
Managing Software Risks
in

Software Intensive Systems
with

Metrics and Measures

Robert A. Martin

30 January 2003

MITREThe views expressed in this presentation are those of the authors and do not necessarily reflect the policies or position of The MITRE Corporation.
Editorial graphics © 1994-2002 Martin and Morrison, used with permission.

Conference on the Acquisition of Software-Intensive Systems - 2003

2

MITRE

Discussion Outline
0 Introduction

- Managing S/W Quality Issues by Measuring Risks
0 Background

- S/W Quality Risks
- Metrics and Measures

0 Discussion
- Components of a SW Risk Management Framework
- Adapting to Handle OO Specific Risks

0 Summary
- Using SW Risk Assessments to Manage
- Transferring to Industry and Academia

3

MITRE

If, To Manage You Must Measure… How Do You
Measure an Abstract Concept Like Software Risk?

4

MITRE

One Method of Assessing Software Risks

¦
-

+

5

MITRE

Looking Beyond Errors To Judge The Risks
in Software

0 Traditionally, most software organizations have focused on:
- Managing the initial development schedule
- Managing the development costs
- Providing desired initial functionality to users

0 Maintainability issues are frequently deferred until the
product is fielded

0 Why should a look at risks focus on the long-term
perspective?

- Software outlives hardware
- Tightening budgets motivating code re-use efforts
- Decisions made early in development may mean the

difference between updating code and re-engineering it

Historically, eighty cents out of every dollar spent
on software goes toward maintenance.
Historically, eighty cents out of every dollar spent
on software goes toward maintenance.

6

MITRE

Introduction:
MITRE’s Software Risk Assessment Work
0 Wanted a framework for assessing lifecycle quality issues
0 Desired a flexible methodology for assessing risks in s/w

systems
- Apply to any language, any platform, any architecture, …
- To be supported by a set of assessment technologies
- Must be an objective s/w-centric profile of the risks

0 The resultant risk profiles have been used:
- Selecting contractors based on quality of past efforts
- Monitoring software quality during development
- Identifying potential development process changes
- Guiding future migration decisions

0 MITRE’s framework, methods, and tools have been proven
- > 100 Systems, ~ 51 million lines of code, >52 languages from a multitude

of architectures (UNIX varieties, VMS, MVS, Windows, Macintosh)

- Systems range from 4K to 6,254K lines of code -- average of 500K

7

MITRE

Discussion Outline
0 Introduction

- Managing S/W Quality Issues by Measuring Risks
0 Background

- S/W Quality Risks
- Metrics and Measures

0 Discussion
- Components of a SW Risk Management Framework
- Adapting to Handle OO Specific Risks

0 Summary
- Using SW Risk Assessments to Manage
- Transferring to Industry and Academia

8

MITRE

Software Risks Impact on Quality
Are Not Well Defined

0 Most will agree they want their systems to be reliable,
maintainable, evolvable, portable, open, etc.

0 Most people can't agree on what, specifically, reliable,
maintainable, evolvable, portable, open, etc. actually mean or
how to measure such qualities for an arbitrary body of code

0 Commercial software tools and metrics provide insights into
implementations but typically do not provide any sense of
higher context for lifecycle issues

Our definition: A quality system minimizes
the risks to the system

9

MITRE

Developers Can Provide Plenty of Complications
to a System’s Software Risks

NIFTY
HACKS
of the
SUN

GURUSS
ec

re
ts

of

 th
e

fil
e

sy
st

em

PORTABLE??
OF COURSE IT’S
PORTABLE.
THE WHOLE THING
FITS ON ONE TAPE.

M
O
T
I
F

P
O

S
IX

X

ANSI SQL

10

MITRE

Establishing a Framework for Measuring Risks
0 Many areas can help minimize a system’s risks

- Some are well studied and have full fledged disciplines,
technologies, and examination methodologies in place

- Specifically: requirements traceability, functional completeness,
and system testability are well established areas of study

0 The other life-cycle risk areas have received less attention but
have enormous potential for reducing the levels and types of
risk in the systems fielded

0 Much to draw from:
Rome Air Development Center work and others

- McCall et al. in 1977

- Bowen et al. in 1984

- Kitchenham et al.’s ESPRIT REQUEST project, 1987 & 1989…

11

MITRE

There Are Several Frameworks for Evaluating
and Monitoring S/W Quality Risks

RADC-McCall et al

1977

RADC-Bowen et al
1984

ESPRIT REQUEST
Kitchenham et al

1987
ESPRIT REQUEST
Kitchenham et al

1989

Rome Laboratory
Software

Quality Framework

Assessment Technology

Processing Power

Disk Sizes
Memory Sizes

Computer Technology

Dromey
1992-1995-1995

ISO-9126
Software Product Evaluation

Quality Characteristics and Guidelines
1991

AFOTEC
Software Assessment Team

Pamphlets

}

}

Rome Laboratory
-- SQT2 --

Software Quality Technology
Transfer Consortium

QUES

USAF SSG SEP code review

12

MITRE

Discussion Outline
0 Introduction

- Managing S/W Quality Issues by Measuring Risks
0 Background

- S/W Quality Risks
- Metrics and Measures

0 Discussion
- Components of a SW Risk Management Framework
- Adapting to Handle OO Specific Risks

0 Summary
- Using SW Risk Assessments to Manage
- Transferring to Industry and Academia

13

MITRE

Targeted Attributes Of Our S/W Quality Risk
Assessment Methodology

0 The assessment should be:
- repeatable (independent of the assessor(s))
- independent of language, architecture, platform
- “cheap” to perform
- not dependent on presence of “all” code
- provide detailed insight into the software risks
- software centric
- based on artifacts only
- examine all artifacts of the system

=source code (including scripts, data, …)
=supporting documentation (both internal and external

to the code) and standards
- leverage automation where-ever possible

14

MITRE

Guiding Principles:
Breadth, Depth, and Repeatability

0 The evaluation of each quality issue should have a specific
scope and context as well as a defined scoring criteria

0 Define context for ratings (ideal, good, marginal, and fail)
- limiting choices increases repeatability

0 Use a mixture of:
- Hard metrics (cyclomatic complexity, flow complexity, …)
- Objective measures (type of information available, existence
- Subjective measures (use of white space, usefulness

