Conference on the Acquisition of Software-Intensive Systems - 2003

> il A=
Carnegie Mellon : - =4
Software Engineering Institute -3 .

Managing Software Risks
IN

Software Intensive Systems
with
Metrics and Measures

Robert A. Martin

The views expressed in this presentation are those of the authors and do not necessarily reflect the policies or position of The MITRE Corporation. M I I | { E
Editorial graphics © 1994-2002 Martin and Morrison, used with permission.

Discussion Outline

0 Introduction
- Managing S/W Quality Issues by Measuring Risks
0 Background
- S/W Quality Risks
- Metrics and Measures
0 Discussion
- Components of a SW Risk Management Framework
- Adapting to Handle OO Specific Risks
0 Summary
- Using SW Risk Assessments to Manage
- Transferring to Industry and Academia

MITRE

If, To Manage You Must Measure... How Do You
Measure an Abstract Concept Like Software Risk?

\\\\I/////

e

o
o

\l////
\

e

MITRE

One Method of Assessing Software Risks

MITRE

Looking Beyond Errors To Judge The Risks
in Software

0 Traditionally, most software organizations have focused on:
- Managing the initial development schedule
- Managing the development costs
- Providing desired initial functionality to users
0 Maintainability issues are frequently deferred until the
product is fielded
0 Why should a look at risks focus on the long-term
perspective?
- Software outlives hardware
- Tightening budgets motivating code re-use efforts
- Decisions made early in development may mean the
difference between updating code and re-engineering it

Hlstorlcall , eighty cents out of every dollar spent
on softw are goes toward maintenance.

MITRE

Introduction:
MITRE’s Software Risk Assessment Work

0 Wanted a framework for assessing lifecycle quality issues
0 Desired a flexible methodology for assessing risks in s/w
systems
- Apply to any language, any platform, any architecture, ...
- To be supported by a set of assessment technologies
- Must be an objective s/w-centric profile of the risks
0 The resultant risk profiles have been used:
- Selecting contractors based on quality of past efforts
- Monitoring software quality during development
- ldentifying potential development process changes
- Guiding future migration decisions

0 MITRE’s framework, methods, and tools have been proven

- > 100 Systems, ~ 51 million lines of code, >52 languages from a multitude
of architectures (UNIX varieties, VMS, MVS, Windows, Macintosh)

T—Systems range from 4K to 6,254K Tines of code - average of 500K
MITRE

Discussion Outline

0 Introduction
- Managing S/W Quality Issues by Measuring Risks
0 Background
- S/W Quality Risks
- Metrics and Measures
0 Discussion
- Components of a SW Risk Management Framework
- Adapting to Handle OO Specific Risks
0 Summary
- Using SW Risk Assessments to Manage
- Transferring to Industry and Academia

MITRE

Software Risks Impact on Quality
Are Not Well Defined

0 Most will agree they want their systems to be reliable,
maintainable, evolvable, portable, open, etc.

0 Most people can't agree on what, specifically, reliable,
maintainable, evolvable, portable, open, etc. actually mean or
how to measure such qualities for an arbitrary body of code

0 Commercial software tools and metrics provide insights into
implementations but typically do not provide any sense of
higher context for lifecycle issues

Our definition: A quality system minimizes
the risks to the system

MITRE

Developers Can Provide Plenty of Complications
to a System’s Software Risks

PORTABLE??

OF COURSE IT’S
PORTABLE.

THE WHOLE THING
FITS ON ONE TAPE.

MITRE

Establishing a Framework for Measuring Risks

0 Many areas can help minimize a system’s risks

- Some are well studied and have full fledged disciplines,
technologies, and examination methodologies in place

- Specifically: requirements traceability, functional completeness,
and system testability are well established areas of study
0 The other life-cycle risk areas have received less attention but
have enormous potential for reducing the levels and types of
risk in the systems fielded
0 Much to draw from:
Rome Air Development Center work and others
- McCall et al. in 1977
- Bowen et al. in 1984
- Kitchenham et al.’s ESPRIT REQUEST project, 1987 & 1989...

MITRE

There Are Several Frameworks for Evaluating
and Monitoring S/W Quality Risks

romey
1992-1995-1995

1S0-9126
Software Product Evaluation
Quality Characteristics and Guidelines

1991
— Rome Laboratory
— |
RADC-McCall et al [owen et a = Software o o
Lol = y——] uali ramework e Labora
1977 <
Software Quality Technology
Transfer Consortium
(d

ESPRIT REQUEST
Kitchenham et 2

AFOTEC
Software Assessment Team
Pamphlets

MITRE

1"

Discussion Outline

0 Introduction
- Managing S/W Quality Issues by Measuring Risks

0 Background

- S/W Quality Risks

- Metrics and Measures

0 Discussion
- Components of a SW Risk Management Framework
- Adapting to Handle OO Specific Risks

0 Summary

- Using SW Risk Assessments to Manage

- Transferring to Industry and Academia

MITRE

Targeted Attributes Of Our S/W Quality Risk
Assessment Methodology

0 The assessment should be:
- repeatable (independent of the assessor(s))
- independent of language, architecture, platform
- “cheap” to perform
- not dependent on presence of “all” code
- provide detailed insight into the software risks
- software centric
- based on artifacts only

- examine all artifacts of the system
=source code (including scripts, data, ...)

