

Introducing
Function Extraction
into Software
Testing

Mark G. Pleszkoch
Carnegie Mellon University

Richard C. Linger
Carnegie Mellon University

Alan R. Hevner
University of South Florida

Acknowledgments

We wish to acknowledge the efforts of the Function
Extraction research team within CERT. Alan Hevner
has been partially supported by the U.S. National
Science Foundation (NSF) during an assignment at
NSF.

Abstract
Software testing can benefit from technologies that
enable evolution toward increased engineering
discipline. In current practice, software developers lack
practical means to determine the full functional
behavior of programs under development, and even
the most thorough testing can provide only partial
knowledge of behaviors. Thus, effective scientific
principles and engineering technology for revealing
software behavior should have a positive impact on
software testing. This paper describes the emerging
technology of function extraction (FX) for computing
the behavior of programs to the maximum extent
possible with mathematical precision. We explore how
the use of FX technologies can transform methods for
functional verification of software. An example
illustrates the value of full behavior knowledge for
complete and confident assessment of software
function and fitness for use. We conclude by
describing a transition strategy for introducing FX
technology into the development and operation of
software systems.

ACM Categories:

Keywords: Function Extraction, Program Behavior,
Software Systems, Software Testing

Transforming Software Testing
The activities of testing and verifying software-
intensive systems are difficult and exhausting work,
both mentally and physically (Whittaker, 2000). It is
well recognized that the cost and schedule for testing
activities can account for a significant percentage of a
software system’s project budget. The state-of-the-
practice for software testing consists of techniques for
black-box and white box testing, often supported by
automated tools (Jorgensen, 2002). Overall, software
testing, as practiced today, remains a costly craft with
results highly dependent upon the skills of the testers.

Research activities in recent years have focused on
finding scientific foundations for the theory and practice
of software testing, for example, in the use of
statistical, usage-based testing with its predictive
power to certify software fitness for use in operational
environments (e.g., Poore et al., 1993; Sayre and
Poore, 2007). However, such formal testing methods
have not significantly transformed practice in the field.

Software testing can benefit from technologies that
help move toward a true engineering discipline. We
believe that function extraction (FX) can have
substantial impact on the theory and practice of
software testing. Current technologies do not provide
software developers with practical means to determine

The DATA BASE for Advances in Information Systems 41 Volume 39, Number 2, May 2008The DATA BASE for Advances in Information Systems 41 Volume 39, Number 3, August 2008

the full functional behavior of programs in all
circumstances of use. Testing, together with
inspections and reviews, is a principal means for
behavior discovery today, but even extensive testing
can provide only partial knowledge of software
behavior. Thus, research in technologies that can
reveal full behavior has potential for transformative
impact on testing processes and results. The goal of
this paper is to explore the impact of FX technology on
software testing.

Function Extraction Concepts
The objective of function extraction is to compute the
behavior of software to the maximum extent possible
with mathematical precision. CERT STAR*Lab of the
Software Engineering Institute at Carnegie Mellon
University is conducting research and development in
this emerging technology. FX presents an opportunity
to reduce dependencies on slow and costly testing
processes to assess software functionality by moving
too fast and inexpensive computation of functionality at
machine speeds. Because a principal objective of
testing is to validate functionality, automated
computation of functional behavior can be expected to
streamline testing processes and permit increased
testing focus on system-level issues of component
interaction and dynamic system properties, such as
security, reliability, and performance.

The goals of behavior calculation are to compose and
record the semantic information in programs as a
means to augment human capabilities for analysis,
design, and verification. We discuss function extraction
below in the context of sequential logic, in full
knowledge that concurrent and recursive logic must be
addressed as well. Computing the behavior of
programs is a difficult problem, and our intent in this
paper is to begin a discussion on how to move
software testing into future technologies; to say first
words on the subject, not the last words.

The well-known function-theoretic view of software
provides mathematical foundations for computation of
behavior (Linger et al., 1979; Pleszkoch et al., 1990;
Prowell et al., 1999). In this perspective, programs are
treated as rules for mathematical functions or relations,
that is, mappings from inputs (domains) to outputs
(ranges), regardless of subject matter addressed or
implementation languages employed.

