
Capability Maturity Model
Integration (CMMI) V1.3 and
Architecture-Centric
Engineering

© 2011 Carnegie Mellon University

SATURN Conference

May 17, 2011

San Francisco, CA

Dr. Lawrence G. Jones

Dr. Michael Konrad

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213-2612

Presentation Learning Outcomes

After completing this presentation, attendees should

• know that a process discipline is a powerful enabler of product

quality

• be familiar with the structure and purpose of CMMI models

• be familiar with essential architecture-centric engineering

activities

• know where architecture-centric activities and work products

2
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

• know where architecture-centric activities and work products

are described in CMMI V1.3

• know where to find out more about architecture-centric

engineering practices and CMMI V1.3

Presentation Outline

CMMI V1.3 – Overview and Context for Modern Engineering
Practices Changes

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

3
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Conclusion

What Is a Process?

A process is a set of interrelated activities, which transform inputs into
outputs, to achieve a given purpose.

Inputs

4
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Process Improvement flows from and extends the general
management theories developed over the past ~50 years (Juran,
Deming, Crosby, etc.)

OutputsInputs

Process! Are You Serious?

You’re going to

• stifle my creativity!

• bog us down with bureaucracy!

5
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

It doesn’t have to be that way.

Yes, I’m Serious.

Process discipline

• helps coordinate team efforts

• prevents tripping over each other

• can pay for itself

• doesn’t have to be heavyweight and

bureaucratic

• is central to agility

6
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

• is central to agility

“There is no idea so good that it can’t be
poorly implemented.”

Scott Adams

If you’ve had a bad experience,

please remember …

CMMI in a Nutshell

CMMI is a collection of characteristics of effective processes that
provides guidance for improving an organization’s processes and ability
to manage the development, acquisition, and maintenance of products
or services.

CMMI organizes these practices into structures that help an organization

• assess its processes

7
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

• establish priorities for improvement

• implement these improvements

• learn what works and make further changes to improve
performance

“Improving processes for better products”

CMMI Models for Three Constellations

16 Core Process 16 Core Process 16 Core Process 16 Core Process

Areas (PAs), Areas (PAs), Areas (PAs), Areas (PAs),

CMMICMMICMMICMMI----SVCSVCSVCSVC
CMMICMMICMMICMMI----SVC provides SVC provides SVC provides SVC provides
guidance for those guidance for those guidance for those guidance for those

providing services within providing services within providing services within providing services within
organizations and to organizations and to organizations and to organizations and to
external customers.external customers.external customers.external customers.

8
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Areas (PAs), Areas (PAs), Areas (PAs), Areas (PAs),

common to allcommon to allcommon to allcommon to all

CMMICMMICMMICMMI----DEVDEVDEVDEV
CMMICMMICMMICMMI----DEV provides DEV provides DEV provides DEV provides

guidance for measuring, guidance for measuring, guidance for measuring, guidance for measuring,
monitoring and monitoring and monitoring and monitoring and

managing development managing development managing development managing development
processes.processes.processes.processes.

CMMICMMICMMICMMI----ACQACQACQACQ
CMMICMMICMMICMMI----ACQ provides ACQ provides ACQ provides ACQ provides
guidance to enableguidance to enableguidance to enableguidance to enable

informed and decisiveinformed and decisiveinformed and decisiveinformed and decisive

acquisition leadership. acquisition leadership. acquisition leadership. acquisition leadership.

CMMI-DEV PAs by Category

Process Management
Organizational Innovation and Deployment (OID)

Organizational Process Definition (OPD)

Organizational Process Focus (OPF)

Organizational Process Performance (OPP)

Organizational Training (OT)

Support
Causal Analysis and Resolution (CAR)

Project Management
Integrated Project Management (IPM)

Project Monitoring and Control (PMC)

Project Planning (PP)

Quantitative Project Management (QPM)

Requirements Management (REQM)

Risk Management (RSKM)

(+) Supplier Agreement Management (SAM)

9
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Causal Analysis and Resolution (CAR)

Configuration Management (CM)

Decision Analysis and Resolution (DAR)

Measurement and Analysis (MA)

Process and Product Quality Assurance (PPQA)

Engineering
Product Integration (PI)

Requirements Development (RD)

Technical Solution (TS)

Validation (VAL)

Verification (VER)
For the V1.3 release, REQM was moved from

“Engineering” to “Project Management.”

Some CMMI ABCs

The models are built to apply to both systems engineering and software
engineering.

The process areas are crafted to be independent of a life-cycle model.

• Engineering process areas should be interpreted as applying to engineering

at any level of design.