=supporting documentation (both internal and external
to the code) and standards

- leverage automation where-ever possible

MITRE

Guiding Principles:
Breadth, Depth, and Repeatability

0 The evaluation of each quality issue should have a specific
scope and context as well as a defined scoring criteria

0 Define context for ratings (ideal, good, marginal, and fail)
- limiting choices increases repeatability
0 Use a mixture of:
- Hard metrics (cyclomatic complexity, flow complexity, ...)
- Objective measures (type of information available, existence
- Subjective measures (use of white space, usefulness

0 The Metrics and Objective Measures attributes can have a
scope of all of the code of the system

0 The Measures which require cognitive reasoning need to be
scoped more narrowly (7/7/7 per language)

0 Provide a software tools framework to guide and assist
evaluators & provide context and control of the process

MITRE

Discussion Outline

0 Introduction
- Managing S/W Quality Issues by Measuring Risks
0 Background
- S/W Quality Risks
- Metrics and Measures
0 Discussion
- Components of a SW Risk Management Framework
- Adapting to Handle OO Specific Risks
0 Summary
- Using SW Risk Assessments to Manage
- Transferring to Industry and Academia

MITRE

Bridging the Gap between The Measurable
and Unmeasurable

Quality Concepts Metrics & Measures

S/W Quality Risk Frameworks: Scope and
Focus Can Differ

Measurable Perceived Aspect Measurable Perceived Aspect Measurable Perceived Aspect
Property of Quality Property of Quality Property of Quality

device ili
portability e T
independence / /O traceability — A correctness
4 completeness —/ -
complétensss reliability 2 / >
accuracy +— consistency 4 —1-= reliability
/ A design
n - simplicity
consistency J accuracy .

device p error tolerance A ’A@ documentation Z7//
efficiency human
engineering execution efficiency -1 modularity y

-
accessibili e /
= storage efficiency A I anomaly control |
testability

> portability
access control -1 self-descriptiveness

access audit “ 2
operaity] - MITRE SQAE ™ 1992

modifiability e y ;A Quality Factors 2003

structuredness

A\

VA

self-descriptiveness

conciseness -

egibility =

I

augmentability e communicativeness 1
— Measurable Perceived Aspect
simplicity 4 Property of Quality
Boehm et. al. RADC 1 977 conciseness Vi

Original Quality Factors

discriptiveness

instrumentation

W

traceability

portability

I

~

- /]
self-descriptiveness g
J

~

expandability organization N

= §
=

AN

generality

< re-usability
- interoperability

modularity

WL LR

maintainability

I

are system

independence consistency

testability =

machine independence

‘communications
commonali

expandability
[comvenion

McCall et. al. RADC - 1991
et : AFOTEC Supportability
Modified Quallty Model 1 984 Assessment Factors 1 996

| | - requirements issues MITRE
I | - testing issues

Test & Requirements Issues are Addressed -
So We Focused on S/W Attribute Issues

Measurable Perceived Aspect
Property of Quality

—

- —

/‘V

NN AN N \ /
\\\

MITRE SQAE™

Quality Factors Nooz

- software attributes MITRE

Methodology and Process: The Software
Quality Assessment Exercise (SQAE"™)

Approach: Assess the level of
risk in the Quality Areas by

Coding Standards, Software exa{nining the underlying
Development Plan, Design attributes of the code and
Documents, etc. documentation.
i,
Coding Detailed __7-. Quality Risk Profile: Risk Mitigators
Standards Design Portability

Evolvability

coTsare

Maintainability

Descriptiveness

Quality Risk Profile: Risk Drivers

Source Code
and Listings

Components of the Software Quality Areas

Specific
Questions
about the
Code and
Documentation

Putting the Pieces Together

Maintainability

Evolvability

“Documentation” Portability “Modularity”
M ularit
Documentation
E
C S Modularity
Self-Descriptiveness]
S escriptiveness

MITRE

Details: SQAE" Areas and Factors

0 Assess software against a defined set of
quality areas:

Portability Moty [

20%
EVOIVabi I ity Self-Descriptiveness
Maintainability
Descriptiveness

Modularity

Maintainability

15% /

\15%

Design
Simplicity

Consistency

25%

Evolvability

20% /

15%

15%

Documentation

Anomaly Control

10%

Design
Simplicity

Anomaly
Control

Self-Descriptiveness

Documentation

0 Quality areas are based on a set of seven
components:

Consistency (15 attributes)
Independence (8 attributes)
Modularity (10 attributes)
Documentation (16 attributes)
Self Descriptiveness (11 attributes)
Anomaly Control (5 attributes)
Design Simplicity (11 attributes)

Independence

Modularity

°
S

Portability

Documentation

50% 50%

Self-Descriptiveness

Self-Descriptiveness

Documentation

MITRE

21

Details of the SQAE"
Quality Component Assessment Questions

3.1
32
33
34
3.5
3.6
3.7
3.8
3.9
3.10

Modularity

Independence Independence comprises two broad groups; software system independence and machine independence.
Here the issue is to not tie the system to any specific host environment which would make it difficult or impossible to

migrate, evolve, or enhance the system.

Software System Independence

2.1 - Does the software avoid all usage of specific pathnames/filenames?

2.2 - Is the software free of machine, OS and vendor specific extensions?

2.3 - Are system dependent functions, etc., in stand-alone modules (not embedded in the code)?

2.4 - Are the languages and interface libraries selected standardized and portable? (i.e., ANSI...)

2.5 - Does the software avoid the need for any unique compilation in order to run (e.g., a custom post processor to “tweak”
the code to run on machine X)?

2.6 - Is the generated code (i.e., GUI Builders) able to run without a specific support runtime component?

