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Abstract 
Software testing can benefit from technologies that 
enable evolution toward increased engineering 
discipline. In current practice, software developers lack 
practical means to determine the full functional 
behavior of programs under development, and even 
the most thorough testing can provide only partial 
knowledge of behaviors. Thus, effective scientific 
principles and engineering technology for revealing 
software behavior should have a positive impact on 
software testing. This paper describes the emerging 
technology of function extraction (FX) for computing 
the behavior of programs to the maximum extent 
possible with mathematical precision. We explore how 
the use of FX technologies can transform methods for 
functional verification of software. An example 
illustrates the value of full behavior knowledge for 
complete and confident assessment of software 
function and fitness for use. We conclude by 
describing a transition strategy for introducing FX 
technology into the development and operation of 
software systems. 
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Transforming Software Testing 
The activities of testing and verifying software-
intensive systems are difficult and exhausting work, 
both mentally and physically (Whittaker, 2000). It is 
well recognized that the cost and schedule for testing 
activities can account for a significant percentage of a 
software system’s project budget. The state-of-the-
practice for software testing consists of techniques for 
black-box and white box testing, often supported by 
automated tools (Jorgensen, 2002). Overall, software 
testing, as practiced today, remains a costly craft with 
results highly dependent upon the skills of the testers. 

Research activities in recent years have focused on 
finding scientific foundations for the theory and practice 
of software testing, for example, in the use of 
statistical, usage-based testing with its predictive 
power to certify software fitness for use in operational 
environments (e.g., Poore et al., 1993; Sayre and 
Poore, 2007). However, such formal testing methods 
have not significantly transformed practice in the field. 

Software testing can benefit from technologies that 
help move toward a true engineering discipline. We 
believe that function extraction (FX) can have 
substantial impact on the theory and practice of 
software testing. Current technologies do not provide 
software developers with practical means to determine 
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the full functional behavior of programs in all 
circumstances of use. Testing, together with 
inspections and reviews, is a principal means for 
behavior discovery today, but even extensive testing 
can provide only partial knowledge of software 
behavior. Thus, research in technologies that can 
reveal full behavior has potential for transformative 
impact on testing processes and results. The goal of 
this paper is to explore the impact of FX technology on 
software testing.  
 
Function Extraction Concepts 
The objective of function extraction is to compute the 
behavior of software to the maximum extent possible 
with mathematical precision. CERT STAR*Lab of the 
Software Engineering Institute at Carnegie Mellon 
University is conducting research and development in 
this emerging technology. FX presents an opportunity 
to reduce dependencies on slow and costly testing 
processes to assess software functionality by moving 
too fast and inexpensive computation of functionality at 
machine speeds. Because a principal objective of 
testing is to validate functionality, automated 
computation of functional behavior can be expected to 
streamline testing processes and permit increased 
testing focus on system-level issues of component 
interaction and dynamic system properties, such as 
security, reliability, and performance. 

The goals of behavior calculation are to compose and 
record the semantic information in programs as a 
means to augment human capabilities for analysis, 
design, and verification. We discuss function extraction 
below in the context of sequential logic, in full 
knowledge that concurrent and recursive logic must be 
addressed as well. Computing the behavior of 
programs is a difficult problem, and our intent in this 
paper is to begin a discussion on how to move 
software testing into future technologies; to say first 
words on the subject, not the last words. 

The well-known function-theoretic view of software 
provides mathematical foundations for computation of 
behavior (Linger et al., 1979; Pleszkoch et al., 1990; 
Prowell et al., 1999). In this perspective, programs are 
treated as rules for mathematical functions or relations, 
that is, mappings from inputs (domains) to outputs 
(ranges), regardless of subject matter addressed or 
implementation languages employed.  