The key to the function-theoretic approach is the
recognition that, while programs may contain far too
many execution paths for humans to understand or
computers to analyze, every program (and thus every
system of programs) can be described as a
composition of a finite number of control structures,
each of which implements a mathematical function or
relation in the transformation of its inputs into outputs.

In particular, the sequential logic of programs can be
expressed as a finite number of single-entry, single-
exit control structures: sequence (composition),
alternation (if-then-else), and iteration (while-do), with
variants and extensions permitted but not necessary.
The behavior of every control structure in a program
can be extracted and composed with others in a
stepwise process based on an algebra of functions
that traverses the control structure hierarchy.
Termination of the function extraction and composition
processes are assured by the finite number of control
structures present in any program (Linger and
Pleszkoch, 2004).

The first step in behavior extraction is to transform any
spaghetti logic in the input program into structured
form, to create a hierarchy of nested and sequenced
control structures. The behaviors of leaf node control
structures are then computed with net effects
propagated to the next level while local details of
processing and data are left behind. These
computations reveal new leaf nodes and the process
repeats until all behaviors have been computed.

Behavior computation for sequence and alternation
structures involves composition and case analysis.
Because no comprehensive theory for loop behavior
computation can exist, mathematical foundations and
engineering implementations, short of a general theory
but sufficient for practical use, are under development.
This work permits the effect of theoretical limitations on
loop behavior computation to be made arbitrarily small.

The general form of the expressions produced by
function extraction is a set of conditional concurrent
assignments (CCA) organized into databases that
define program behavior in all circumstances of use.
The CCAs are disjoint and thus partition behavior on
the input domain of a program. The databases define
behavior in non-procedural form and represent the as-
built specification of a program. Each CCA is
composed of a predicate on the input domain, which, if
true, results in simultaneous assignment of all right-
hand side domain values in the concurrent
assignments to their left-hand side range variables.

Behavior databases, thus, are the central repository for
the actual behaviors contained in a software system.
They can be queried, for example, for particular
behavior cases of interest, or to determine if any cases
satisfy, or violate, specified conditions or constraints.
Behavior databases have many uses, as seen in
Figure 1, ranging from basic human understanding of
code, to program correctness verification, to analysis
of security and other attributes, to component
composition, and so on (Hevner et al., 2005). Later in
the paper, we will focus on the specific impacts of the
FX technology on software testing activities.

The DATA BASE for Advances in Information Systems 42 Volume 39, Number 2, May 2008The DATA BASE for Advances in Information Systems 42 Volume 39, Number 3, August 2008

Function
Extractor

Function
Extractor

Security Property
Analysis

Application

Security Property
Analysis

Application

SoftwareSoftware Net functional
effect of software

Behavior
Database

Legacy Analysis
Application

Legacy Analysis
Application

Malicious Code
Detection/Analysis

Application

Malicious Code
Detection/Analysis

Application

Correctness
Analysis

Application

Correctness
Analysis

Application

FX Core Technology

Intel
AL

Intel
AL CC JavaJava …Spec.Spec. DesignDesign

Possible Semantic Environments

Human
Understanding

Application

Human
Understanding

Application

Value-Added Testing
Applications

…

Figure 1. Function Extraction Technology

The first application of FX technology at CERT is a
function extraction system that computes behavior for
programs written in, or compiled into, Intel assembly
language, to support analysts in malicious code
detection and understanding of malware behavior.
Sample outputs from the evolving FX system are
employed in the next section to illustrate the role of
behavior computation as a means to satisfy testing
objectives.