Machine Independence
2.7 -Is the data representation machine independent?
2.8 - Are the commercial software components available on other platforms in the same level of functionality?

- Is the structure of the design hierarchical in a top-down design within tasking threads?

- Do the functional groupings of units avoid calling units outside their functional area?

- Are machine dependent and I/O functions isolated and encapsulated?

- Are interpreted code bodies (shell scripts and 4GL scripts) protected from accidental or deliberate modification?
- Do all functional procedures represent one function (one-to-one function mapping)?

- Are all commercial software interfaces & APIs, other than GUI Builders, isolated and encapsulated?

- Have symbolic constants been used in place of explicit ones?

- Are symbolic constants defined in an isolated and centralized area?

- Are all variables used exclusively for their declared purposes?

- Has the code been structured to minimize coupling to global variables?

Modularity consists of several facets which each support the concepts of organized separation of functions
and minimizes un-noticed couplings between portions of the system.

Proportion of
Factor Value

(100)
(200)
(200)
(200)

(100)
(100)

(200)
(200)

Proportion of
Factor Value

(200)
(150)
(150)
(150)
(150)
(200)
(150)
(100)
(150)
(100)

MITRE

22

Examples of Tools Used in Assessing

Software Quality Risks

: Code Quality Assessment Tools

Beela |
avaiar i A
'
______ D41

TATALE_ — FILEE_
Birary Filez a
Tewt_Flhes fal
= 1034
Ra_Smecs L
LT E 1
ﬁ:r‘ln‘tl 1
_Files -]
Ee+ _Rmiiie :l
G++_Headers s
C_Eadiog am
1 - ~ N terrp "".'lll-? rl':"u' Ri= L_Baadars ' -]
ress - s [=ms] [. o mll = e =] WY B N bebass_led_Daln E
— DL _Fi | ex i L
- rorssl nods mﬁ: [I-!-FEE 5 JFi b =
- i % Fasfirn files 15
e =y =20 T PO I lor i 481 |
Z """'-'-"._‘".:" L"‘ 48 Intormix OC_Coue i
B n, (e P R i
B e EoTH | ' Hake i e)
g T May=d §pme_Duwrs mr
r bR F ;hr'll.rr.lll | P01 | gl Pascad Sodbes L)l

1]

= ;_I'Eﬁl" § " mlTl:!:ﬁuu "-]l
. - Bi tmnpez =
S F LRy g emans 2

mén, T ooaf r ookl e
s wart © cvak e

wu TETE = i TN = jees
----------------- LPsbar rool D . e == wohe, “hmber of
L] y R

41..?.

Pross troband fe centinm,

rolrom s windew will dizappese)

ke ol

I = “mg =1 pmbsiom olb. el | ok 0 eeipn BL
MDA

il Wbt of VINRE d0 b gl Ppiled =
i Nmher orf DEDQE 4 lek pefecied @ il

ot irae i oyt D e T il | 0 1|-u."||“|-:|

... many tools do not adequately address the use of commercial
packages, or easily deal with multi-language applications, or help you
correctly interpret their metrics.

23

Mapping
Quality Component Questions to Exercises

Consistency .
Consistency is a factor that impacts nearly all quality issues and is a direct reflection of the policies and Exercise G
procedures for all aspects of the development process. Consistent software is built when there is .
a standards document and development is carried out in conformance with this document throughout. I Exercise D
Any potential issues on documentation, 1/O protocols, data definition and nomenclature, etc., are —
represented here. N
“ls there a represemanon of me design in the paper documentation? Exercise
-Is the softwar in 1.7 The first exercise area concentrates on those activities that can be accomplished by examining the mission scheduler —
13- Are there consistont global, unit, and data 1ype defnlt\ons’? portion of the code and one other functional area of the code. The activities in this exercise are listed below.
-1Is there a definition of standard 1/O handiing in the paper documentation?
s there a consistent implementation of external l/O protocol and format for all | 10] Are the naming conventons Examine the scheduling modules and one other
1.6 - Are data naming standards specified in the paper documentation? consistent for functional groupings? large functional grouping and cross reference
1.7 - Are naming standards consistent across languages (i.e., SQL, GUI, Ada, C, FORT! between them.
1.8 - Are naming standards consistent across IPC calls? et
- Is there a standard for function naming in the paper documentation? Rating will be between 1 and 0, where 1 is the
1.10 - Are the naming conventions consistent for functional groupings? higher rating. If at least one of the programmers
1.11 - Are the naming conventions consistent for usage (€.g., 1/0)? is either consistent or uses distinguishable naming —l
1.12 - Are the naming conventions consistent for data type (€.g., consta boolean), etc.? conventions (.3), if he/she uses both (.6),if all
1.13 - Does the paper documentation establish accuracy requirements foryl operations? rogrammers do both (1.0
1.14 - Are there quantitative accuracy requirements stated in the paper doci\entation for all 1.0? 1)
1.15 - Are there quantitative accuracy requirements stated in the paper documMgtation for all constants? 22] Is the sotware free af machine, Examine the areas Lsed in 1.10 and Gross refarance.
0S and vendor specific extensions? between them and system libraries and known
Independence vendor extensions. ||
Independence comprises two broad groups; software system independence and mad\ne Rating will be between 1 and 0, where 1 is the
independence. Here the issue s to not tie the system to any specific host environmentWhich would ma Tutt highes rating. 1-(0.02+number of ties)
or impossible to migrate, evolve, or enhance the system. —
Software System Independence
2.1 - Does the software avoid all usage of specific pathnames/filenames?
-Is the software free of machine, OS and vendor specific extensions?