The key to the function-theoretic approach is the 
recognition that, while programs may contain far too 
many execution paths for humans to understand or 
computers to analyze, every program (and thus every 
system of programs) can be described as a 
composition of a finite number of control structures, 
each of which implements a mathematical function or 
relation in the transformation of its inputs into outputs. 

In particular, the sequential logic of programs can be 
expressed as a finite number of single-entry, single-
exit control structures: sequence (composition), 
alternation (if-then-else), and iteration (while-do), with 
variants and extensions permitted but not necessary. 
The behavior of every control structure in a program 
can be extracted and composed with others in a 
stepwise process based on an algebra of functions 
that traverses the control structure hierarchy. 
Termination of the function extraction and composition 
processes are assured by the finite number of control 
structures present in any program (Linger and 
Pleszkoch, 2004).  

The first step in behavior extraction is to transform any 
spaghetti logic in the input program into structured 
form, to create a hierarchy of nested and sequenced 
control structures. The behaviors of leaf node control 
structures are then computed with net effects 
propagated to the next level while local details of 
processing and data are left behind. These 
computations reveal new leaf nodes and the process 
repeats until all behaviors have been computed.  

Behavior computation for sequence and alternation 
structures involves composition and case analysis. 
Because no comprehensive theory for loop behavior 
computation can exist, mathematical foundations and 
engineering implementations, short of a general theory 
but sufficient for practical use, are under development. 
This work permits the effect of theoretical limitations on 
loop behavior computation to be made arbitrarily small.  

The general form of the expressions produced by 
function extraction is a set of conditional concurrent 
assignments (CCA) organized into databases that 
define program behavior in all circumstances of use. 
The CCAs are disjoint and thus partition behavior on 
the input domain of a program. The databases define 
behavior in non-procedural form and represent the as-
built specification of a program. Each CCA is 
composed of a predicate on the input domain, which, if 
true, results in simultaneous assignment of all right-
hand side domain values in the concurrent 
assignments to their left-hand side range variables.  

Behavior databases, thus, are the central repository for 
the actual behaviors contained in a software system. 
They can be queried, for example, for particular 
behavior cases of interest, or to determine if any cases 
satisfy, or violate, specified conditions or constraints. 
Behavior databases have many uses, as seen in 
Figure 1, ranging from basic human understanding of 
code, to program correctness verification, to analysis 
of security and other attributes, to component 
composition, and so on (Hevner et al., 2005). Later in 
the paper, we will focus on the specific impacts of the 
FX technology on software testing activities.  
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Figure 1. Function Extraction Technology  

 
The first application of FX technology at CERT is a 
function extraction system that computes behavior for 
programs written in, or compiled into, Intel assembly 
language, to support analysts in malicious code 
detection and understanding of malware behavior. 
Sample outputs from the evolving FX system are 
employed in the next section to illustrate the role of 
behavior computation as a means to satisfy testing 
objectives. 
 
A Behavior Computation Example 
 
In miniature illustration of the role of FX in a testing 
environment, consider the problem of developing a 
program that returns 1 if three given integers form the 
sides of a proper triangle, otherwise the program 
returns 0. The C language program depicted below 
appears to satisfy this requirement by first checking 
that each side is a positive number, and then 
checking each permutation of the triangle inequality: 

 
 
int test_triangle (int a, int b, int c) 
{ 
  int answer = 1; 
  if (a <= 0) { 

   answer = 0; 
  } 
  if (b <= 0) { 
   answer = 0; 
  } 
  if (c <= 0) { 
   answer = 0; 
  } 
  if (a + b <= c) { 
   answer = 0; 
  } 
  if (a + c <= b) { 
   answer = 0; 
  } 
  if (b + c <= a) { 
   answer = 0; 
  } 
  return answer; 
} 
 
Since the FX system computes behavior for compiled 
machine code, the first step is to disassemble the 
object code to produce the listing shown below. The 
IDA Pro disassembler is used for this purpose:  