0 The Metrics and Objective Measures attributes can have a
scope of all of the code of the system

0 The Measures which require cognitive reasoning need to be
scoped more narrowly (7/7/7 per language)

0 Provide a software tools framework to guide and assist
evaluators & provide context and control of the process

15

MITRE

Discussion Outline
0 Introduction

- Managing S/W Quality Issues by Measuring Risks
0 Background

- S/W Quality Risks
- Metrics and Measures

0 Discussion
- Components of a SW Risk Management Framework
- Adapting to Handle OO Specific Risks

0 Summary
- Using SW Risk Assessments to Manage
- Transferring to Industry and Academia

16

MITRE

Bridging the Gap between The Measurable
and Unmeasurable

Maintainability

Evolvability

Portability

SQAE
METHODOLOGY

Complexity
Set-Use
SLOC Count
API Utilization
Coding StandardsDescriptiveness

Software Quality
Analysis Frameworks

Quality Concepts Metrics & Measures

17

MITRE

S/W Quality Risk Frameworks: Scope and
Focus Can Differ

device
independence

completeness

accuracy

consistency

accessibility

communicativeness

structuredness

device
efficiency

self-descriptiveness

conciseness

legibility

augmentability

portability

reliability

efficiency

human
engineering

testability

understandability

modifiability

Measurable
Property

Perceived Aspect
of Quality

Boehm et. al. RADC
Original Quality Factors 1977

correctness

reliability

efficiency

integrity

usability

maintainability

testability

flexibility

portability

re-usability

interoperability

consistency

accuracy

error tolerance

access control

access audit

operability

training

communicativeness

simplicity

conciseness

completeness

traceability

storage efficiency

execution efficiency

instrumentation

self-descriptiveness

expandability

generality

modularity

software system
independence

machine independence

communications
commonality

McCall et. al. RADC
Modified Quality Model

Measurable
Property

Perceived Aspect
of Quality

1984

consistency

documentation

anomaly control

design
simplicity

self-descriptiveness

portability

maintainability

evolvability

descriptiveness

Measurable
Property

Perceived Aspect
of Quality

MITRE SQAE ™
Quality Factors

modularity

independence

1992
2003

discriptiveness

traceability

organization

simplicity

consistency

testability

expandability

modularity

convention

maintainability

Measurable
Property

Perceived Aspect
of Quality

AFOTEC Supportability
Assessment Factors

1991
1996

accessibility

human
engineering

correctness

integrity

usability

access control

access audit

operability

training

completeness

traceability

traceability

- requirements issues

accuracy

device
efficiency

reliability

efficiency

testability

reliability

efficiency

testability

accuracy

storage efficiency

execution efficiency

instrumentation

testability

- testing issues

18

MITRE

S/W Quality Risk Frameworks: Scope and
Focus Can Differ

device
independence

completeness

accuracy

consistency

accessibility

communicativeness

structuredness

device
efficiency

self-descriptiveness

conciseness

legibility

augmentability

portability

reliability

efficiency

human
engineering

testability

understandability

modifiability

Measurable
Property

Perceived Aspect
of Quality

Boehm et. al. RADC
Original Quality Factors 1977

correctness

reliability

efficiency

integrity

usability

maintainability

testability

flexibility

portability

re-usability

interoperability

consistency

accuracy

error tolerance

access control

access audit

operability

training

communicativeness

simplicity

conciseness

completeness

traceability

storage efficiency

execution efficiency

instrumentation

self-descriptiveness

expandability

generality

modularity

software system
independence

machine independence

communications
commonality

McCall et. al. RADC
Modified Quality Model

Measurable
Property

Perceived Aspect
of Quality

1984

consistency

documentation

anomaly control

design
simplicity

self-descriptiveness

portability

maintainability

evolvability

descriptiveness

Measurable
Property

Perceived Aspect
of Quality

MITRE SQAE ™
Quality Factors

modularity

independence

1992
2003

discriptiveness

traceability

organization

simplicity

consistency

testability

expandability

modularity

convention

maintainability

Measurable
Property

Perceived Aspect
of Quality

AFOTEC Supportability
Assessment Factors

1991
1996

- software attributes
- requirements issues
- testing issues

- software attributes

Test & Requirements Issues are Addressed -
So We Focused on S/W Attribute Issues

consistency

documentation

anomaly control

design simplicity

self-descriptiveness

portability

maintainability

evolvability

descriptiveness

Measurable
Property

Perceived Aspect
of Quality

MITRE SQAE™
Quality Factors

modularity

independence

1992
2003

19

MITRE

Tools

Methodology and Process: The Software
Quality Assessment Exercise (SQAE™)

Portability

Evolvability

 Maintainability

Descriptiveness

Consistency

Independence

ModularityDocumentation

Anomaly Control

Design Simplicity Self-Descriptiveness

Components of the Software Quality Areas

Specific
Questions
about the
Code and

Documentation

Approach: Assess the level of
risk in the Quality Areas by
examining the underlying
attributes of the code and
documentation.

Source Code
and Listings

SDP A-SPEC

Detailed
Design

Coding
 Standards

Coding Standards, Software
Development Plan, Design
Documents, etc.

Software Quality Risk Profiles

Quality Risk Profile: Risk Mitigators

Quality Risk Profile: Risk Drivers

20

MITRE

Putting the Pieces Together

Modularity

Design

Simplicity

Self-Descriptiveness

Consistency

Documentation

Anomaly Control

Maintainability

Modularity

Design

Simplicity

Self-Descript-

iveness

Docu-
ment-
ation

Anomaly
Control

Evolvability

M o d u l a r i t y

D
oc

um
en

ta
ti

on

Independence

Portability

Self-Descriptiveness

“Documentation”

Self-Descriptiveness

Documentation

“Modularity”

Modularity

21

MITRE

Details: SQAE™ Areas and Factors

0 Assess software against a defined set of
quality areas:

- Portability
- Evolvability
- Maintainability
- Descriptiveness

0 Quality areas are based on a set of seven
components:

- Consistency (15 attributes)
- Independence (8 attributes)
- Modularity (10 attributes)
- Documentation (16 attributes)
- Self Descriptiveness (11 attributes)
- Anomaly Control (5 attributes)
- Design Simplicity (11 attributes)

Maintainability

Modularity

Design
Simplicity

Self-Descriptiveness Consistency

Documentation

Anomaly Control

20%

20% 15% 15%
15%

15%

Self-Descriptiveness

Verifiability

Modularity

Design

Simplicity

Evolvability

20%

Anomaly

Control

10%25%

25%

Documentation

20%

Self-Descriptiveness

Verifiability

Modularity

Portability

Independence
20%

25%40%

Documentation

15%

Self-Descriptiveness

VerifiabilityDescriptiveness

50%

Documentation

50%

22

MITRE

Details of the SQAE™

Quality Component Assessment Questions
Independence Independence comprises two broad groups; software system independence and machine independence.
Here the issue is to not tie the system to any specific host environment which would make it difficult or impossible to
migrate, evolve, or enhance the system.