A Behavior Computation Example

In miniature illustration of the role of FX in a testing
environment, consider the problem of developing a
program that returns 1 if three given integers form the
sides of a proper triangle, otherwise the program
returns 0. The C language program depicted below
appears to satisfy this requirement by first checking
that each side is a positive number, and then
checking each permutation of the triangle inequality:

int test_triangle (int a, int b, int c)
{
 int answer = 1;
 if (a <= 0) {

 answer = 0;
 }
 if (b <= 0) {
 answer = 0;
 }
 if (c <= 0) {
 answer = 0;
 }
 if (a + b <= c) {
 answer = 0;
 }
 if (a + c <= b) {
 answer = 0;
 }
 if (b + c <= a) {
 answer = 0;
 }
 return answer;
}

Since the FX system computes behavior for compiled
machine code, the first step is to disassemble the
object code to produce the listing shown below. The
IDA Pro disassembler is used for this purpose:

; test_triangle(int, int, int)
 public __Z13test_triangleiii

The DATA BASE for Advances in Information Systems 43 Volume 39, Number 2, May 2008The DATA BASE for Advances in Information Systems 43 Volume 39, Number 3, August 2008

__Z13test_triangleiii proc near

var_4 = dword ptr -4
arg_0 = dword ptr 8
arg_4 = dword ptr 0Ch
arg_8 = dword ptr 10h

 push ebp
 mov ebp, esp
 sub esp, 4
 mov [ebp+var_4], 1
 cmp [ebp+arg_0], 0
 jg short loc_1A
 mov [ebp+var_4], 0

loc_1A: cmp [ebp+arg_4], 0
 jg short loc_27
 mov [ebp+var_4], 0

loc_27: cmp [ebp+arg_8], 0
 jg short loc_34
 mov [ebp+var_4], 0

loc_34: mov eax, [ebp+arg_4]
 add eax, [ebp+arg_0]
 cmp eax, [ebp+arg_8]
 jg short loc_46
 mov [ebp+var_4], 0

loc_46: mov eax, [ebp+arg_8]
 add eax, [ebp+arg_0]
 cmp eax, [ebp+arg_4]
 jg short loc_58
 mov [ebp+var_4], 0

loc_58: mov eax, [ebp+arg_8]
 add eax, [ebp+arg_4]
 cmp eax, [ebp+arg_0]
 jg short loc_6A
 mov [ebp+var_4], 0

loc_6A: mov eax, [ebp+var_4]
 leave
 retn

__Z13test_triangleiii endp

Next, the FX system is executed from an IDA Pro
plug-in, with a screen shot of the resulting output
depicted below in Figure 2. On the left side of the
screen, the spaghetti-logic of the disassembled C
program has been transformed into structured form.
On the right side, the computed behavior is presented
in terms of the net effect of the program on registers,
flags, and memory.

There are two cases (conditions) in the computed
behavior, each defined as a conditional concurrent
assignment (CCA). The registers section of the first
case shows that the EAX register is set to 0, resulting
in returning 0 to the calling program. Additionally, the
EBP register is used but is finally set back to its
original value, and the ESP register is incremented by
4 (by the RET instruction which pops the return
address off the stack). The memory section shows
the final value of the local variable “answer” in the
original C program, as well as other data that were
saved on the stack. The second case is similar,
except that the EAX register is set to 1, thereby
returning 1 to the calling program. Thus, provided that
the conditions themselves are correct, there is no
need to execute any test cases on this program to
determine its functional behavior.

The condition for the second case is as follows:

 (parm_a <= (signed_32(parm_b +d parm_c) + -1))
 && (parm_b <= (signed_32(parm_a +d parm_c) + -1))
 && (parm_c <= (signed_32(parm_a +d parm_b) + -1))
 && (1 <= parm_a)
 && (1 <= parm_b)
 && (1 <= parm_c)

where

 parm_a :== signed_32(acc_32(M,4 +d ESP))
 parm_b :== signed_32(acc_32(M,8 +d ESP))
 parm_c :== signed_32(acc_32(M,12 +d ESP))

For readability, the output of the FX system has been
manually formatted to use symbolic names for the
function parameters instead of the low-level memory
access expressions shown in the definitions of those
parameters. As the system evolves, this formatting
will be incorporated.

The condition for the program to return 1 is the logical
“and” of six checks, corresponding to the six if-then-
elses in the program. The checks for positive
parameters are easily seen to be correct. However,
an examination of the other checks shows that the
overflow case has not been considered. (Note that
“+d” in the condition represents addition modulo 2^32,
and the “signed_32” operation interprets the result as
a two’s complement signed number.) As a result, the
program gives the wrong answer whenever the
addition of two of the sides causes an arithmetic
overflow. For example, as presently implemented, the
program would incorrectly indicate that 2^30, 2^30,
and 10 do not form the sides of a triangle. Note that
this error would likely not have been found by any of
the common test coverage strategies, including
statement coverage, branch coverage, and path
coverage.