2.3 - Are system dependent functions, etc., in stand-alone modules (not embedded in the code)?

2.4 - Are the languages and interface libraries selected standardized and portable? (i.e., ANSI...)

2.5 - Does the software avoid the need for any unique compilation in order to run (e.g., a custom post cessor to “tweak”
the code to run on machine X)?

.6 - Is the generated code (i.e., GUI Builders) able to run without a specific support runtime component?

Machine Independence
- Is the data representation machine independent?

2.8 - Are the commercial software components available on other platforms in the same level of functionality?

I Exercise H

| Exercise E

Exercise B |
The second exercise area concentrates on those activities that can be i by the
on the system. The activities in this exercise are as listed below.

Modularity

Modularity consists of several facets which each support the concepts of organized separation of functions and
minimizes un-noticed couplings between portions of the system.

3.1 - Is the structure of the design hierarchical in a top-down design within tasking threads?

3.2 - Do the functional groupings of units avoid calling units outside their functional area?

3.3 - Are machine dependent and I/O functions segregated so they are not in a single unit?

1.1 Is there a representation of the Read paper documentation and verify
design in the paper documentation? the presence of the information.

Rating will be between 1 and 0, where 1
is the higher rating. 1 for good detail, .6

3.4 - Are interpreted code bodies (shell scripts and 4GL scripts) protected from accidental or deliberate modification? for high level.
3.5 - Do all functional procedures represent one function (one-to-one function mapping)? N — -
36 - Are all commercial software interfaces & APs, other than GUI Builders, isolated and encapsulated? 14| s there a definition of standard 10 w2 Read paper documentation and verity
3.7 - Have symbolic constants been used in place of explicit ones? 9 pap: ! P -
3.8 - Are symbolic constants defined in an isolated and area? Rating will be sither 1 or 0, where 1
. is the higher rating.
Documentation —

Documentation refers to the exteral printed material about the system. The concern is that the
documentation be adequate to support the maintenance, porting, and enhancement activities which will
occur throughout the systems life.

- Is the documentation structured per the development plan?
4.2 - Does the design documentation depict control flow to the CSU/CSC level?
4.3 - Does the design documentation depict data flow?
4.4 - Do the design documents depict the task and system initialization hierarchy/relationships?

| I I I higher rating. 1-(0.02*number of ties)

| Exercise F

-Is the indexed can be easily located in the code)?
4.6- Are allinputs, process and outputs defined in the 3
4.7 - Does the contain i of all Exercise C |
functions including, functional system The third exercise area concentrates on those activities that can be accomplished by examining the largest module in each
software functions, and main execution thread. The activities in this exercise are listed below.
4.8 - Does the paper ion establish a for global data within
a software Unit to show where the data s derived, the data composition and how the data is used? 141 | Are the naming conventions consistent Examine the largest module in each main thread
49 Areall asiables and the default values clearly defined? for usage (e.g.. I10)? that has /0 and cross reference between them

against the system services they call.

Self-Descriptiveness

Modules should have standard formatted prologue sections. These sections should contain module name, version number, Rating will be between 1 and 0, where 1 is the

higher rating. 1 for a match, 0.6 if consistent

/ //

author, date, purpose, inputs, outputs, function, limitations and accuracy req , error but o standard defined. 0.0 if neither. i
recovery software . and side effects. e :
5.1 - Does the documentation specify a standard prologue?
- Is a standard prologue consistently implemented?
- Is a standard format for of modules ? 4.6 Are all inputs, process and outputs adequately Read paper documentation and verify the
5.4~ Are comments set off from code and of consistent style mroughcuW defined in the documentation? presence of the information for the
5.5 - Are comments accurate and describe the “whats and whys? modules used in 1.11.

5.6 - Do code generation tools (screen builders, DB query tools, etc.) produce

Rating will be between 1 and 0, where 1 is
the higher rating. 1 for good detail, .6 —

| Anomaly Cantrol for high level.

Design Simplicity

MITRE

Details of the
SQAE" Framework

Exercise A The first exercise area concentrates on those activities that can be accomplished by examining the two largest
functional areas of the code. The activities in this exercise are listed below.

1.10 Are the naming conventions
consistent for functional
groupings?

2.2 Is the software free of machine,
OS and vendor specific
extensions?

2.3 Are system dependent functions,
etc., in stand-alone modules (not
embedded in the code)?

Examine the scheduling modules and one other large functional grouping and cross
reference between them.

Rating will be either Ideal, Good, Marginal, or Failing. If at least one of the
programmers is either consistent or uses distinguishable naming conventions
(marginal), if he/she uses both (good), if all programmers do both (ideal).

Examine two large functional groupings of code and cross reference between them
and system libraries and known vendor extensions.

Rating will be either Ideal, Good, Marginal, or Failing. Score ideal if no instances
occur, good if such assumptions affect less than 10% of the packages, marginal for
less than 50%, else failing.

Examine all known instantiations OS and vendor specific dependencies for
encapsulation/isolation.

Rating will be between 1 and 0, where 1 is the higher rating. 1 - (number of
embedded dependencies/total number of dependencies)

MITRE

25

The Core of the Software Quality
Assessment Methodology

26

(Id potential risk items)

vV
(_ Id needed artifacts)
v

Keep
if artifacts available

search, match?
V

\/
Count, find,)

Definitive:

Step 1:

Step 2:

Step 3:

Step 4:

(Risk Driver vs. Risk Mitigana Step 5:

Identify risks to be evaluated.

Determine what is needed to
evaluate the risk.