Proportion of
Factor Value

Software System Independence
2.1 - Does the software avoid all usage of specific pathnames/filenames? (100)
2.2 - Is the software free of machine, OS and vendor specific extensions? (200)
2.3 - Are system dependent functions, etc., in stand-alone modules (not embedded in the code)? (200)
2.4 - Are the languages and interface libraries selected standardized and portable? (i.e., ANSI…) (200)
2.5 - Does the software avoid the need for any unique compilation in order to run (e.g., a custom post processor to “tweak”
 the code to run on machine X)? (100)
2.6 - Is the generated code (i.e., GUI Builders) able to run without a specific support runtime component? (100)

Machine Independence
2.7 - Is the data representation machine independent? (200)
2.8 - Are the commercial software components available on other platforms in the same level of functionality? (200)

Modularity Modularity consists of several facets which each support the concepts of organized separation of functions
and minimizes un-noticed couplings between portions of the system.

Proportion of
Factor Value

3.1 - Is the structure of the design hierarchical in a top-down design within tasking threads? (200)
3.2 - Do the functional groupings of units avoid calling units outside their functional area? (150)
3.3 - Are machine dependent and I/O functions isolated and encapsulated? (150)
3.4 - Are interpreted code bodies (shell scripts and 4GL scripts) protected from accidental or deliberate modification? (150)
3.5 - Do all functional procedures represent one function (one-to-one function mapping)? (150)
3.6 - Are all commercial software interfaces & APIs, other than GUI Builders, isolated and encapsulated? (200)
3.7 - Have symbolic constants been used in place of explicit ones? (150)
3.8 - Are symbolic constants defined in an isolated and centralized area? (100)
3.9 - Are all variables used exclusively for their declared purposes? (150)
3.10 - Has the code been structured to minimize coupling to global variables? (100)

23

MITRE

Examples of Tools Used in Assessing
Software Quality Risks

… many tools do not adequately address the use of commercial
packages, or easily deal with multi-language applications, or help you
correctly interpret their metrics.

24

MITRE

Mapping
Quality Component Questions to Exercises

Consistency
Consistency is a factor that impacts nearly all quality issues and is a direct reflection of the policies and
procedures for all aspects of the development process. Consistent software is built when there is
a standards document and development is carried out in conformance with this document throughout.
Any potential issues on documentation, I/O protocols, data definition and nomenclature, etc., are
represented here.
1.1 - Is there a representation of the design in the paper documentation?
1.2 - Is the software implemented in accordance with the representation in 1.1?
1.3 - Are there consistent global, unit, and data type definitions?
1.4 - Is there a definition of standard I/O handling in the paper documentation?
1.5 - Is there a consistent implementation of external I/O protocol and format for all units?
1.6 - Are data naming standards specified in the paper documentation?
1.7 - Are naming standards consistent across languages (i.e., SQL, GUI, Ada, C, FORTRAN)?
1.8 - Are naming standards consistent across IPC calls?
1.9 - Is there a standard for function naming in the paper documentation?
1.10 - Are the naming conventions consistent for functional groupings?
1.11 - Are the naming conventions consistent for usage (e.g., I/O)?
1.12 - Are the naming conventions consistent for data type (e.g., constant boolean), etc.?
1.13 - Does the paper documentation establish accuracy requirements for all operations?
1.14 - Are there quantitative accuracy requirements stated in the paper documentation for all I.O?
1.15 - Are there quantitative accuracy requirements stated in the paper documentation for all constants?

Independence
Independence comprises two broad groups; software system independence and machine
independence. Here the issue is to not tie the system to any specific host environment which would make it difficult
or impossible to migrate, evolve, or enhance the system.
Software System Independence
2.1 - Does the software avoid all usage of specific pathnames/filenames?
2.2 - Is the software free of machine, OS and vendor specific extensions?
2.3 - Are system dependent functions, etc., in stand-alone modules (not embedded in the code)?
2.4 - Are the languages and interface libraries selected standardized and portable? (i.e., ANSI…)
2.5 - Does the software avoid the need for any unique compilation in order to run (e.g., a custom post processor to “tweak”
 the code to run on machine X)?
2.6 - Is the generated code (i.e., GUI Builders) able to run without a specific support runtime component?
Machine Independence
2.7 - Is the data representation machine independent?
2.8 - Are the commercial software components available on other platforms in the same level of functionality?

Modularity
Modularity consists of several facets which each support the concepts of organized separation of functions and
minimizes un-noticed couplings between portions of the system.
3.1 - Is the structure of the design hierarchical in a top-down design within tasking threads?
3.2 - Do the functional groupings of units avoid calling units outside their functional area?
3.3 - Are machine dependent and I/O functions segregated so they are not in a single unit?
3.4 - Are interpreted code bodies (shell scripts and 4GL scripts) protected from accidental or deliberate modification?
3.5 - Do all functional procedures represent one function (one-to-one function mapping)?
3.6 - Are all commercial software interfaces & APIs, other than GUI Builders, isolated and encapsulated?
3.7 - Have symbolic constants been used in place of explicit ones?
3.8 - Are symbolic constants defined in an isolated and centralized area?

Documentation
Documentation refers to the external printed material about the system. The concern is that the
documentation be adequate to support the maintenance, porting, and enhancement activities which will
occur throughout the systems life.
4.1 - Is the documentation structured per the development plan?
4.2 - Does the design documentation depict control flow to the CSU/CSC level?
4.3 - Does the design documentation depict data flow?
4.4 - Do the design documents depict the task and system initialization hierarchy/relationships?
4.5 - Is the documentation adequately indexed (functionality can be easily located in the code)?
4.6 - Are all inputs, process and outputs adequately defined in the documentation?
4.7 - Does the documentation contain comprehensive descriptions of all system/software
 functions including, functional processing, algorithms, commercial components, system
 software functions, interprocess communications, and interfaces?
4.8 - Does the paper documentation establish a requirement for commenting global data within
 a software unit to show where the data is derived, the data composition and how the data is used?
4.9 - Are all environmental variables and the default values clearly defined?

