A cost-benefit framework for making architectural decisions in a business context

Jeromy Carriere Chief Architect, VistaPrint Rick Kazman and Ipek Ozkaya Software Engineering Institute

- Risk reduction
- Developer productivity
- We want architecture-based cost/benefit judgment

Approach

- Evaluate a completed project using
 - Tickets that document the work
 - Before and after codebase
 - Dependency structure matrix \rightarrow coupling
- Train a model that can predict benefit based on a stream of classified changes

Classification	Time	LOC	Coupling
Price Test	-3%	11%	-19%
Price Data	61%	166%	-100%
Website UI	-54%	-73%	99%
Tool	-79%	-76%	271%
Price Logic	31%	5%	248%

- Effort by LOC by category isn't informative or architecturally significant
- Anecdotal evidence and coarse effort analysis is positive
- Consider *propagation cost* to look for correlation

Propagation cost

- Start with the DSM, call it M
- Compute M_P visibility based on pricing only
- Then,

$$V = M^0 + M + \sum_{i=2}^{4} M^{i-1} M^p$$

- Transform V to 1's and 0's
- Compute propagation cost as density of V