 
; test_triangle(int, int, int) 
  public __Z13test_triangleiii 
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__Z13test_triangleiii proc near 
 
var_4  = dword ptr -4 
arg_0  = dword ptr 8 
arg_4  = dword ptr 0Ch 
arg_8  = dword ptr 10h 
 
  push ebp 
  mov ebp, esp 
  sub esp, 4 
  mov [ebp+var_4], 1 
  cmp [ebp+arg_0], 0 
  jg short loc_1A 
  mov [ebp+var_4], 0 
 
loc_1A:  cmp [ebp+arg_4], 0 
  jg short loc_27 
  mov [ebp+var_4], 0 
 
loc_27:  cmp [ebp+arg_8], 0 
  jg short loc_34 
  mov [ebp+var_4], 0 
 
loc_34:  mov eax, [ebp+arg_4] 
  add eax, [ebp+arg_0] 
  cmp eax, [ebp+arg_8] 
  jg short loc_46 
  mov [ebp+var_4], 0 
 
loc_46:  mov eax, [ebp+arg_8] 
  add eax, [ebp+arg_0] 
  cmp eax, [ebp+arg_4] 
  jg short loc_58 
  mov [ebp+var_4], 0 
 
loc_58:  mov eax, [ebp+arg_8] 
  add eax, [ebp+arg_4] 
  cmp eax, [ebp+arg_0] 
  jg short loc_6A 
  mov [ebp+var_4], 0 
 
loc_6A:  mov eax, [ebp+var_4] 
  leave 
  retn 
 
__Z13test_triangleiii endp 

 
Next, the FX system is executed from an IDA Pro 
plug-in, with a screen shot of the resulting output 
depicted below in Figure 2. On the left side of the 
screen, the spaghetti-logic of the disassembled C 
program has been transformed into structured form. 
On the right side, the computed behavior is presented 
in terms of the net effect of the program on registers, 
flags, and memory. 
 

There are two cases (conditions) in the computed 
behavior, each defined as a conditional concurrent 
assignment (CCA). The registers section of the first 
case shows that the EAX register is set to 0, resulting 
in returning 0 to the calling program. Additionally, the 
EBP register is used but is finally set back to its 
original value, and the ESP register is incremented by 
4 (by the RET instruction which pops the return 
address off the stack). The memory section shows 
the final value of the local variable “answer” in the 
original C program, as well as other data that were 
saved on the stack. The second case is similar, 
except that the EAX register is set to 1, thereby 
returning 1 to the calling program. Thus, provided that 
the conditions themselves are correct, there is no 
need to execute any test cases on this program to 
determine its functional behavior.  
 
The condition for the second case is as follows:  

 
       (parm_a <= (signed_32(parm_b +d parm_c) + -1)) 
 && (parm_b <= (signed_32(parm_a +d parm_c) + -1)) 
 && (parm_c <= (signed_32(parm_a +d parm_b) + -1)) 
 && (1 <= parm_a) 
 && (1 <= parm_b) 
 && (1 <= parm_c) 
 
where 
 
  parm_a :== signed_32(acc_32(M,4 +d ESP)) 
  parm_b :== signed_32(acc_32(M,8 +d ESP)) 
  parm_c :== signed_32(acc_32(M,12 +d ESP)) 

 
For readability, the output of the FX system has been 
manually formatted to use symbolic names for the 
function parameters instead of the low-level memory 
access expressions shown in the definitions of those 
parameters. As the system evolves, this formatting 
will be incorporated. 
 