– Think of the process areas as being “callable” at any point from high-level

design to detailed design.

10
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

design to detailed design.

The models support both staged and continuous representations.

• generally, these representations have different philosophies about the

implementation sequence of the process areas.

The “I” in CMMI refers to integration of disparate source models and
disciplines.

Process Area Components

Related

Process Areas
Introductory

Notes

Specific Goals (SG)

Generic Goals (GG)

Purpose

Statement

Process Area (PA)

11
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Example Work

Products
Subpractices

Expected Informative

Generic Goals (GG)

Required

Specific
Practices

(SP)
Generic

Practices
(GP)

Generic Practice

Elaborations
Legend

Subpractices

Example Page from a Model

12
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Summary of Generic Goals and Practices

GG2: Institutionalize a
Managed Process

Generic PracticesGeneric Goals

GP 2.1: Establish an Organizational Policy

GP 2.2: Plan the Process

GP 2.3: Provide Resources

GP 2.4: Assign Responsibility

GP 2.5: Train People

GG1: Achieve
Specific Goals

GP 1.1: Perform Specific Practices

13
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Adapted from

Cepeda Systems &

Software Analysis, Inc.

GG3: Institutionalize a
Defined Process

GP 3.1: Establish a Defined Process

GP 3.2: Collect Process Related Experiences

GP 2.5: Train People

GP 2.6: Control Work Products

GP 2.7: Identify and Involve Relevant Stakeholders

GP 2.8: Monitor and Control the Process

GP 2.9: Objectively Evaluate Adherence

GP 2.10: Review Status with Higher Level Management

CMMI Coverage of Modern Engineering Approaches

Much of the engineering content of CMMI-DEV V1.2 is ten years old.

As DEV was a starting point for the other two constellations, no V1.2
model adequately addressed modern engineering approaches.

• For example, both Requirements Development Specific Goal 3 and Specific

Practice 3.2 emphasized functionality and not non-functional requirements.

Also, Engineering and other Process Areas rarely mentioned these
concepts:

14
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

concepts:

• Quality attributes

• Allocation of product capabilities to release increments

• Product lines

• Technology maturation (and obsolescence)

• Agile methods

Presentation Outline

CMMI V1.3 – Overview and Context for Modern Engineering
Practices Changes

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

15
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Conclusion

What is Architecture-Centric
Engineering?

Architecture-Centric Engineering (ACE) is the
discipline of using architecture as the focal point for
performing ongoing analyses to gain increasing
levels of confidence that systems will support their
missions.

Architecture is of enduring importance because it is
the right abstraction for performing ongoing analyses
throughout a system’s lifetime.

16
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

The SEI ACE Initiative
develops principles, methods,
foundations, techniques,
tools, and materials in
support of creating, fostering,
and stimulating widespread
transition of the ACE
discipline.

throughout a system’s lifetime.

Formal Definition of Software Architecture

“The software architecture of a computing system is the

set of structures needed to reason about the system,

which comprise software components, relations among

them and properties of both.”

Clements et al, Documenting Software Architectures, Second Edition. Addison-Wesley, 2011

17
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

System Development

Functional
Requirements

If function were all that

mattered, any monolithic

implementation would do,

..but other things

matter…

The important quality attributes and their characterizations are key.

18
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

• Modifiability
• Interoperability
• Availability
• Security
• Predictability
• Portability

has these qualities

analysis, design, development, evolution

Quality
Attribute Drivers

Software &
System

Architectures

Software &
System

The Non-functional
Requirements

Specifying Quality Attributes

Quality attributes are rarely captured effectively in
requirements specifications; they are often vaguely
understood and weakly articulated.

Just citing the desired qualities is not enough; it is
meaningless to say that the system shall be “modifiable”
or “interoperable” or “secure” without details about the
context.

19
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

context.

The practice of specifying quality attribute scenarios can
remove this imprecision and allows desired qualities to
be evaluated meaningfully.

A quality attribute scenario is a short description of an
interaction between a stakeholder and a system and the
response from the system.

Parts of a Quality Attribute Scenario

ResponseStimulus

Artifact:

Process, Storage,

Processor,

Communication

20
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

RESPONSE
MEASURE

ENVIRONMENTSOURCE

Communication

Example Quality Attribute Scenario

ResponseStimulus

Artifact:

Process, Storage,

Processor,

Communication

A “performance” scenario: A remote user requests a data base
report under peak load and receives it in under 5 seconds.