The DATA BASE for Advances in Information Systems 44 Volume 39, Number 2, May 2008The DATA BASE for Advances in Information Systems 44 Volume 39, Number 3, August 2008

Figure 2. Triangle Program in FX System

Figure 3. Triangle Program in FX with Malicious Code Condition

The DATA BASE for Advances in Information Systems 45 Volume 39, Number 2, May 2008The DATA BASE for Advances in Information Systems 45 Volume 39, Number 3, August 2008

Acquired
Components
-Functionality
Checking
supportwith FX

Legacy
Components
-Understand
Legacy with FX
-Unit Test
support with FX

New
Components
-Coding
support with FX
-Unit Test
support with FX

System
Requirements

System
Architecture

Iterative Development of System Increments

Integrate
Components into
System
Increment

- Composition
support
with FX

- Integration
Test support
with FX

Deliver System

-System Test
support with FX

-Acceptance Test
support with FX

-Environmental Test

-System Qualities
Test

System Operations

-Periodic Monitoring: Validate Component Behaviors are Unchanged with FX

-Maintenance: Repair System, Regression Test support with FX

-Evolution: Update System, Change Validation and Regression Test support with FX

Figure 4. Transition of FX Testing into System Development and Operations

Consider next the problem of determining whether
malicious content has been added to this program, in
particular, whether the EAX register is being
maliciously employed under conditions defined by an
intruder.

The FX screenshot in Figure 3 shows computed
behavior for such an instance. A third case of
behavior appears, where the malicious intent is
invoked only for inputs that cause the addition of
sides b and c to overflow. The assignment of a value
of 80 to EAX could cause a buffer overflow or some
other problem in the calling program, which is
expecting a return value of at most 1. This example
illustrates the discovery and exploitation of a program
vulnerability by an intruder. This malicious execution
would be just as difficult to find through testing as the
overflow error in the original program. However, the
FX system immediately computes a third case of
behavior with a return value of 80, revealing the
malicious functionality for all to see.

Software Testing with FX Technology:
A Transition Strategy

Based on our research and development activities
with FX technologies, we have identified a wide range
of FX impacts across many software development

activities (Hevner et al., 2005). For this paper, we
focus on how FX can transform testing practices
during software-intensive system development and
operation. In particular, we address the question of
how to effectively transition FX ideas and tools into
current testing activities. The beneficial impacts of the
new FX technologies are discussed.

Figure 4 shows a typical development process that
builds a software system via an iterative cycle of
incremental development. The opportunities for
application of FX technologies are highlighted
throughout the process. The process begins with
activities of identifying system requirements and
specifying a software architecture for building the
system. Future research directions of FX are aimed at
understanding the behaviors defined by architectural
models and languages. Additional research on the
development of semantically precise representations
of architectures and designs is needed to enable FX
ideas to be effective in these upstream development
activities.

Component Development

Each system increment is built from individual
software components that are integrated into the
architecture for that increment. Components are
provisioned in one of three ways – original

The DATA BASE for Advances in Information Systems 46 Volume 39, Number 2, May 2008The DATA BASE for Advances in Information Systems 46 Volume 39, Number 3, August 2008

development, modified legacy development, or
acquired as pre-developed components. Each of
these approaches provides opportunities for the
introduction of FX technology.

Original Component Development. When a
decision is made to develop a required software
component from scratch, FX automation can play an
important role during the evolving implementation. As
each set of required functions is developed, a
software developer can work interactively with an FX
system to determine if the evolving implementation
indeed provides the set of functions intended. As new
code is introduced into an evolving component, the
FX system can report on the corresponding additional
behaviors, as well as any changes to prior behaviors.
Errors of commission or omission can thus be
identified during the implementation process, and
extraneous behavior isolated and removed.