Self-Descriptiveness
Modules should have standard formatted prologue sections. These sections should contain module name, version number,
 author, date, purpose, inputs, outputs, function, assumptions, limitations and restrictions, accuracy requirements, error
 recovery procedures, commercial software dependencies, references, and side effects.
5.1 - Does the documentation specify a standard prologue?
5.2 - Is a standard prologue consistently implemented?
5.3 - Is a standard format for organizations of modules implemented consistently?
5.4 - Are comments set off from code and of consistent style throughout?
5.5 - Are comments accurate and describe the “whats and whys?”
5.6 - Do code generation tools (screen builders, DB query tools, etc.) produce
 reusable “source code” that is documented?

Anomaly Control

Design Simplicity

Exercise F
The first exercise area concentrates on those activities that can be accomplished by examining the mission planner
scheduling portion of the code and one other functional area of the code. The activities in this exercise are listed below.

1.10 Are the naming conventions Examine the scheduling modules and one other
 consistent for functional groupings? large functional grouping and cross reference

between them.

Rating will be between 1 and 0, where 1 is the
higher rating. If at least one of the programmers
is either consistent or uses distinguishable naming
conventions (.3), if he/she uses both (.6),if all
programmers do both (1.0).

2.2 Is the software free of machine, Examine the areas used in 1.10 and cross reference
 OS and vendor specific extensions? between them and system libraries and known
 vendor extensions.

Rating will be between 1 and 0, where 1 is the
higher rating. 1-(0.02*number of ties)

Exercise C
The third exercise area concentrates on those activities that can be accomplished by examining the largest module in each
main execution thread. The activities in this exercise are listed below.

1.11 Are the naming conventions consistent Examine the largest module in each main thread
 for usage (e.g., I/O)? that has I/O and cross reference between them
 against the system services they call.

Rating will be between 1 and 0, where 1 is the
higher rating. 1 for a match, 0.6 if consistent
but no standard defined, 0.0 if neither.

4.6 Are all inputs, process and outputs adequately Read paper documentation and verify the
 defined in the documentation? presence of the information for the
 modules used in 1.11.

Rating will be between 1 and 0, where 1 is
the higher rating. 1 for good detail, .6
for high level.

Exercise G
The first exercise area concentrates on those activities that can be accomplished by examining the mission planner
scheduling portion of the code and one other functional area of the code. The activities in this exercise are listed below.

1.10 Are the naming conventions Examine the scheduling modules and one other
 consistent for functional groupings? large functional grouping and cross reference

between them.

Rating will be between 1 and 0, where 1 is the
higher rating. If at least one of the programmers
is either consistent or uses distinguishable naming
conventions (.3), if he/she uses both (.6),if all
programmers do both (1.0).

2.2 Is the software free of machine, Examine the areas used in 1.10 and cross reference
 OS and vendor specific extensions? between them and system libraries and known
 vendor extensions.

Rating will be between 1 and 0, where 1 is the
higher rating. 1-(0.02*number of ties)

Exercise D
The first exercise area concentrates on those activities that can be accomplished by examining the mission planner
scheduling portion of the code and one other functional area of the code. The activities in this exercise are listed below.

1.10 Are the naming conventions Examine the scheduling modules and one other
 consistent for functional groupings? large functional grouping and cross reference

between them.

Rating will be between 1 and 0, where 1 is the
higher rating. If at least one of the programmers
is either consistent or uses distinguishable naming
conventions (.3), if he/she uses both (.6),if all
programmers do both (1.0).

2.2 Is the software free of machine, Examine the areas used in 1.10 and cross reference
 OS and vendor specific extensions? between them and system libraries and known
 vendor extensions.

Rating will be between 1 and 0, where 1 is the
higher rating. 1-(0.02*number of ties)

Exercise A
The first exercise area concentrates on those activities that can be accomplished by examining the mission scheduler
portion of the code and one other functional area of the code. The activities in this exercise are listed below.

1.10 Are the naming conventions Examine the scheduling modules and one other
 consistent for functional groupings? large functional grouping and cross reference

between them.

Rating will be between 1 and 0, where 1 is the
higher rating. If at least one of the programmers
is either consistent or uses distinguishable naming
conventions (.3), if he/she uses both (.6),if all
programmers do both (1.0).

2.2 Is the software free of machine, Examine the areas used in 1.10 and cross reference
 OS and vendor specific extensions? between them and system libraries and known
 vendor extensions.

Rating will be between 1 and 0, where 1 is the
higher rating. 1-(0.02*number of ties)

Exercise H
The first exercise area concentrates on those activities that can be accomplished by examining the mission planner
scheduling portion of the code and one other functional area of the code. The activities in this exercise are listed below.

1.10 Are the naming conventions Examine the scheduling modules and one other
 consistent for functional groupings? large functional grouping and cross reference

between them.

Rating will be between 1 and 0, where 1 is the
higher rating. If at least one of the programmers
is either consistent or uses distinguishable naming
conventions (.3), if he/she uses both (.6),if all
programmers do both (1.0).

2.2 Is the software free of machine, Examine the areas used in 1.10 and cross reference
 OS and vendor specific extensions? between them and system libraries and known
 vendor extensions.

Rating will be between 1 and 0, where 1 is the
higher rating. 1-(0.02*number of ties)

Exercise E
The first exercise area concentrates on those activities that can be accomplished by examining the mission planner
scheduling portion of the code and one other functional area of the code. The activities in this exercise are listed below.

1.10 Are the naming conventions Examine the scheduling modules and one other
 consistent for functional groupings? large functional grouping and cross reference

between them.

Rating will be between 1 and 0, where 1 is the
higher rating. If at least one of the programmers
is either consistent or uses distinguishable naming
conventions (.3), if he/she uses both (.6),if all
programmers do both (1.0).

2.2 Is the software free of machine, Examine the areas used in 1.10 and cross reference
 OS and vendor specific extensions? between them and system libraries and known
 vendor extensions.

Rating will be between 1 and 0, where 1 is the
higher rating. 1-(0.02*number of ties)

Exercise B
The second exercise area concentrates on those activities that can be accomplished by examining the documentation
on the system. The activities in this exercise are as listed below.

