrency
Kstrategy

O0S KERNEL

Hook for the

0s /o SUBSYSTEM

underlying
NETWORK transport
strategy

Configuration Aspect Problems

Middleware developers Application developers
 Documentation & capability e Must understand middleware
synchronization constraints, rules, & semantics
e Semantic constraints, design rules, * Increases accidental complexity
& Qf(.) > evtgluatlon of specific « Different middleware uses different
EELE LEE?I’LTF !gelﬁljdri !,glgr‘?lﬂn Swe.coni Configuration meChaniSmS
;CE_S\JC_CD‘nI’:b S h o
:':: 5'[_".1_:} svc.conf.:::ml,.v 1.1 2002/08/23 ° e'g'
:;;tic id;idv;nced Resource_Factory" MinOSOft' ’ . . .
paramsz“—ORBReac:t_urType seiac:t_mt— nﬂ XML COnflguratlon Fl|eS
ORBReactorMaskSignals 0 - ®

ORBFlushingStrategy blocking" /=

<static id="Client_Strateqy_Factory"
params="-0RBTransportMuxStrategy
EXCLUSIVE -ORBClientConnectionHandler
RW" /=

<static id="Server_Strateqy_Factory" %

params="-0RBConcurrency thread-per- %—.__ﬁ-' XML Property FlIeS

connection" /= s B .
/4CE_Svc_Confs = JAVA

ot e
operation() [OBJECT
L args + return value () i

CIAO/CCM provides ~500
configuration options

8

SEM Tool Approach for Configuration Aspect

Approach:

*Develop an Options Configuration Modeling Language (OCML) to
encode design rules & ensure semantic consistency of option
configurations

«OCML is used by - | Option
_ s Configuration
—Middleware developers to R Language Model

design the configuration mode/

—Application developers to
configure the middleware for a
specific application

e

I
. :) :- Application Gosigne @
OCML metamodelis platform P | onvens Mode {::J ﬁ%

independent gl
- HL.. Apphcation
' Devel
* OCML models are platform- E——— eveloper
SpeCifiC | Configuration File
OCML helps to ensure design conformance

Applying OCML to CIAO+TAO

» Middleware developers specify
« Configuration space
« Constraints

« OCML generates config model

af i t

T Name: [NewDptionSet |Optiors et Aspect] Aspect

ORB_Default_Resource Server_Stratedy

Client_Strategy Relation-Set

T Name [Server_Stistegy |OptionSet

~

reac [l
hesll

ORBConcurrency

e

ORBThreadPerConnectionTimeout

(£
I

& Lnum us
Ifu &
fif &

JRBConnectionPurgingStrategy

reactive

ORBCancurrency|~ |01/
T Name:|[ORBConcurency [Simplel
3

thread-per-connectior |

]

Aggregate | Inherkance |

MHewOptionSet
test]
9 NewDptionSet
= W Clignt_Strateay
* {4l ORBClentCa
L4l ORBConcum
* {4l DRBPrafileLc
L4l ORBTheadF
{4l ORBTranspo
=il ORB_Default_Re
= {4l ORBConnect
w4l ORBConnect
= {4l DRBConnect
[4 DRBConnec!
[4l DRBFlushing
[4 DRBMuxedC
— W Relation-Set
1 14 DRBCien
4l ORBCone
DRBConnec!
4l ORBCon
14 ORBConr
Z4l ORBConr
14 OREConr
Z4l ORBFlusk
14l OFiEMuxe
14l ORBPofl
14 OREThe
74l ORBTwan
erver_Sirateqy
'l ORBConcum
ORBThieadF

B

FElREER AR EEEE
HHHHHHRHH

EE

B

® Integer

nul == %_

ORBConnectionCachePurgePercentage

® Integer

FCDNFIGURATION>
<PROCESSOR »
<HAME>OCP_P1c</WAME>
<CONFIGURATION _PaSS»
<HOME »

<GROUP_ID> 20 <~GROUP_ID:
<ITEM ID»> 22 </ITEM ID>

< IDy
<«COMPONENT >

<ID»
<GROUP_ID>200</GROUE_ID>
<ITEM_TID>220<~ITEM_ID>
<NAME>WAYPOINT_PROEY</NAME>
</ID>
<DISTRIBUTION »
<DIST_URITE>»
<PROXY »

<IDy
<GROUP_ID>200¢ GROUP_ID>
<ITEHM_ID>221<~/ITEH_ID»
<HAHE>WATPOINT< ~NAME>
</ 1D
<~PROAY »
«/DIST_WRITE>
<~DISTRIBUTION >
<EVENT SUFPLIER>
<EVENT_SET»
ENT.