Determine whether the needed
items are available; if items are
not obtainable then discard
that risk from the scope of the
assessment.

Determine how the items will
be examined to determine the
risk information.

Determine how the risk
information can be used to
definitively identify risky
versus mitigant items in the
artifacts.

MITRE

Discussion Outline

0 Introduction
- Managing S/W Quality Issues by Measuring Risks
0 Background
- S/W Quality Risks
- Metrics and Measures
0 Discussion
- Components of a SW Risk Management Framework
- Adapting to Handle OO Specific Risks
0 Summary
- Using SW Risk Assessments to Manage
- Transferring to Industry and Academia

MITRE

Modifications to the SQAE™ to Deal with Object
Oriented Design and Development (10or2)

Exercise A - The first exercise area concentrates on those activities that can be
accomplished by examining two large functional areas of the code. The activities in this

exercise are listed below.

3.1 e structure of the

p down design

Has the code been structured
into cohesive classes?

LOCM

Lack of Cohesion in Methods

3.2 unctional gs of
units a nits outside
r functional area?

Has code been structured into
classes to avoid excessive
coupling between classes?

CBO

oupling Between Object:

Have classes been structured
into methods to avoid having a
large number of methods being
invoked for each input message
to a class object?

RFC

Response For a Class

For non-0O0 design/implementations

For OO design/implementations

Using the two large functional areas from 1.10, examine
the classes and count the number of method pairs whose
similarity is 0 and those that are not 0.

Rating will be between 1 and 0, where 1 is the higher
rating. 1-20 * the average ratio of for each class of the
similar method pairs with 0 similarity minus those whose
similarity is not 0.

Examine the modules from 1.10, and count the number of
classes to which the different classes are coupled to other
classes through methods and/or instance variables.

Rating will be between 1 and 0, where 1 is the higher rating.
1-20 * the average ratio of the classes in these modules
coupled to other classes to total classes in the system.

ine the modules from 1.10, using a
utilizaf? ap (suchasa Set-Use dj
calculate the T™{Q of global v
the total number o i
procedure.

riables to total variables.

Examine the classes from the modules from 1.10,
and count the number of methods that could be
executed in response to a message received by an
object of each class.

Rating will be between 1 and 0, where 1 is the
higher rating. 1-20 * the average ratio of the
methods in a class invoked by a message to the
class to the total number of methods in the class.

MITRE

28

Modifications to the SQAE™ to Deal with Object
Oriented Design and Development (20r2)

Exercise F - The sixth exercise area activities look over all of the code loaded for a
variety of tasks. The activities in this exercise are listed below.

Are the classes of low
complexity?

WMC

Tstood easily?

Has code been organized
into classes and sub-classes
that can be understood
easily?

NOC

Number of Children

7.9
1d excessive

Have classes been structured to
avoid large levels of
inheritance?

DIT

Depth of Inheritance Tree of a Class

For non-0O0 design/implementations

For OO design/implementations

Rating will be betw 0, where 1 is the
higher rating. Cal erage Cyclomatic
iti standard deviathegfor all

average + s.d. - 15) x 0.02.]

Using the available code, examine the methods of each class
and calculate the sum of the Cyclomatic complexities for
each method in a class. Calculate the average and standard
deviation of the class complexities.

Rating will be between 1 and 0, where 1 is the higher rating.
Score will be 1 -[(average + s.d. - 15) x 0.02.]

the available source code, examine

code.

Rating will be betwee 0, where 1 is the

Using the available code, count the number of direct sub-
classes for each class.

Rating will be between 1 and 0, where 1 is the higher rating.
1 -20 * the average ratio of classes to the direct sub-classes.

average
levels.

mum score of 1

Using the available code, calculate the length of
the longest path of inheritance to each module.
Calculate the average and standard deviation of the
inheritance lengths.

Rating will be between 1 and 0, where 1 is the
higher rating. Score will be 1 -[(average + s.d. -
15) x 0.02.]

MITRE

29

Discussion Outline

0 Introduction
- Managing S/W Quality Issues by Measuring Risks
0 Background
- S/W Quality Risks
- Metrics and Measures
0 Discussion
- Components of a SW Risk Management Framework
- Adapting to Handle OO Specific Risks
0 Summa

SW Risk Assessments to Manage
- Transferring to Industry and Academia

MITRE

Having An Understanding Software Quality
Risks Can Be Used In...

The Selection of Contractors Reviews of SIW Releases for a Project Office

QLR ASSESSMENT OF YOLUR
SOFTWARE CAME UP 'WITH SEVERAL
SUGGESTIONS ON RISk AREAS 0L
CAM ADDRESS. THESE SHOULD MAKE
THE SYSTEM CHEAPER TO MAINMT AIN.

™~

Selection of Migration Systems

MATT Unified Build
MCIAIS CTAPS-APS
CMTK sTACCS ogg UCCS

DAWS Awis
JMAPS

MITRE

31

Software Quality Assessment Uses

0 Understanding the Software’s quality can:

- Allow for evaluation of a contractor based on quality of past
products

- Allow for in-progress corrections to a development effort
- Guide future migration decisions
- Provide for the rapid identification of the sources of risk

=in understandable & actionable terms for mgmt
=in fine detail for the technologists

- Provide a broad review of the software lifecycle risks
associated with multi-component systems

- Allow risk comparisons for systems independent of
language, platform, architecture, ...