21
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

RESPONSE
MEASURE

under 5
seconds

ENVIRONMENT

Database under
peak load

SOURCE

Remote user

Communication

Architecture-Centric Activities

Architecture-centric activities include the following:

• creating the business case for the system

• understanding the requirements

• creating and/or selecting the architecture

• documenting and communicating the architecture

• analyzing or evaluating the architecture

• implementing the system based on the architecture

22
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

• implementing the system based on the architecture

• ensuring that the implementation conforms to the

architecture

• evolving the architecture so that it continues to
meet business and mission goals

Some SEI Techniques, Methods, and Tools
creating the business case for the system

understanding the requirements Quality Attribute Workshop (QAW) *
Mission Thread Workshop (MTW) *

creating and/or selecting the architecture Attribute-Driven Design (ADD)
and ArchE

documenting and
communicating the architecture

Views and Beyond Approach; AADL

analyzing or evaluating the architecture Architecture Tradeoff Analysis Method
(ATAM) *; SoS Arch Eval *; Cost Benefit
Analysis Method (CBAM); AADL

23
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Analysis Method (CBAM); AADL

implementing the system based on the
architecture

ensuring that the implementation conforms to
the architecture

ARMIN

evolving the architecture so that it continues to
meet business and mission goals

Architecture Improvement Workshop
(AIW)* and ArchE

ensuring use of effective architecture
practices

Architecture Competence Assessment

* = indicates a software engineering method that has been extended to systems engineering

Presentation Outline

CMMI V1.3 – Overview and Context for Modern Engineering
Practices Changes

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

24
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Conclusion

Modern Engineering Practices in CMMI

For Version 1.3, CMMI provides better guidance in support of architecture-

centric practices (where the practice is addressed in CMMI V1.3 is shown in

parentheses).

• creating the business case for the system (partially in RD)

• understanding the requirements (RD)

• creating and/or selecting the architecture (TS)

• documenting and communicating the architecture (RD, TS)

25
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

• documenting and communicating the architecture (RD, TS)

• analyzing or evaluating the architecture (RD, TS, VAL, VER)

• implementing the system based on the architecture (TS; A/PL notes)

• ensuring that the implementation conforms to the architecture (VER)

• evolving the architecture so that it continues to meet business and
mission goals (implicit in the changes made for V1.3 to the term “establish

and maintain”)

RD = Requirements Development TS = Technical Solution

VER = Verification VAL = Validation

Requirements Development

SG 1: Develop Customer Requirements

SP 1.1 Elicit Needs

SP 1.2 Transform Stakeholder Needs into

[Prioritized] Customer Requirements

SG 2: Develop Product Requirements

SP 2.1 Establish Product and Product Component

Requirements

SP 2.2 Allocate Product Component Requirements

In SP1.2, added that customer
requirements should be prioritized

based on their criticality to the
customer and other stakeholders

“representing all phases of the
product's lifecycle … including
business as well as technical

functions.”

In SP 2.1, added a focus on
architectural requirements and quality

attribute measures.

In SP 2.2, added a subpractice

26
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

SP 2.2 Allocate Product Component Requirements

SP 2.3 Identify Interface Requirements

SG 3: Analyze and Validate Requirements

SP 3.1 Establish Operational Concepts and

Scenarios

SP 3.2 Establish a Definition of Required

Functionality and Quality Attributes

SP 3.3 Analyze Requirements

SP 3.4 Analyze Requirements to Achieve Balance

SP 3.5 Validate Requirements

In SP 2.2, added a subpractice
allocating requirements to delivery

increments.

Addressed “Quality attributes” (QAs) as
well as functionality in SG3 and SP 3.2

statements.

In SP 3.1, broadened emphasis to
“operational, sustainment, and

development” scenarios.

In SP 3.2, determined architecturally-
significant QAs from mission and

business drivers.

Technical Solution

SG 1: Select Product Component Solutions

SP 1.1 Develop Alternative Solutions and
Selection Criteria

SP 1.2 Select Product Component Solutions

SG 2: Develop the Design

SP 2.1 Design the Product or Product

Component

Intro Notes: “QA models,
simulations, prototypes or pilots
can be used to provide additional

information about the properties of the
potential design solutions to aid in the
selection of solutions. Simulations can

be particularly useful for projects
developing systems-of-systems.”

In SP 1.1, Added an example
selection criterion, “Achievement of key

quality attribute requirements” and a
new subpractice: “Identify re-usable
solution components or applicable

architecture patterns.”.