1.1 Is there a representation of the Read paper documentation and verify
 design in the paper documentation? the presence of the information.

Rating will be between 1 and 0, where 1
is the higher rating. 1 for good detail, .6
for high level.

1.4 Is there a definition of standard I/O Read paper documentation and verify
 handling in the paper documentation? the presence of the information.

Rating will be either 1 or 0, where 1
is the higher rating.

25

MITRE

Details of the
SQAE™ Framework

Exercise A The first exercise area concentrates on those activities that can be accomplished by examining the two largest
functional areas of the code. The activities in this exercise are listed below.

1.10 Are the naming conventions
consistent for functional
groupings?

Examine the scheduling modules and one other large functional grouping and cross
reference between them.

Rating will be either Ideal, Good, Marginal, or Failing. If at least one of the
programmers is either consistent or uses distinguishable naming conventions
(marginal), if he/she uses both (good), if all programmers do both (ideal).

2.2 Is the software free of machine,
OS and vendor specific
extensions?

Examine two large functional groupings of code and cross reference between them
and system libraries and known vendor extensions.

Rating will be either Ideal, Good, Marginal, or Failing. Score ideal if no instances
occur, good if such assumptions affect less than 10% of the packages, marginal for
less than 50%, else failing.

2.3 Are system dependent functions,
etc., in stand-alone modules (not
embedded in the code)?

Examine all known instantiations OS and vendor specific dependencies for
encapsulation/isolation.

Rating will be between 1 and 0, where 1 is the higher rating. 1 - (number of
embedded dependencies/total number of dependencies)

•• ••• ••• •

26

MITRE

The Core of the Software Quality
Assessment Methodology

Step 1: Identify risks to be evaluated.

Step 2: Determine what is needed to
evaluate the risk.

Step 3: Determine whether the needed
items are available; if items are
not obtainable then discard
that risk from the scope of the
assessment.

Step 4: Determine how the items will
be examined to determine the
risk information.

Step 5: Determine how the risk
information can be used to
definitively identify risky
versus mitigant items in the
artifacts.

Id potential risk items

Id needed artifactsrisk

riskrisk
risk

risk
risk
risk

SDP A-SPEC

Detailed
Design

Coding
 Standards

Keep
if artifacts available

????
?

?
? Count, find,

search, match?

Definitive:
Risk Driver vs. Risk Mitigant

riskrisk riskriskriskrisk
risk
risk
risk

risk
riskriskriskrisk

risk
risk risk

risk risk
risk

Id potential risk items

Id needed artifacts

Keep
if artifacts available

Count, find,
search, match?

Definitive:
Risk Driver vs. Risk Mitigant

27

MITRE

Discussion Outline
0 Introduction

- Managing S/W Quality Issues by Measuring Risks
0 Background

- S/W Quality Risks
- Metrics and Measures

0 Discussion
- Components of a SW Risk Management Framework
- Adapting to Handle OO Specific Risks

0 Summary
- Using SW Risk Assessments to Manage
- Transferring to Industry and Academia

28

MITRE

Modifications to the SQAE™ to Deal with Object
Oriented Design and Development (1 of 2)

Exercise A - The first exercise area concentrates on those activities that can be
accomplished by examining two large functional areas of the code. The activities in this
exercise are listed below.

3.1 Is the structure of the design
hierarchical in a top down design
within tasking threads?

Using the two large functional areas of the code
from 1.10, run McCabe BattleMap, Refine, or
another tool to produce structure chart. Examine.

Rating will be between 1 and 0, where 1 is the
higher rating. 1 for crisp hierarchy, .6 for
discernible hierarchy, 0 if neither.

3.2 Do the functional groupings of
units avoid calling units outside
their functional area?

Ignoring utility and encapsulated service calls,
examine the structure chart from 3.1.

Rating will be between 1 and 0, where 1 is the
higher rating. 1 for strong isolation, .6 for
generally isolated, 0 if neither.

3.10 Has code been structured to
minimize coupling to global
variables?

Examine the modules from 1.10, using a variable
utilization map (such as a Set-Use diagram) and
calculate the ratio of global variables used versus
the total number of variables used for each
procedure.

Rating will be between 1 and 0, where 1 is the
higher rating. 1- 20 * the average ratio of global
variables to total variables.

For non-OO design/implementations For OO design/implementations

Using the two large functional areas from 1.10, examine
the classes and count the number of method pairs whose
similarity is 0 and those that are not 0.

Rating will be between 1 and 0, where 1 is the higher
rating. 1 - 20 * the average ratio of for each class of the
similar method pairs with 0 similarity minus those whose
similarity is not 0.

Has the code been structured
into cohesive classes?

Examine the modules from 1.10, and count the number of
classes to which the different classes are coupled to other
classes through methods and/or instance variables.

Rating will be between 1 and 0, where 1 is the higher rating.
1 - 20 * the average ratio of the classes in these modules
coupled to other classes to total classes in the system.

Has code been structured into
classes to avoid excessive
coupling between classes?

Examine the classes from the modules from 1.10,
and count the number of methods that could be
executed in response to a message received by an
object of each class.

Rating will be between 1 and 0, where 1 is the
higher rating. 1 - 20 * the average ratio of the
methods in a class invoked by a message to the
class to the total number of methods in the class.

Have classes been structured
into methods to avoid having a
large number of methods being
invoked for each input message
to a class object?

LOCM
Lack of Cohesion in Methods

CBO
Coupling Between Objects

RFC
Response For a Class

29

MITRE

Modifications to the SQAE™ to Deal with Object
Oriented Design and Development (2 of 2)

Exercise F - The sixth exercise area activities look over all of the code loaded for a
variety of tasks. The activities in this exercise are listed below.

7.2 Is the source code of low
complexity (e.g., McCabe
Cyclomatic…)?

Using the available source code, ca lculate the
Cyclomatic complexity.

Rating will be between 1 and 0, where 1 is the
higher rating. Calculate the average Cyclomatic
complexities and standard deviation for all
functions and procedures. Score will be
1 - [(average + s.d. - 15) x 0.02.]

7.7 Is the code segmented into
procedure bodies that can be
understood easily?

Using the available source code, exa mine the
code.

Rating will be between 1 and 0, where 1 is the
higher rating. 1 for all procedure bodies are less
than two pages @ 50 lines per page, .8 for 80%
are less than two pages, .5 for 50% are less than
two pages, and 0 otherwise.