- Guide the build, buy, or re-use decisions

MITRE

Reporting the Results of a Software Quality
iIsk Assessment Exercise

Both a Software Quality Risk Assessment Report
and (if desired) a Briefing version are available

4 Complaty Seayie Temite

201 coae Mer e

TR

Program Risk Profiles =

1 renieg Sytom_ 4| 5
Assessment Foundation

ACwE TRAD.
BANG SYSTEM

Examples of the
Quality Component Assessment ('

’ o ¥
et L
T
S
Semmre Quuiy Tarer Bk elm]
o] B | am ‘ hm H
i
#
i
e B S Ry
£ A R
& % e S
e il R R R
iz i
el e
i 3 fhel 14 ENZE1 OFThe EATE O T t
R

TR

Tt e

i e S Loty e e

Softwrare Quality Assessment Arg™ -

Fortsiy =
~ Descrpiencas

An Overviey

Evaluation I d Methodol]

@ Defin a set of Softuare Quallly Areas
- Described in IFPP materil

@ Define the Quality Areasin torms of meas{
- Develop evaluation exercises 1o asses
- Defineideal, good, marginal, and unad

scorings for each atiibute exerciss.

@ Run the exercises.

- Examine the documentation and the s

spprama oo
RIS S —
opperss Bk
agpertnn s and

i

Software Quality Assessment
Exercise Report

Ballst U amcsem Tasking ana TrANIng EN e cAn e BUTTE)

®(e e

29 February 1995

MTRE

~ Do Sty 1 truses L

- Compare documentation with actual

= Provide nsita nta isk drivers and r

Project X

A Software Quality
Assessment Exercise in
Support of an Augmented SCE
Debrief

20 February 1995

MITRE

33

SQAE" Foundation

Source Code

Written Material

Reference Material

COTS
Manuals
&
Articles

This Chart Contains Representative Assessment Results

Project B

Project CZ

Total of

Project A oo :
Projects
112,000 LOC 558,000 LOC eee 000 LOC 51,173,315 LOC
Ada, C, Shell, C, Shell, X, MOTIF Ada, C, ELF, Ada, C, FORTRAN,
TAE+, SQL, X, 000 zx, sQL, X, COBOL, shell, TAE+,
MOTIF, Stored MOTIF SQL, X, MOTIF, UIL,
Procedures Stored Procedures,
GEL, ELF, ezX, ...
Top Level Design Doc SDD Top Level Design Doc Top Level Design Doc
SDD SDP eee SPS SPS
SDD SDD
SDP SDP
Case Tools

Repositories

Product Literature
Reference Manual

Users Manual

Design and Code Stnds

Product Literature
Reference Manual

Users Manual

Design and Code Stnds

Product Literature
Reference Manual
Users Manual

Design and Code Stnds

MITRE

34

SQAE" Finding Examples:
Mitigators, Drivers, & Other Observations

Risk Mitigators

0 Naming conventions used for modules and variables helps understand Level of isolation and encapsulation of dependencies on platform and COTS packages

O O O O O O O O O o o o o

the code’s functionality.

Good use of white space and indention.

Modules are easily viewed at once (< 100 LOC)

Good functional documentation with high-level design.

Good design documentation, showing data and control flows.

Good developer documentation for supported APls.
Good top-down hierarchical structure to code.
Modules use straightforward algorithms in a linear fashion.

System dependencies are to readily available COTS software.

Code is of low complexity.

Logic flow through individual procedures is easy to follow.
Disciplined coding standards followed by the programmers.
Considerable effort made to use POSIX calls throughout.
System dependencies platform or COTS are encapsulated.

Other Observations

0

0
0
0

o

No documented method for other languages to call services
“Man pages” are out of date for some APIs
Number of modules may be excessive

COTS screen description files use standard X-Windows
resource file formats

Proprietary language does not support data typing

In the vendor’s proprietary language, variables are never
explicitly declared (A typo will create a variable)

SQL is only used for ~10% of the code that accesses the
database

- The rest uses the proprietary DBMS calls

Complete source code for gnu Perl was included as part of
deliverable subsystem source code

Risk Drivers
varies between programmers

0 Use of environmental variables is undocumented and inconsistently done

0 Lack of written standards for naming conventions, error handling, data definitions, etc

0 Lack of standards for naming conventions, error handling data definitions, 1/0, etc

0 Design documentation is poorly organized, incomplete, and at a very high level

0 No low-level design information or functional allocation of software in documentation

0 Machine generated code documentation is inconsistent with the developed code
documentation

0 Machine generated code is undocumented

0 Procedure and file names depend on path for uniqueness

0 Hard coded absolute filenames/paths used

0 UNIX commands hardcoded in the code

0 Hard coded variables used when symbolic constants should have been used

0 There are some machine dependent data representations

0 Code is not ANSI standard

0 Variables used for other than their declared purpose

0 No low-level control and task flows in documentation

0 No prologs for the majority of the modules

0 Inadequate indexing of documentation

0 Excessive use of global variables

0 Input error checking is not consistently applied

0 System dependent on a proprietary language for some functions related to integration
with COTS

0 Lack of consistency in the code between programmers

0 No isolation or encapsulation of dependencies on platform or COTS

0 System tied to a proprietary language for procedural processing and data access

0 System is dependent on a proprietary run-time environment

0 Fourteen violations of one of the few company coding standards

0 Two percent of the code modules are overly large, more than 100 LOC

MITRE

35

Examples of Feedback

Application’s Primary Strengths:
Integrator Perspective

0 Isolation of dependencies
- Effort has been made to segregate code so that actual

dependencies.
- This buffering lowers the system’s sensitivity to changes

processing algorithms are buffered from platform and COTS

in its

operating environment.