In SP 2.1, described architecture

27
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Component

SP 2.2 Establish a Technical Data Package

SP 2.3 Design Interfaces Using Criteria

SP 2.4 Perform Make, Buy, or Reuse Analyses

SG 3: Implement the Product Design

SP 3.1 Implement the Design

SP 3.2 Develop Product Support Documentation

In SP 2.1, described architecture
definition tasks such as selecting

architectural patterns and formally
defining component behavior and
interactions using an architecture

description language.

In SP 2.2, added subpractice to
determine views to document

structures and address stakeholder
concerns.

In SP 2.3, mentioned exception and
error handling,

Product Integration

SG 1: Prepare for Product Integration

SP 1.1 Establish an Integration Strategy

SP 1.2 Establish the Product Integration Environment

SP 1.3 Establish Product Integration Procedures and
Criteria

SG 2: Ensure Interface Compatibility

SP 2.1 Review Interface Descriptions for

Completeness

Revised the purpose to ensure
proper behavior instead of proper

function, thereby more implicitly
including quality attributes as well as

functionality.

Changed emphasis from
integration sequence to an emphasis

on integration strategy, i.e., the
approach to receiving, assembling,

and evaluating product components.
The architecture will significantly

influence the selection of a product
integration strategy.

In the PA notes, addressed:
interfaces to data sources and

28
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

SP 2.2 Manage Interfaces

SG 3: Assemble Product Components and Deliver the
Product

SP 3.1 Confirm Readiness of Product Components

for Integration

SP 3.2 Assemble Product Components

SP 3.3 Evaluate Assembled Product Components

SP 3.4 Package and Deliver the Product or Product

Component

interfaces to data sources and
middleware; APIs, automated builds,

continuous integration

Validation

SG 1: Prepare for Validation

SP 1.1 Select Products for Validation

SP 1.2 Establish the Validation Environment

SP 1.3 Establish Validation Procedures and
Criteria

SG 2: Validate Product or Product Components

SP 2.1 Perform Validation

Reinforced when validation occurs in
the product lifecycle: “validation is

performed early (concept/exploration
phases) and incrementally throughout

the product lifecycle (including
transition to operations and

sustainment).”

In VAL SP 1.1, included access
protocols and data interchange

reporting formats as examples of what
to validate.

Also, included incremental delivery
of working and potentially

acceptable product as an example
validation method.

29
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

SP 2.1 Perform Validation

SP 2.2 Analyze Validation Results

Verification

SG 1: Prepare for Verification

SP 1.1 Select Work Products for Verification

SP 1.2 Establish the Verification Environment

SP 1.3 Establish Verification Procedures and

Criteria

SG 2: Perform Peer Reviews

SP 2.1 Prepare for Peer Reviews

In SP 1.1, added example verification
methods: software architecture
evaluation and implementation

conformance evaluation and
continuous integration.

In SP 1.3, added example sources
of verification criteria:

customers reviewing work products
collaboratively with developers.

In SP 2.1, added example type of peer
review: architecture implementation

30
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

SP 2.1 Prepare for Peer Reviews

SP 2.2 Conduct Peer Reviews

SP 2.3 Analyze Peer Review Data

SG 3: Verify Selected Work Products

SP 3.1 Perform Verification

SP 3.2 Analyze Verification Results

review: architecture implementation
conformance evaluation

In SP 2.3, added examples of peer
review data that can be analyzed:

user stories or case studies
associated with a defect and the

end-users and customers who are
associated with defects

Changes in CMMI Terminology - 1

Allocated requirement

DEFINITION

Requirement that leviesresults from levying all or part of the
performance and functionality of a higher level requirement on a lower
level architectural element or design component.

More generally, requirements can be allocated to other logical or
physical components including people, consumables, delivery

31
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

physical components including people, consumables, delivery
increments, or the architecture as a whole, depending on what best
enables the product or service to achieve the requirements.

The improvements to the definition make the substance of the solution space

and allocation of requirements to it more explicit, allowing for superior

architectures and more insightful analyses (including verification) of

requirements and technical solutions.

Changes in CMMI Terminology - 2

Architecture

DEFINITION

The set of structures needed to reason about a product. These structures are

comprised of elements, relations among them, and properties of both.

In a service context, the architecture is often applied to the service system.

Note that functionality is only one aspect of the product. Quality attributes,

such as responsiveness, reliability, and security, are also important to reason

32
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

such as responsiveness, reliability, and security, are also important to reason

about. Structures provide the means for highlighting different portions of the

architecture. (See also “functional architecture.”)

This term and its use throughout the rest of the model is intended to

encourage use of proven, architecture-centric practices and the recognition

of “architecture” as a principal engineering artifact.