Significant time and effort are often allocated during
software development to verify the correctness and
quality of software designs and implementations.
Reviews, inspections, and unit testing are resource-
intensive activities used to evaluate components
against their specifications. At its core, FX technology
is closely related to correctness verification.
Programmers can add intended functions (expressed
in a standard language form as comments) to the
control structures of implementations to permit FX
automation to compare the extracted behavior of
each control structure to the corresponding intended
function to determine whether or not it is correct.
Alternately, if programmers do not wish to add
intended functions to their programs, calculated
behavior can be easily inspected to verify that a
program indeed does what is desired, and that no
unforeseen cases of behavior are present.

Reuse of Legacy Components. Significant time and
effort are saved by effective reuse of legacy
components. First, however, it is important to fully
understand the behaviors embodied by a component
to be reused. FX technology provides value by
automatically calculating all behaviors in a legacy
component. Modifying a component for reuse then
consists of removing any undesired behaviors,
improving the existing desired behaviors, and adding
any new behaviors. The verification of a modified
component via inspections and unit testing is also
supported by FX technology as described above.

Component Acquisition. Components and services
that are acquired from external vendors or even from
internal corporate repositories present challenges to
developers who must understand their behaviors. FX
automation can provide a solution. A function

extractor based on the semantics of the component's
programming language can accept an unknown
component and produce a complete behavior
database. The resulting behavior can then be
analyzed and compared to its contractual design
specification. By evaluating several components in
this manner, developers can create a basis for the
best selection to meet acquisition requirements.

As examples of the application of FX technology for
component evaluation and selection, consider the
following situations:

 COTS products - A systems engineer requests a

set of product behaviors from a COTS vendor to
evaluate its planned use in a new system. FX will
validate whether the behaviors are actually
delivered and whether additional undesired
behaviors are also present.

 Service integration - Before signing an agreement
to include an online service in a critical supply
chain application, a systems integrator requires
the service provider to run the service through an
FX system in order to analyze its full set of
service behaviors. Note that the provider need
not expose any proprietary code to the service
user, only the computed behaviors.

Integration Testing

Function extractors are essentially generalized
composition engines and, thus, they can also play a
role in the integration of software components as
determined by a system architecture. Based on the
behavior database of each component, FX
technology, guided by mathematical rules of
component composition, can be adapted to integrate
uses of the components into an assembled
subsystem with a new, composite behavior database.
The architecture specifies intended and allowable
usage patterns (i.e., control flows and data flows)
among the integrated components. The goals of
integration testing can thus be supported by FX
automation.

Systems Testing

With the advent of FX technology, an opportunity
exists for systems testing and customer acceptance
testing to shift from defect detection to certification of
fitness for use. As the technology evolves and more
automation becomes available, subsystems and
entire systems could eventually be processed by FX
automation, and resulting behavior databases
compared with specifications and analyzed by
stakeholders. A reduced set of test scenarios could

The DATA BASE for Advances in Information Systems 47 Volume 39, Number 2, May 2008The DATA BASE for Advances in Information Systems 47 Volume 39, Number 3, August 2008

be developed to demonstrate correct execution,
because only one test per disjoint case of behavior is
sufficient to validate all the behavior defined by that
case.

Of course, the testing of system behaviors is only a
portion of the full range of systems testing goals. The
time and effort saved by use of FX automation can be
devoted to more thorough testing and evaluation of
environmental conditions (e.g., hardware platforms,
external interfaces) and dynamic system qualities. For
example, system testing for the qualities of
performance, security, privacy, reliability, survivability,
and maintainability, to mention a few, can and should
become a greater focus of system testing (Walton et
al., 2006).

Another important consideration is that eventual
industry standards for FX technology could support
outsourcing of system testing to independent groups
that specialize in certifying the correctness and quality
of software systems. As in more mature engineering
fields, independent certification of quality standards
for software systems with an industry-wide stamp of
approval will help provide greater levels of trust in
critical systems.

System Operations

The lower portion of Figure 4 shows the system in
operation. It is generally accepted that a significant
majority of the cost of a software system occurs after
it is deployed, in the form of maintenance and
upgrades to meet evolving customer requirements.
FX technology could eventually support maintenance
and evolution activities while providing opportunities
for cost savings and quality improvements.