7.9 Have all procedures been
structured to avoid excessive
nesting?

Using the available source code, ca lculate the
average and standard deviation of the nesting
levels.

Rating will be between 1 and 0, where 1 is the
higher rating. Score will be the ratio of 13 /
(average squared + one sigma squared) with a
maximum score of 1

For non-OO design/implementations For OO design/implementations

Using the available code, examine the methods of each class
and calculate the sum of the Cyclomatic complexities for
each method in a class. Calculate the average and standard
deviation of the class complexities.

Rating will be between 1 and 0, where 1 is the higher rating.
Score will be 1 -[(average + s.d. - 15) x 0.02.]

Are the classes of low
complexity?

Using the available code, count the number of direct sub-
classes for each class.

Rating will be between 1 and 0, where 1 is the higher rating.
1 - 20 * the average ratio of classes to the direct sub-classes.

Has code been organized
into classes and sub-classes
that can be understood
easily?

Using the available code, calculate the length of
the longest path of inheritance to each module.
Calculate the average and standard deviation of the
inheritance lengths.

Rating will be between 1 and 0, where 1 is the
higher rating. Score will be 1 -[(average + s.d. -
15) x 0.02.]

Have classes been structured to
avoid large levels of
inheritance?

WMC
Weighted Methods Per Class

NOC
Number of Children

DIT
Depth of Inheritance Tree of a Class

30

MITRE

Discussion Outline
0 Introduction

- Managing S/W Quality Issues by Measuring Risks
0 Background

- S/W Quality Risks
- Metrics and Measures

0 Discussion
- Components of a SW Risk Management Framework
- Adapting to Handle OO Specific Risks

0 Summary
- Using SW Risk Assessments to Manage
- Transferring to Industry and Academia

31

MITRE

Having An Understanding Software Quality
Risks Can Be Used In…

 Software Quality

 Assessment Exercise
 Findings for the TUBULAR

 Acquisition Decision

The Selection of Contractors

Selection of Migration Systems

Reviews of S/W Releases for a Project Office

32

MITRE

Software Quality Assessment Uses
0 Understanding the Software’s quality can:

- Allow for evaluation of a contractor based on quality of past
products

- Allow for in-progress corrections to a development effort
- Guide future migration decisions
- Provide for the rapid identification of the sources of risk

= in understandable & actionable terms for mgmt
= in fine detail for the technologists

- Provide a broad review of the software lifecycle risks
associated with multi-component systems

- Allow risk comparisons for systems independent of
language, platform, architecture, …

- Guide the build, buy, or re-use decisions

33

MITRE

Reporting the Results of a Software Quality
Risk Assessment Exercise

 Both a Software Quality Risk Assessment Report
and (if desired) a Briefing version are available

34

MITRE

SQAE™ Foundation

COTS
Manuals

&
Articles

Source Code

Reference Material

Written Material

Project A

 112,000 LOC

Ada, C, Shell,
TAE+, SQL, X,
MOTIF, Stored
Procedures

C, Shell, X, MOTIF Ada, C, ELF,
ezX, SQL, X,
MOTIF

Product Literature

Reference Manual

Users Manual

Top Level Design Doc
SDD

 558,000 LOC

Design and Code Stnds

SDD
SDP

 58,000 LOC

Product Literature

Reference Manual

Users Manual

Design and Code Stnds

Top Level Design Doc
SPS
SDD
SDP

 51,173,315 LOC

Product Literature

Reference Manual

Users Manual

Design and Code Stnds

Top Level Design Doc
SPS
SDD
SDP
Case Tools
Repositories

Project B Project CZ Total of
Projects

Ada, C, FORTRAN,
COBOL, shell, TAE+,
SQL, X, MOTIF, UIL,
Stored Procedures,
GEL, ELF, ezX, …

•••

•••

•••

•••

•••

This Chart Contains Representative Assessment Results

35

MITREThis Chart Contains Representative Assessment Results

Risk Mitigators
0 Naming conventions used for modules and variables helps understand

the code’s functionality.

0 Good use of white space and indention.

0 Modules are easily viewed at once (< 100 LOC)

0 Good functional documentation with high-level design.

0 Good design documentation, showing data and control flows.

0 Good developer documentation for supported APIs.

0 Good top-down hierarchical structure to code.

0 Modules use straightforward algorithms in a linear fashion.

0 System dependencies are to readily available COTS software.

0 Code is of low complexity.

0 Logic flow through individual procedures is easy to follow.

0 Disciplined coding standards followed by the programmers.

0 Considerable effort made to use POSIX calls throughout.

0 System dependencies platform or COTS are encapsulated.

SQAE™ Finding Examples:
Mitigators, Drivers, & Other Observations

Risk Drivers
0 Level of isolation and encapsulation of dependencies on platform and COTS packages

varies between programmers

0 Use of environmental variables is undocumented and inconsistently done

0 Lack of written standards for naming conventions, error handling, data definitions, etc

0 Lack of standards for naming conventions, error handling data definitions, I/O, etc

0 Design documentation is poorly organized, incomplete, and at a very high level

0 No low-level design information or functional allocation of software in documentation

0 Machine generated code documentation is inconsistent with the developed code
documentation

0 Machine generated code is undocumented

0 Procedure and file names depend on path for uniqueness

0 Hard coded absolute filenames/paths used

0 UNIX commands hardcoded in the code

0 Hard coded variables used when symbolic constants should have been used

0 There are some machine dependent data representations

0 Code is not ANSI standard

0 Variables used for other than their declared purpose

0 No low-level control and task flows in documentation

0 No prologs for the majority of the modules

0 Inadequate indexing of documentation

0 Excessive use of global variables

0 Input error checking is not consistently applied

0 System dependent on a proprietary language for some functions related to integration
with COTS

0 Lack of consistency in the code between programmers

0 No isolation or encapsulation of dependencies on platform or COTS

0 System tied to a proprietary language for procedural processing and data access

0 System is dependent on a proprietary run-time environment

0 Fourteen violations of one of the few company coding standards

0 Two percent of the code modules are overly large, more than 100 LOC

Other Observations
0 No documented method for other languages to call services

0 “Man pages” are out of date for some APIs

0 Number of modules may be excessive

0 COTS screen description files use standard X-Windows
resource file formats

0 Proprietary language does not support data typing

0 In the vendor’s proprietary language, variables are never
explicitly declared (A typo will create a variable)

0 SQL is only used for ~10% of the code that accesses the
database

- The rest uses the proprietary DBMS calls

0 Complete source code for gnu Perl was included as part of
deliverable subsystem source code

36

MITRE

Examples of Feedback
Application’s Primary Strengths:
Integrator Perspective

0 Isolation of dependencies

- Effort has been made to segregate code so that actual
processing algorithms are buffered from platform and COTS
dependencies.