<HOME_TVFE> BM__OFPEN_ED_COMPONENT < HOME_TYPE>
<ID>

<HAME> EM_ OPEN_ED_COMPONENT < NAME>

ORBConnectionCachelax

s
* Return the last time the client sent a request associated
* session, as the number of ms since midnight, Jan 1, 1970
* GMI. Actions your application takes, such as get or set

* value associated with session, do not affect access tine.
5

mlic long getLast mme() {
return (this.last Ti nE) ;

)3

s

* Update the accessed time information for this session.
* Method is called by context when request comes in for a
* session, even if the application does not reference it.
5
public void access() {

this.last dTi re = this. thi ITi me;
)3

www.cs.wustl.edu/~schmidt/PDF/RTAS-process.pdf

Applying OCML to CIAO+TAO

| LUIJIJ%UJ'H[UJ' \Ja
' ImplRepoServicePart 0 4 _]

TradingServicePort |0

[= 0RE_Configuration_Options

bjlir

C
2 ; NameServicePot |0 _|:,‘|
i ':i"&m i j
[Service_Configurator_File TradingServicel OR
Client_Strategy_Factory ImpiRepoServicel R
Resource_Factories

" Server_Shrateay_Factory MameS ervicel OR ’7
» Application developers provide

a model of desired options &
their values, e.qg.,

* Network resources 4

Az mentioned earlier, environment variables have a limited uze in TAD ORB configuration. The currently supported environment vaniables are

PY C O n C u rre n Cy & CO n n e Cti O n listed below. They are used to specify the 10R and part numbers for three of TAD's ORE services.

In general, setting environment wariables is not particulary portable or corwenient, which iz why ugers can also set these options via

- command-ine optionz. The example shown below demonstrates a deployment soenario where the client and Maming Service in on the
management strategles same host

% NameService.exe -0FBEndpoint iiop://localhost: 12345

% client.exe -0PBEInitBef MameService=iiop://localhost:lZ34E5"

i ewplanation of theze command-ine options appears below,

Create Cloge

@ www.cs.wustl.edu/~schmidt/PDF/RTAS-process.pdf V

Applying OCML to CIAO+TAO

=t} Eg’LﬂEEI’J.'_.“‘_-,?'.-" lllIE-ﬁﬂ_l‘El’_LDIIIlE"ﬁt1IIIT1.-" SWo . ocong
ACE_Svc_Confs
i i =

= 8Id: svo.conf.xml,w 1.1 Z002/087523
22 123:04 nanbhor Exp § s
o o

zstatic id="Advanced_Resource_Factory"
params="-ORBReactorType select_mt -
ORBReactorMaskSignals O -
ORBFlushingStrateqy blocking" /=

=static id="Client_Strateqy_Factory"
params="-0ORBTransportMuxStrateqgy
EXCLUSIVE -ORBClientConnectionHandler
RW" /=

zstatic id="Server_Strateqy_Factory"
params="-0RBConcurrency thread-per-
connection" />

* OCML constraint checker flags ~ |/4cE_Svc_Conf>
iIncompatible options & then

» Synthesizes XML descriptors
for middleware configuration

» Generates documentation for
middleware configuration

 Validates the configurations

oBJECT ||
(sERVANT) il

uuuuuuuuu

OCML automates activities that are very tedious & error-prone to do manually

Challenge 3: Planning Aspect

System integrators must make appropriate deployment decisions,
identifying nodes in target environment where packages will be deployed

COMPONENT REPOSITORY

/Select the 8:[3 ?.:D
appropr late E Target Manager
pac kag eto Configures and Installs Packa
deploy on /

selected

/ Gets the Configured Package Man|ages

Gets Resource Availability

Qarg et / . _
Repository Admintrator k \ W

‘ Planner

Accesses Via URL Creates the D:eployment Plan Determlne Current
J resource allocations
Select appropriate — l:l! on target platforms

Node Node)
T
Creates

target platform to Package

deploy packages
o,
Domain Admintrator
3 A

Planning Aspect Problems

Ensuring deployment plans meet ULS system QoS requirements

How do you evaluate
QoS of infrastructure
before applications

are completely built?

How do you correlate QoS
requirements of packages

to resource availability?

How do you How do you ensure that

determine selected targets will

current resource deliver required QoS?
\allocatlons?