The key to system maintenance with FX technology is
keeping behavior databases up to date automatically.
As maintenance is performed on an operational
system (for example, to improve performance or
enhance security), the resulting system must still
produce the same intended behaviors for unaffected
functions as found in the database. As in system
testing, a reduced set of regression test scenarios
can provide a level of confidence that unaffected
behaviors have remained unchanged.

In terms of system evolution, behavior databases
provide a formal baseline against which all changes
could be compared. New or modified behaviors could
be specified and traced through component design
and implementation behavior databases. Thus,
developers could determine where and how to make
required changes in system specifications,
component designs, and code. Once code changes

are made, FX automation could help ensure they
have desired effects, while checking the integrity of
behaviors that must remain unmodified.

Even when an operational system is not subject to
maintenance and evolution activities, it may be wise
to periodically perform function extraction to monitor
and ensure that no malicious or inadvertent
modifications have been introduced. Frequent
application of the FX technology can help provide
users with a level of confidence that no security
compromises have occurred since the previous FX
analysis.

Discussion of FX Impacts
on Software Testing

It is not surprising that the software testing process
can benefit from a thorough analysis of the code
being tested. Test coverage metrics, such as
statement or branch coverage, are one example of
this. There are also situations where examination of
the code and its structure can be used to reduce the
number of test cases needed without the possibility of
missing an error in the program. For example, if both
the code and the specification are linear functions (in
the mathematical sense) of N numeric input values,
then any N+1 linearly independent test cases suffice
to demonstrate correctness. For functions of a single
numeric input value, if the code and the specification
are polynomials of degree M, then any M+1 distinct
test cases suffice.

However, if all that is known about the code and the
specification is that they are total recursive functions,
then every possible input value must be tested.

Observation 1: If nothing is known about the internals
of a sequential program (a black box as far as testing
is concerned), then in order to guarantee correctness,
it is necessary to execute every possible test case
where the program specification makes a non-trivial
requirement about the program output.

The advent of function extraction technology provides
the ability, outside the strict confines of linear or
polynomial functions, to reduce the number of test
cases without the possibility of missing a program
error.

Observation 2: For a sequential program, if the
functional behavior extracted from the program
implementation satisfies the program specification,
then the program is functionally correct, and no
testing for functional behavior is required.

The DATA BASE for Advances in Information Systems 48 Volume 39, Number 2, May 2008The DATA BASE for Advances in Information Systems 48 Volume 39, Number 3, August 2008

In scaling up to computation and comparison of the
behavior of large programs to their specifications, a
divide and conquer strategy forms the basis for a
stepwise process that operates on components of
manageable size. Specifications can be written in a
form amenable to automated comparison, but even if
specifications do not exist, inspection of behavior
databases through human and/or automated means
can validate desired behavior and reveal any
unwanted functionality. The idea is to replace labor-
intensive manual verification with automation
wherever possible, in the knowledge that some level
of human analysis will always be required. In any
event, we believe that routine availability of computed
behavior can have significant impact on the cost and
quality of software system development, by
substituting cheap computing power for resource-
intensive, human-based activities.

These observations identify a potential paradigm shift
supported by FX capabilities for software testing. Test
coverage metrics are no longer the sole basis for
determining whether sufficient testing has been
completed. All behaviors in the program code are
identified and can be inspected and evaluated for
correctness against the program specification,
whether the specification is documented or exists as
a mental model of desired behavior.

Function extraction could also make it easier to
determine if malware or corrupted functionality is
present in operational programs. Behavior databases
can be generated on a periodic basis and compared
with baseline databases to help detect any malicious
content.

As noted, many other testing objectives must be
satisfied, including evaluation of the performance and
interaction of programs in complex computational
environments. Function extraction has the potential to
free testing resources to focus on these objectives
with the knowledge that the functional behavior of
constituent programs is known and validated. This
resource shift can significantly impact the economics
of software engineering, resulting in faster and
cheaper development of higher quality systems
(Collins et al., 2008).

References

Collins, R., Hevner, A., Walton, G., and Linger, R.

(2008). “The Impacts of Function Extraction
Technology on Program Comprehension: A
Controlled Experiment,” Information and Software
Technology, doi: 10.1016/j.infsof.2008.04.001.