- This buffering lowers the system’s sensitivity to changes in its
operating environment.

- Should the platform change significantly (New OS, new COTS
Database, etc) code rewrites and unit tests should be restricted
to distinct areas rather than rippling throughout the system.

MITRE

0 Descriptiveness

- The provided documentation addresses aspects of the system only
at the highest level and does not detail essential low level
information:

= System dependencies

= Knowledge domains required for maintenance

= Input data tolerance and valid range of value definitions

= Specific data flow descriptions

= Policies for error handling

- The code itself is poorly documented internally and makes
frequent use of programming constructs which hinder readability
and traceability

MITRE

Application’s Primary Weaknesses:
Integrator Perspective

This Chart Contains Representative Assessment Results

37

MITRE
Data Series 1 = Reference
Data Series 2 = Prj 1 Vndr A
Data Series 3 = Prj 2 Vndr A

Key
Data Series 4 = Prj 1 Vndr B
Data Series 5 = Prj 2 Vndr B
Data Series 6 = Prj 1 Vndr C

Data Series 7 = Prj 2 Vndr C
Data Series 8 = Mean & Range
 of 40 Systems

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7

Maintainability Evolvability Portability Descriptiveness

Quality Area
Risk Profiles

Software Quality
Factor Risk Profiles

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7
0

10
20
30
40
50
60
70
80
90

100

1 3 5 7
0

10
20
30
40
50
60
70
80
90

100

1 3 5 7

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7
0

10
20
30
40
50
60
70
80
90

100

1 3 5 7
0

10
20
30
40
50
60
70
80
90

100

1 3 5 7

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7

Consistency Independence Modularity

Documentation Self-Descriptiveness Anomaly Control Design Simplicity

Sample Assessment Results for
Multiple Developers

38

MITREThis Chart Contains Representative Assessment Results

Examples of Software Quality
Risk Profiles (3D)

39

MITRE

Summary:
The Value of the SQAE™

0 Easy to learn and apply for experienced developers
0 Can provide an independent, objective assessment with

community norms of key metrics for comparison of a project
with the practices of its peers.

0 Follows a repeatable process
0 Provides specific detail findings
0 Minimal effort to accomplish (5 - 6 staff weeks per system)

- How large the application is, the number of different languages used,
and the type of assessment desired

- A small level of additional effort is needed when we run into a language
we have not previously encountered

0 Framework for comparing and contrasting systems
0 Provides mechanism for obtaining a “past performance”

measure of contractors
0 Brings out lifecycle concerns and issues
0 Proven ability to adapt to technology changes and the changes

in software development methodologies

40

MITRE

Summary:
The Value of a SQAE™ (Concluded)

0 Can be used as a pro-active framework for stating quality reqt’s
- Many quality measures are easily restated as req'ts for coding & design stds
- Can use as part of an award fee determination
- SOW words to ensure Government has access to code and doc’s

0 A variety of Government customers have been interested in the
continued application of our work

- Augmentation of the SEI SCE to look at product as well as process
- Supports Air Force “supportability assessment” task
- Helping compare and contrast legacy systems

0 Assessments have been consistent with “other” opinions including
the developer’s

0 Can track assessed contractors through project milestones
- Comparing risk drivers and risk mitigators experienced vs. Software Quality

Assessment risk profile

41

MITRE

Discussion Outline
0 Introduction

- Managing S/W Quality Issues by Measuring Risks
0 Background

- S/W Quality Risks
- Metrics and Measures

0 Discussion
- Components of a SW Risk Management Framework
- Adapting to Handle OO Specific Risks

0 Summary
- Using SW Risk Assessments to Manage
- Transferring to Industry and Academia

42

MITRE

Organizations Who’s
SW was Assessed

Direct and Indirect Technology Transfers of
SQAE™ Methods and Tools

1993 1994 1995 1996 1997 2000 2001 2002 2003
 1998/1999

SQAE™ Licensees: 1996 1997 1998 2001
- Mitretek - Lockheed - General - Ecole de

 Martin Dynamics Info. technologie
- Grumman Systems superieure
 Data - TRW Systems
 Systems & Info. Tech.

 Group

IEEE CSIEEE CS
May 1994May 1994

INCOSEINCOSE
July 1996July 1996

SEISEI
SEPGSEPG

May 1996May 1996
STSCSTSC

April 1998April 1998

 4th Int’l 4th Int’l
SW QualitySW Quality
Conf. Conf.

July 1994 July 1994

STSCSTSC
April 1995April 1995

SQAE ™

Presentations

STSCSTSC
May 2002May 2002

--> ISO 9126-1

43

MITRE

Languages from Product Assessments By
Percentage of Assessed LOC

100 Systems with approximately 51 Million Lines of Code Assessed

44

MITRE

SQAE™ Experience-Base

USTRANSCOM

FAA

DISA

MISSION
PLANNING

ACC

H
U M

A N SY ST E
MS CE NTE R

HSC

ESC

CHEYENN
E
MOUNTAI
N

AWS

DIA
AMC

JLSC

AFMC

CECO
M

 IRS

45

MITRE

?’S

CONTACT INFO:

Robert A. Martin

781-271-3001

ramartin@mitre.org

47

MITRE

Why Are We Interested In S/W Risk Anyway?

WISE

Alliance
Processors

.

1

27

LOCALTALK NETWORKS

Wang
VS

7110

Wang
VS
300

WANG INFORMATION SYSTEM EXCHANGE

Alliance

Alliance

Alliance

Twisted Pair

Remote
Cluster
Switch

coax

coax

fiber

PC
XT

PC
AT

PS/2

PC
AT

STANDALONE/NETWORKED PCS

Building 213

Mac Mac Mac Mac Mac

MINX VIDEO TELECONFERENCING

Remote
Cluster
Switch

fiber

coax

BIU

BIU
Ethernet

D/C
Host

DCP

BIU

C/I
Host

DCP

BIU BIU

Modem

Master
NCC

Modem

Backup
NCC

Bridge
Half

Bridge
Half

KG

KG

BIU

AIDS
CLUSTER

AIDS
CLUSTER

Cable 1
Cable 2

Ethernet

cluster
server

cluster
server

cluster
server

Remote
Site

Remote
Site

Remote
Site

Remote
SiteRemote

Site

NDS BROADBAND LAN

Constrained Resources
New Technology

Changing
Operational
Environment

New Requirements
and Needs

C I Systems3

changechange
 Software Quality Teams must do more than remove errors! Software Quality Teams must do more than remove errors!