- Should the platform change significantly (Ney
Database, etc) code rewrites and unit tests sh

Application’s Primary Weaknesses:
Integrator Perspective

to distinct areas rather than rippling throughg
0 Descri

at

- The provided documentation addresses aspects of the system only

information:

- The code itself is poorly documented internally and makes
frequent use of programming constructs which hinder readability
and traceability

ptiveness
the highest level and does not detail essential low level

= System dependencies

= Knowledge domains required for maintenance

= Input data tolerance and valid range of value definitions
= Specific data flow descriptions

= Policies for error handling

This Chart Contains Representative Assessment Results

MITRE

36

Sample Assessment Results for
Multiple Developers

Quality Area
Risk Profiles

Maintainability Evolvability Portability Descriptiveness

Software Quality 50
Factor Risk Profiles o

100

80
70
60
50
40
30
20
10

0

o
S

Documentation Self-Descriptiveness = Anomaly Control Design Simplicity

Key

Data Series 1 = Reference
Data Series 2 =Prj 1 Vndr A
Data Series 3 =Prj 2 Vndr A

Data Series 4 =Prj 1 Vndr B
Data Series 5=Prj 2 Vndr B
Data Series 6 =Prj 1 Vndr C

Data Series 7="Prj 2 Vndr C
Data Series 8 = Mean & Range

of 40 Systems

MITRE

37

Examples of Software Quality
Risk Profiles (3D)

£
ij |
i L W
s 79 a3 | Descriptiveness |
|/ 59 85 54 |/ 89 a1 Portability |
=g 76 49 70 Evolvability |
54 73 a5 76 Maintainability |
| Project A | Project B | Project C | Project D | Project E

This Chart Contains Representative Assessment Results MITRE

38

Summary:
The Value of the SQAE"™

0 Easy to learn and apply for experienced developers

0 Can provide an independent, objective assessment with
community norms of key metrics for comparison of a project
with the practices of its peers.

0 Follows a repeatable process

0 Provides specific detail findings

0 Minimal effort to accomplish (5 - 6 staff weeks per system)
- How large the application is, the number of different languages used,
and the type of assessment desired
- A small level of additional effort is needed when we run into a language
we have not previously encountered

0 Framework for comparing and contrasting systems

0 Provides mechanism for obtaining a “past performance”
measure of contractors

0 Brings out lifecycle concerns and issues

0 Proven ability to adapt to technology changes and the changes
in software development methodologies

MITRE

39

Summary:
The Value of a SQAETM (Concluded)

0 Can be used as a pro-active framework for stating quality reqt’s

- Many quality measures are easily restated as req'ts for coding & design stds
- Can use as part of an award fee determination
- SOW words to ensure Government has access to code and doc’s

0 A variety of Government customers have been interested in the
continued application of our work
- Augmentation of the SEI SCE to look at product as well as process
- Supports Air Force “supportability assessment” task
- Helping compare and contrast legacy systems

the developer’s

0 Can track assessed contractors through project milestones
- Comparing risk drivers and risk mitigators experienced vs. Software Quality
Assessment risk profile

0 Assessments have been consistent with “other” opinions including

MITRE

40

Discussion Outline

0 Introduction
- Managing S/W Quality Issues by Measuring Risks
0 Background
- S/W Quality Risks
- Metrics and Measures
0 Discussion
- Components of a SW Risk Management Framework
- Adapting to Handle OO Specific Risks
0 Summary
- Using SW Risk Assessments to Manage
- Transferring to Industry and Academia

MITRE

Direct and Indirect Technology Transfers of
SQAE"™ Methods and Tools

SQAE" Licensees: 1996 1997 98 2001
- Mitretek - Lockheed General - Ecole de
Martin Dynamics Info. technologle
- Grumman Systems superieure
Organizations Who’s Data - TRW Systems --> SO 9126-1
SW was Assessed = Systems & Info. Tech. /
3 \4 Group
1993 1994 1995 1996 1997 000 2001 2002 2003
/ T ’\ \'\ 1998/1999 /"
W
7 N\ N\ N /
e - -SEL_ T
[EEECS -_STSC.._ SEPG- | | 'STSC SEEC
May 1994 ||, . . . e || APALT995 |\ | 121006 | | April 1998 | | May 2002
=1 athiptl — — - —
.SW.Quality U
Hceit NCOSE”
July 1994 July 1996 SQAE ~
_ RS Presentations

MITRE

42

Languages from Product Assessments By
Percentage of Assessed LOC

Qrher 5.26%

100 Systems with approximately 51 Million Lines of Code Assessed MITRE

SQAE" Experience-Base

’ it

iy -
U e

o

4 y

N I -
> | U e

| it

! il
iyt N TS s

) i

I

CHEYENN

l
\HSC

<
« @0
*

W‘HHH “““‘
M
(.
l HH I s
: W
i
1.
o

i
A2
-

H

MITRE

44

CONTACT INFO:
Robert A. Martin

781-271-3001

ramartin@mitre.org

Why Are We Interested In S/W Risk Anyway?