The condition for the program to return 1 is the logical 
“and” of six checks, corresponding to the six if-then-
elses in the program. The checks for positive 
parameters are easily seen to be correct. However, 
an examination of the other checks shows that the 
overflow case has not been considered. (Note that 
“+d” in the condition represents addition modulo 2^32, 
and the “signed_32” operation interprets the result as 
a two’s complement signed number.) As a result, the 
program gives the wrong answer whenever the 
addition of two of the sides causes an arithmetic 
overflow. For example, as presently implemented, the 
program would incorrectly indicate that 2^30, 2^30, 
and 10 do not form the sides of a triangle. Note that 
this error would likely not have been found by any of 
the common test coverage strategies, including 
statement coverage, branch coverage, and path 
coverage. 
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Figure 2. Triangle Program in FX System 
 

 
 

Figure 3. Triangle Program in FX with Malicious Code Condition 
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Figure 4. Transition of FX Testing into System Development and Operations 

 
Consider next the problem of determining whether 
malicious content has been added to this program, in 
particular, whether the EAX register is being 
maliciously employed under conditions defined by an 
intruder.  
 
The FX screenshot in Figure 3 shows computed 
behavior for such an instance. A third case of 
behavior appears, where the malicious intent is 
invoked only for inputs that cause the addition of 
sides b and c to overflow. The assignment of a value 
of 80 to EAX could cause a buffer overflow or some 
other problem in the calling program, which is 
expecting a return value of at most 1. This example 
illustrates the discovery and exploitation of a program 
vulnerability by an intruder. This malicious execution 
would be just as difficult to find through testing as the 
overflow error in the original program. However, the 
FX system immediately computes a third case of 
behavior with a return value of 80, revealing the 
malicious functionality for all to see.  
 
Software Testing with FX Technology:  
A Transition Strategy 
 
Based on our research and development activities 
with FX technologies, we have identified a wide range 
of FX impacts across many software development 

activities (Hevner et al., 2005). For this paper, we 
focus on how FX can transform testing practices 
during software-intensive system development and 
operation. In particular, we address the question of 
how to effectively transition FX ideas and tools into 
current testing activities. The beneficial impacts of the 
new FX technologies are discussed.  
 
Figure 4 shows a typical development process that 
builds a software system via an iterative cycle of 
incremental development. The opportunities for 
application of FX technologies are highlighted 
throughout the process. The process begins with 
activities of identifying system requirements and 
specifying a software architecture for building the 
system. Future research directions of FX are aimed at 
understanding the behaviors defined by architectural 
models and languages. Additional research on the 
development of semantically precise representations 
of architectures and designs is needed to enable FX 
ideas to be effective in these upstream development 
activities. 
 
Component Development 
 
Each system increment is built from individual 
software components that are integrated into the 
architecture for that increment. Components are 
provisioned in one of three ways – original 
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development, modified legacy development, or 
acquired as pre-developed components. Each of 
these approaches provides opportunities for the 
introduction of FX technology. 
  
Original Component Development. When a 
decision is made to develop a required software 
component from scratch, FX automation can play an 
important role during the evolving implementation. As 
each set of required functions is developed, a 
software developer can work interactively with an FX 
system to determine if the evolving implementation 
indeed provides the set of functions intended. As new 
code is introduced into an evolving component, the 
FX system can report on the corresponding additional 
behaviors, as well as any changes to prior behaviors. 
Errors of commission or omission can thus be 
identified during the implementation process, and 
extraneous behavior isolated and removed. 
 
Significant time and effort are often allocated during 
software development to verify the correctness and 
quality of software designs and implementations. 
Reviews, inspections, and unit testing are resource-
intensive activities used to evaluate components 
against their specifications. At its core, FX technology 
is closely related to correctness verification. 
Programmers can add intended functions (expressed 
in a standard language form as comments) to the 
control structures of implementations to permit FX 
automation to compare the extracted behavior of 
each control structure to the corresponding intended 
function to determine whether or not it is correct. 
Alternately, if programmers do not wish to add 
intended functions to their programs, calculated 
behavior can be easily inspected to verify that a 
program indeed does what is desired, and that no 
unforeseen cases of behavior are present. 
 