48

MITRE

So, the SQAE is Only One Example of the Risk
Assessments that use Metrics and Measures

RADC-McCall et al

1977

RADC-Bowen et al
1984

ESPRIT REQUEST
Kitchenham et al

1987
ESPRIT REQUEST
Kitchenham et al

1989

Rome Laboratory
Software

Quality Framework

Assessment Technology

Processing Power

Disk Sizes
Memory Sizes

Computer Technology

Dromey
1992-1995-1995

ISO-9126
Software Product Evaluation

Quality Characteristics and Guidelines
1991

AFOTEC
Software Assessment Team

Pamphlets

}

}

Rome Laboratory
-- SQT2 --

Software Quality Technology
Transfer Consortium

QUES

USAF SSG SEP code review

Data Handling
 •
 •
 •
 •
 •

Infrastructure
Architecture

Augmented SCE

49

MITRE

Metadata and Data Handling
Quality Factors

Quality of
Metadata and
Data Handling

Maintainability
Evolvability
Portability

Descriptiveness

Schema
Customizations
Data Model
Exclusive Naming
Performance Mgmt

Data Integrity
Transaction Control
Consistent Error Hndlg
Concurrency Mgmt
Recovery

Design Simplicity

Anomaly Control

Independence

LDM-PDM Congruence
Standardized Data Access
Standardized Data Transfer

Standards Use
OS/Machine Dependencies
Platform Availability
Run-time Issues
3rd Party Tools

GUI Code
Encapsulation
GUI Code Isolation

Data Dictionary
4GL Use
Design
I/O Handling
Data Flow

4 GL Design Tools
DBMS Design Tools

Modularity

Documentation

Self-Descriptiveness

Consistency

50

MITRE

SQAE Quality Factors

A “Design Review-time” View of the SQAE

Independence
Design Simplicity
Modularity
Consistency
Anomaly Control
Documentation
Self Descriptiveness

•
•
•
•
•
•
•

A-SPEC

Detailed
Design

Coding
 Standards

Coding Standards, Software
Development Plan, Design
Documents, etc.

SDP

51

MITRE

Augmented SCE:
Implementation Schedule/Activities

Key: - Initial Planning

- Detailed Preparation Work

- IFPP Material Development

- Product Assessment

- General Information Feed

 T - Process Assessment Visit

- Proposal Material Review

- Visit Preparation/Tailoring

- Visit Findings Capture

- Develop Report

- Products to Customer

- Review Submittals/Plan Sch.

RFP
Release

Proposal
Receipt

IFPP
Input

Report
and

Briefing

T

Product Assessment Activities

Process Assessment Activities

• • •

• • •

• • •

Summary
Intial Planning, Detailed Preparation Work, IFPP Material Development: • 4 staff weeks
Assessment Activities per contractor (Process team visits cover 3 projects, Product team evaluates 2 of those 3 projects): • 7 staff weeks per contractor
Report Generation and Briefing Creation/Delivery • 10 staff weeks

T

	Managing Software Risks in Software Intensive Systems with Metrics and Measures
	Outline - Managing SW Quality Issues by Measuring Risks
	To Manage You Must Measure
	One Method of Assessing Software Risks
	Looking Beyond Errors To Judge The Risks in Software
	Introduction: MITRE ’s Software Risk Assessment Work

	 S/ W Quality Risks
	Software Risks Impact on Quality Are Not Well Defined
	Developers Can Provide Plenty of Complications to a System ’s Software Risks
	Establishing a Framework for Measuring Risks
	There Are Several Frameworks for Evaluating and Monitoring SW Quality Risks
	Metrics and Measures
	Targeted Attributes Of Our S/ W Quality Risk Assessment Methodology
	Guiding Principles: Breadth, Depth, and Repeatability

	Components of a SW Risk Manageme t Framework
	Bridging the Gap between The Measurable and Unmeasurable
	S/ W Quality Risk Frameworks: Scope and Focus Can Differ
	S/ W Quality Risk Frameworks: Scope and Focus Can Differ Test & Requirements Issues are Addressed - So We Focused on S/ W Attribute Issues
	Methodology and Process: The Software Quality Assessment Exercise (SQAE ™)
	Putting the Pieces Together
	Details: SQAE ™Areas and Factors
	Details of the SQAE ™ Quality Component Assessment Questions
	Examples of Tools Used in Assessing Software Quality Risks
	Mapping Quality Component Questions to Exercises
	Details of the SQAE ™Framework
	The Core of the Software Quality Assessment Methodology

	Adapting to Handle OO Specific Risks
	Modifications to the SQAE ™to Deal with Object Oriented Design and Development (1 of 2)
	Modifications to the SQAE ™to Deal with Object Oriented Design and Development (2 of 2)

	Using SW Risk Assessme ts to Manage
	Having An Understanding Software Quality Risks Can Be Used In …
	Software Quality Assessment Uses
	 Reporting the Results of a Software Quality Risk Assessment Exercise
	SQAE ™Foundation
	SQAE ™Finding Examples: Mitigators, Drivers, & Other Observations
	Examples of Feedback
	Sample Assessment Results for Multiple Developers
	38 Examples of Software Quality Risk Profiles (3D)
	39 Summary: The Value of the SQAE ™
	Summary: The Value of a SQAE ™(Concluded)

	Transferring to Industry and Academia
	Direct and Indirect Technology Transfers of SQAE ™Methods and Tools
	Languages from Product Assessments By Percentage of Assessed LOC
	SQAE ™Experience- Base
	Contact Information
	Why Are We Interested In S/ W Risk Anyway?
	So, the SQAE is Only One Example of the Risk Assessments that use Metrics and Measures
	Metadata and Data Handling Quality Factors
	A “Design Review- time ” View of the SQAE
	Augmented SCE: Implementation Schedule/ Activities