Hevner, A., Linger, R., Collins, R., Pleszkoch, M.,
Prowell, S., and Walton, G. (2005). The Impact of
Function Extraction Technology on Next-
Generation Software Engineering, Technical
Report CMU/SEI-2005-TR-015, Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA.

Jorgensen, P. (2002). Software Testing: A
Craftsman’s Approach, 2nd Edition, CRC Press,
Inc., Boca Raton, FL.

Linger, R., Mills, H., and Witt, B. (1979). Structured
Programming: Theory and Practice, Addison-
Wesley, Reading, MA.

Linger, R. and Pleszkoch, M. (2004). “Improving
Network System Security with Function Extraction
Technology for Automated Calculation of Program
Behavior,” Proceedings of the 37th Annual Hawaii
International Conference on System Science
(HICSS35), Hawaii, IEEE Computer Society
Press, Los Alamitos, CA.

Linger, R., Pleszkoch, M., Burns, L., Hevner, A., and
Walton, G. (2007). “Next-Generation Software
Engineering: Function Extraction for Computation
of Software Behavior,” Proceedings of the 40th
Annual Hawaii International Conference on
System Sciences (HICSS40), Hawaii, IEEE
Computer Society Press, Los Alamitos, CA.

Pleszkoch, M., Hausler, P., Hevner, A., and Linger, R.
(1990). “Function-Theoretic Principles of Program
Understanding,” Proceedings of the 23rd Annual
Hawaii International Conference on System
Science (HICSS35), Hawaii, IEEE Computer
Society Press, Los Alamitos, CA.

Poore, J., Mills, H., and Mutchler, D. (1993). “Planning
and Certifying Software System Reliability,” IEEE
Software, Vol. 10, No. 1, pp. 88-99.

Prowell, S., Trammell, C., Linger, R., and Poore, J.
(1999). Cleanroom Software Engineering:
Technology and Practice, Addison Wesley,
Reading, MA.

Sayre, K. and Poore, J. (2007). “Automated Testing of
Generic Computational Science Libraries,”
Proceedings of the 40th Annual Hawaii
International Conference on System Science
(HICSS40), Hawaii, IEEE Computer Society
Press, Los Alamitos, CA.

Walton, G., Longstaff, T, and Linger, R. (2006).
Technology Foundations for Computational
Evaluation of Security Attributes, Technical Report
CMU/SEI-2006-TR-021, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh,
PA.

Whittaker, J. (2000). “What Is Software Testing? And
Why Is It So Hard?” IEEE Software, Vol. 17, No. 1,
pp. 70-79.

The DATA BASE for Advances in Information Systems 49 Volume 39, Number 2, May 2008The DATA BASE for Advances in Information Systems 49 Volume 39, Number 3, August 2008

About the Authors
Mark Pleszkoch, Senior Technical Staff Member at
the Software Engineering Institute (SEI), researches
automated proof checking and its application to
formal verification of programs. Dr. Pleszkoch earned
his Ph.D. in Computer Science from the University of
Maryland, and an MS in mathematics from the
University of Virginia where he was also a Putnam
Fellow of the Mathematics Association of America.

Richard Linger manages the Carnegie Mellon
University Software Engineering Institute’s CERT
STAR*Lab, and the Survivable Systems Engineering
group. Previously at IBM, he co-developed
Cleanroom software engineering specification,
design, verification, and certification technologies for

creating high-reliability software. He has taught
software and security courses at Carnegie Mellon
University, and has published three software
engineering textbooks and a number of book chapters
and technical papers.

Alan Hevner, Eminent Scholar and Professor in the
Information Systems and Decision Sciences
Department at the University of South Florida, also
holds the Citigroup/Hidden River Chair of Distributed
Technology. Dr. Hevner's research includes
information systems development, software
engineering, distributed database systems, health
care information systems and telecommunications.
Dr. Hevner earned his Ph.D. in Computer Science
from Purdue University.

The DATA BASE for Advances in Information Systems 50 Volume 39, Number 2, May 2008The DATA BASE for Advances in Information Systems 50 Volume 39, Number 3, August 2008