Reuse of Legacy Components. Significant time and 
effort are saved by effective reuse of legacy 
components. First, however, it is important to fully 
understand the behaviors embodied by a component 
to be reused. FX technology provides value by 
automatically calculating all behaviors in a legacy 
component. Modifying a component for reuse then 
consists of removing any undesired behaviors, 
improving the existing desired behaviors, and adding 
any new behaviors. The verification of a modified 
component via inspections and unit testing is also 
supported by FX technology as described above. 
 
Component Acquisition. Components and services 
that are acquired from external vendors or even from 
internal corporate repositories present challenges to 
developers who must understand their behaviors. FX 
automation can provide a solution. A function 

extractor based on the semantics of the component's 
programming language can accept an unknown 
component and produce a complete behavior 
database. The resulting behavior can then be 
analyzed and compared to its contractual design 
specification. By evaluating several components in 
this manner, developers can create a basis for the 
best selection to meet acquisition requirements. 
 
As examples of the application of FX technology for 
component evaluation and selection, consider the 
following situations: 
 
 COTS products - A systems engineer requests a 

set of product behaviors from a COTS vendor to 
evaluate its planned use in a new system. FX will 
validate whether the behaviors are actually 
delivered and whether additional undesired 
behaviors are also present. 

 Service integration - Before signing an agreement 
to include an online service in a critical supply 
chain application, a systems integrator requires 
the service provider to run the service through an 
FX system in order to analyze its full set of 
service behaviors. Note that the provider need 
not expose any proprietary code to the service 
user, only the computed behaviors. 

 
Integration Testing 

 
Function extractors are essentially generalized 
composition engines and, thus, they can also play a 
role in the integration of software components as 
determined by a system architecture. Based on the 
behavior database of each component, FX 
technology, guided by mathematical rules of 
component composition, can be adapted to integrate 
uses of the components into an assembled 
subsystem with a new, composite behavior database. 
The architecture specifies intended and allowable 
usage patterns (i.e., control flows and data flows) 
among the integrated components. The goals of 
integration testing can thus be supported by FX 
automation. 
 
Systems Testing  

 
With the advent of FX technology, an opportunity 
exists for systems testing and customer acceptance 
testing to shift from defect detection to certification of 
fitness for use. As the technology evolves and more 
automation becomes available, subsystems and 
entire systems could eventually be processed by FX 
automation, and resulting behavior databases 
compared with specifications and analyzed by 
stakeholders. A reduced set of test scenarios could 
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be developed to demonstrate correct execution, 
because only one test per disjoint case of behavior is 
sufficient to validate all the behavior defined by that 
case.  
 
Of course, the testing of system behaviors is only a 
portion of the full range of systems testing goals. The 
time and effort saved by use of FX automation can be 
devoted to more thorough testing and evaluation of 
environmental conditions (e.g., hardware platforms, 
external interfaces) and dynamic system qualities. For 
example, system testing for the qualities of 
performance, security, privacy, reliability, survivability, 
and maintainability, to mention a few, can and should 
become a greater focus of system testing (Walton et 
al., 2006).  
 
Another important consideration is that eventual 
industry standards for FX technology could support 
outsourcing of system testing to independent groups 
that specialize in certifying the correctness and quality 
of software systems. As in more mature engineering 
fields, independent certification of quality standards 
for software systems with an industry-wide stamp of 
approval will help provide greater levels of trust in 
critical systems. 
 
System Operations  

 
The lower portion of Figure 4 shows the system in 
operation. It is generally accepted that a significant 
majority of the cost of a software system occurs after 
it is deployed, in the form of maintenance and 
upgrades to meet evolving customer requirements. 
FX technology could eventually support maintenance 
and evolution activities while providing opportunities 
for cost savings and quality improvements.  
 
The key to system maintenance with FX technology is 
keeping behavior databases up to date automatically. 
As maintenance is performed on an operational 
system (for example, to improve performance or 
enhance security), the resulting system must still 
produce the same intended behaviors for unaffected 
functions as found in the database. As in system 
testing, a reduced set of regression test scenarios 
can provide a level of confidence that unaffected 
behaviors have remained unchanged. 
 