Constrained Resources

c 31 Systems / % é

New Technology

Changin
New Requirements operatgi,ongal
and Needs Environment

\
I

L

Software Quality Teams must do more than remove errors! MITRE

So, the SQAE is Only One Example of the Risk

Assessments that use Metrics and Measures
s | >

Software Product Evaluation
Quality Characteristics and Guidelines
1991

NN
X

g \\ Rome Laboratory
RADC-McCall etal | PRADC-Bowenetal - Software

=

> - L — i orl,
1977 wm ~ Quality Framew
\
ESPRIT REQUEST —
Kitchenham et 2

1987 -
ESPRIT REQUEST
Kitchenham et al
1989

-
I Assessment Technology

Rome Laboratory

-- SQT2 -

Software Quality Technology

Transfer Consortium
(d

Infrastructure
Architecture
Data Handling

Processina Power

Disk Sizes

Memory Sizes

USAF SSG SEP code review

AFOTEC N %
Software Assessment Team }
Pamphlets k

Augmented SCE

MITRE

Metadata and Data Handling
Quality Factors

Standards Use

LDM-PDM Congruence OS/Machine Dependencies Schema

Standardized Data Access Platform Availability Customizations

Standardized Data Transfer Run-time Issues DESIEED.
3rd Party Tools Exclusive Naming

Performance Mgmt

indopendence —
‘ Design Simplicity

Data Integrity
Transaction Control
Consistent Error Hndlg

Data Dictionary
4GL Use

Design
gg(r:lg\t:;:;ncy Mgmt \ Quality of ::I)otH?:rl‘d"ng
Metadata and —
Anomaly Control Data Handling Documentation
Maintainability
Evolvability

Portability
Descriptivenes

GUI Code
Encapsulation /

GUI Code Isolation

Modularity

DBMS Design Tools

Self-Descriptiveness

\ [4 GL Design Tools]

MITRE

49

A “Design Review-time” View of the SQAE

Documents, etc.

Coding Standards, Software
Development Plan, Design

-
Detailed

SD

A-SPEC

Il

Coding

= Standards

= Design

)

AN

* Independence

Design Simplicity

_ I— Modularity
Consistency
e Documentation

o Self Descriptiveness

Anomaly Control

MITRE

Augmented SCE:
Implementation Schedule/Activities

RFP Proposal
Release Receipt
' hscocemp act]
Product Assessment Activities
IFPP

Input {:‘%I

Process Assessment Activities

Summary
Intial Planning, Detailed Preparation Work, IFPP Material Development:
Assessment Activities per contractor (Process team visits cover 3 projects, Product team evaluates 2 of those 3 projects):

Report Generation and Briefing Creation/Delivery

* 4 staff weeks
« 7 staff weeks per contractor
* 10 staff weeks

Key: | | - Initial Planning [J-Review submittals/Plan Sch. < f > - Process Assessment Visit

[- petailed Preparation Work (O - Product Assessment {:‘} - Proposal Material Review
D - IFPP Material Development E - General Information Feed O - Visit Preparation/Tailoring

L/ - Visit Findings Capture
D - Develop Report

*- Products to Customer

MITRE

51

	Managing Software Risks in Software Intensive Systems with Metrics and Measures
	Outline - Managing SW Quality Issues by Measuring Risks
	To Manage You Must Measure
	One Method of Assessing Software Risks
	Looking Beyond Errors To Judge The Risks in Software
	Introduction: MITRE ’s Software Risk Assessment Work

	 S/ W Quality Risks
	Software Risks Impact on Quality Are Not Well Defined
	Developers Can Provide Plenty of Complications to a System ’s Software Risks
	Establishing a Framework for Measuring Risks
	There Are Several Frameworks for Evaluating and Monitoring SW Quality Risks
	Metrics and Measures
	Targeted Attributes Of Our S/ W Quality Risk Assessment Methodology
	Guiding Principles: Breadth, Depth, and Repeatability

	Components of a SW Risk Manageme t Framework
	Bridging the Gap between The Measurable and Unmeasurable
	S/ W Quality Risk Frameworks: Scope and Focus Can Differ
	S/ W Quality Risk Frameworks: Scope and Focus Can Differ Test & Requirements Issues are Addressed - So We Focused on S/ W Attribute Issues
	Methodology and Process: The Software Quality Assessment Exercise (SQAE ™)
	Putting the Pieces Together
	Details: SQAE ™Areas and Factors
	Details of the SQAE ™ Quality Component Assessment Questions
	Examples of Tools Used in Assessing Software Quality Risks
	Mapping Quality Component Questions to Exercises
	Details of the SQAE ™Framework
	The Core of the Software Quality Assessment Methodology

	Adapting to Handle OO Specific Risks
	Modifications to the SQAE ™to Deal with Object Oriented Design and Development (1 of 2)
	Modifications to the SQAE ™to Deal with Object Oriented Design and Development (2 of 2)

	Using SW Risk Assessme ts to Manage
	Having An Understanding Software Quality Risks Can Be Used In …
	Software Quality Assessment Uses
	 Reporting the Results of a Software Quality Risk Assessment Exercise
	SQAE ™Foundation
	SQAE ™Finding Examples: Mitigators, Drivers, & Other Observations
	Examples of Feedback
	Sample Assessment Results for Multiple Developers
	38 Examples of Software Quality Risk Profiles (3D)
	39 Summary: The Value of the SQAE ™
	Summary: The Value of a SQAE ™(Concluded)

	Transferring to Industry and Academia
	Direct and Indirect Technology Transfers of SQAE ™Methods and Tools
	Languages from Product Assessments By Percentage of Assessed LOC
	SQAE ™Experience- Base
	Contact Information
	Why Are We Interested In S/ W Risk Anyway?
	So, the SQAE is Only One Example of the Risk Assessments that use Metrics and Measures
	Metadata and Data Handling Quality Factors
	A “Design Review- time ” View of the SQAE
	Augmented SCE: Implementation Schedule/ Activities