44

SEM Tool Approach for Planning Aspect

Approach

* Develop Component Workload Emulator (CoWorkEr) Utilization Test Suite
(CUTS) so architects & systems engineers can conduct “what if” analysis on evolving
systems by

o

1. Composing scenarios to Vodel
exercise critical system paths Experiment

Associate

Experimenter QoS
Characteristics

2. Associating performance
properties with scenarios &
assign properties to
components specific to paths

Component Interaction

RN
. Jittllar

3. Configuring workload e
generators to run experiments, Er
Synthesize
generate deployment plans, & r
measure performance along B T} IDL Execute
critical paths S Hiid _
. L 88— | — Scrip
4. Analyzing results to verify if Feedback | =i — il files
deployment plan & —— |Testbed e Derg?gr:nen- cpp

configurations meet
performance requirements

‘ CUTS integrates nicely with continuous integration servers ‘

Emulating Computational Components in CUTS

o ColWorkErs can be interconnected by

e CPU
Trigger Worker
r—-——. . = —_— : .
/ ! | i — Memory
sensor \r—-—- e / error recovery effector) Worker
. : Event Event
[_‘*/ planner planner \! | : Handler (I Producer
_ :I: Database
sensor configuration effector : Wearker
Benchmark
Agent
To/From Test DB
Domain Layer
C [i [7 dd—bii i ﬂ—b[- P T P TR PO
(@) —_ (0 To BenchmarkDataCollector
."8 \&es‘aurqe Pool Layer . v
O P . [C— ' —
= . i :
oy = e T * Application components are
[7 [~ — [——
< represented as Component Workload
Y
o Emulators (CoWorkErs)
()
>
)]
—

the P/ICML tool to form operational
strings

Development Timeline

v

www.cs.wustl.edu/~schmidt/PDF/CUTS.pdf

Representing Computational Components in CUTS
o] —— e

<EwventReactionSpecs
<InputEvent eventType="Assessment8imEvent" count="1" /=
- «<Waorkload=

StartupActivity MemoryAllocate DatabaseAction Action DatabaseAction
, — (e g %{% (=
_ ! j] | ,J
sensor \,——— e/ error recovery effector EventDrivenActivity MemoryAllocate DatabaseAction Action MemoryDeallocate OutputEvent
T—‘='~/ planner planner \1—" - re—
sensor configuration effector & InpUtEvent

Dantaln: Layes <Memaoryaction repefitions="3" operation="ALLOCATE" /=

|

! l -~ Bk «Databaseaction repetitions="40" />
~ <CPUACTIoN repetitions="14" />
\&esqaurce Pool Layer v <Memaorysction repetitions="5" operation="DEALLOCATE" />
r ! [I I <PublicationAction repetitions="1" eventType="CommandSimEvent" dataSize="128" />

<Myorkloads
o «/EventReactionSpec>

v Rw Layer _ v
| | | » Workload Modeling Language (WML) MDE

tool defines behavior of CoWorkErs via
“work sequences”

WML programs are translated into XML
characterization files

* These files then configure CoWorkErs

Level of Abstraction

Development Timeline

www.cs.wustl.edu/~schmidt/PDF/QoSPML-WML.pdf

Visualizing Critical Path Performance in CUTS

& 3 3 e B] @]
2 & g G g

o
SL
)

sensor

W plamer plann B |mcesen Duws W Bk Seei o
sensor configuration effector [N -
Domain Layer
O~
"6 \&eswurtl_:e Pool Layer . v
-'(T) L €, ce/::l/er 4
Q[[Rj??ﬂ'::I ’ ' [:
2 | —
© o BenchmarkManagerWeb-interface (BMW/)
0 MDE tool generates statistics showing
9 performance of actions in each CoWorkEr
* Critical paths show end-to-end performance
of mission-critical operational strings

Development Timeline

www.cs.wustl.edu/~schmidt/PDF/ECBS-2008.pdf

Open R&D Issues

Accidental Complexities Inherent Complexities

* Round-trip engineering from « Capturing specificity of target domain
models < source

« Automated specification & synthesis of

 Mismatched abstraction levels

for development vs.

—Model interpreters

debugging —Model transformations
* View integration —Broader range of application
capabilities

* Tool chain vs. monolithic tools

» Backward compatibility of

— Static & dynamic QoS properties

modeling tools » Migration & version control of models

« Standard metamodeling » Scaling & performance

languages & tools

» Verification of the DSMLSs

Solutions require validation on large-scale, real-world ULS systems

49

Concluding Remarks

 The emergence of ULS systems
requires significant innovations &
advances in tools & platforms

* Not all technologies provide the
precision we’re accustomed to in
legacy real-time systems

« Advances in Model-driven
engineering (MDE) are needed to
address ULS systems challenges

* Significant MDE groundwork layed

In various R&D programs Ultra-Large-Scale

Systems

The Software Challenge
of the Future

R

e Much more R&D
needed for ULS
systems

e e.g., recent
Software
Engineering
Institute study

ULS systems report available at www.sei.cmu.edu/uls