In terms of system evolution, behavior databases 
provide a formal baseline against which all changes 
could be compared. New or modified behaviors could 
be specified and traced through component design 
and implementation behavior databases. Thus, 
developers could determine where and how to make 
required changes in system specifications, 
component designs, and code. Once code changes 

are made, FX automation could help ensure they 
have desired effects, while checking the integrity of 
behaviors that must remain unmodified. 
 
Even when an operational system is not subject to 
maintenance and evolution activities, it may be wise 
to periodically perform function extraction to monitor 
and ensure that no malicious or inadvertent 
modifications have been introduced. Frequent 
application of the FX technology can help provide 
users with a level of confidence that no security 
compromises have occurred since the previous FX 
analysis. 
 
Discussion of FX Impacts  
on Software Testing 
 
It is not surprising that the software testing process 
can benefit from a thorough analysis of the code 
being tested. Test coverage metrics, such as 
statement or branch coverage, are one example of 
this. There are also situations where examination of 
the code and its structure can be used to reduce the 
number of test cases needed without the possibility of 
missing an error in the program. For example, if both 
the code and the specification are linear functions (in 
the mathematical sense) of N numeric input values, 
then any N+1 linearly independent test cases suffice 
to demonstrate correctness. For functions of a single 
numeric input value, if the code and the specification 
are polynomials of degree M, then any M+1 distinct 
test cases suffice. 
 
However, if all that is known about the code and the 
specification is that they are total recursive functions, 
then every possible input value must be tested. 
 
 
Observation 1: If nothing is known about the internals 
of a sequential program (a black box as far as testing 
is concerned), then in order to guarantee correctness, 
it is necessary to execute every possible test case 
where the program specification makes a non-trivial 
requirement about the program output. 
 
The advent of function extraction technology provides 
the ability, outside the strict confines of linear or 
polynomial functions, to reduce the number of test 
cases without the possibility of missing a program 
error.  

 
Observation 2: For a sequential program, if the 
functional behavior extracted from the program 
implementation satisfies the program specification, 
then the program is functionally correct, and no 
testing for functional behavior is required.  
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In scaling up to computation and comparison of the 
behavior of large programs to their specifications, a 
divide and conquer strategy forms the basis for a 
stepwise process that operates on components of 
manageable size. Specifications can be written in a 
form amenable to automated comparison, but even if 
specifications do not exist, inspection of behavior 
databases through human and/or automated means 
can validate desired behavior and reveal any 
unwanted functionality. The idea is to replace labor-
intensive manual verification with automation 
wherever possible, in the knowledge that some level 
of human analysis will always be required. In any 
event, we believe that routine availability of computed 
behavior can have significant impact on the cost and 
quality of software system development, by 
substituting cheap computing power for resource-
intensive, human-based activities.  
 
These observations identify a potential paradigm shift 
supported by FX capabilities for software testing. Test 
coverage metrics are no longer the sole basis for 
determining whether sufficient testing has been 
completed. All behaviors in the program code are 
identified and can be inspected and evaluated for 
correctness against the program specification, 
whether the specification is documented or exists as 
a mental model of desired behavior.  
 
Function extraction could also make it easier to 
determine if malware or corrupted functionality is 
present in operational programs. Behavior databases 
can be generated on a periodic basis and compared 
with baseline databases to help detect any malicious 
content.  
 
As noted, many other testing objectives must be 
satisfied, including evaluation of the performance and 
interaction of programs in complex computational 
environments. Function extraction has the potential to 
free testing resources to focus on these objectives 
with the knowledge that the functional behavior of 
constituent programs is known and validated. This 
resource shift can significantly impact the economics 
of software engineering, resulting in faster and 
cheaper development of higher quality systems 
(Collins et al., 2008).  
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