Changes in CMMI Terminology - 3

Definition of required functionality and quality attributes

DEFINITION

A characterization of required functionality and quality attributes obtained through

“chunking,” organizing, annotating, structuring, or formalizing the requirements

(functional and non-functional) to facilitate further refinement and reasoning about the

requirements as well as (possibly, initial) solution exploration, definition, and evaluation.

As technical solution processes progress, this characterization can be further evolved

into a description of the architecture versus simply helping scope and guide its

33
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

into a description of the architecture versus simply helping scope and guide its

development, depending on the engineering processes used; requirements

specification and architectural languages used; and the tools and the environment used

[snip].

The term “definition of required functionality” that appeared in V1.2 has been

removed from CMMI because of the implicit suggestion that functionality be

addressed first or has higher priority. The term has been replaced with the

one above, which is intended to help ensure a sufficiently balanced focus

(functional and non-functional) in requirements analysis.

Changes in CMMI Terminology - 4

“Functional analysis” and “functional architecture”

These terms, which appeared in V1.2, are now “cul de sacs” in the
model.

The only place these terms now appear in CMMI-DEV V1.3 outside the
Glossary is in the first note of RD SP 3.2 and as an example work
product.

The note contrasts the approaches implied by these terms with “modern

34
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

The note contrasts the approaches implied by these terms with “modern
engineering approaches” that encourage a more balanced treatment
of requirements, both functional and non-functional.

Changes in CMMI Terminology - 5

Product line

DEFINITION

A group of products sharing a common, managed set of features that satisfy

specific needs of a selected market or mission. and that are developed from a

common set of core assets in a prescribed way.

The development or acquisition of products for the product line is based on exploiting

commonality and bounding variation (i.e., restricting unnecessary product variation)

across the group of products. The managed set of core assets (e.g., requirements,

35
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

across the group of products. The managed set of core assets (e.g., requirements,

architectures, components, tools, testing artifacts, operating procedures, software)

includes prescriptive guidance for their use in product development. Product line

operations involve interlocking execution of the broad activities of core asset

development, product development, and management.

Many people use “product line” just to mean the set of products produced by a

particular business unit, whether they are built with shared assets or not. We call that

collection a "portfolio," and reserve "product line" to have the technical meaning given

here.

Changes in CMMI Terminology - 6

Quality attribute

DEFINITION

A property of a product or service by which its quality will be judged by

relevant stakeholders. Quality attributes are characterizable by some

appropriate measure.

Quality attributes are non-functional, such as timeliness, throughput,

responsiveness, security, modifiability, reliability, and usability. They have a

significant influence on the architecture.

36
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

significant influence on the architecture.

This term is now included in the Glossary for the first time. This term is

intended to supplant others – especially those focusing on only a few

dimensions (e.g., “performance”) – to encourage a broader view of non-

functional requirements. The term was refined through much effort, as

neither ISO 25030 (SQuaRE) nor the original SEI definitions were quite

satisfactory. In addition, uses of the term “performance” throughout the

model were reviewed for clarity, and where appropriate, revised or qualified.

Establish and maintain

DEFINITION

Create, document, use, and revise . . . as necessary to ensure it remains they

remain useful.

The phrase “establish and maintain” means more than a combination of its component

terms; . . . plays a special role in communicating a deeper principle in CMMI: work

products that have a central or key role in work group, project, and organizational

performance should be given attention to ensure they are used and useful in that role.

Changes in CMMI Terminology - 7

37
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

performance should be given attention to ensure they are used and useful in that role.

This phrase has particular significance in CMMI because it often appears in goal and

practice statements . . . and should be taken as shorthand for applying the principle to

whatever work product is the object of the phrase.

The above term appears in many CMMI practices. This term was changed in V1.3 to

support the evolution of key artifacts so that they remain useful. Example from RD SP

2.1 note: “The modification of requirements due to approved requirement changes is

covered by the “maintain” aspect of this specific practice…” Likewise for architecture

(TS SP 2.2).

V1.3 Includes Notes on How to Address Agile
Methods and Product Lines

Other Informative Material Changes

Special notes for Agile and for Product Lines have been inserted in the
Intro Notes of various PAs in V1.3.

Changes Supporting Use of Agile Methods

Because CMMI practices are written for use in a broad variety of
contexts, business situations, and application domains, it is not
possible (even if it were appropriate) to advocate any specific

38
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

possible (even if it were appropriate) to advocate any specific
implementation approach.

However, Agile methods and approaches are now in wider use, and so
for V1.3, it seemed appropriate to identify how Agile approaches can
address CMMI practices and conversely, identify the value that CMMI
can bring to Agile implementations. And likewise for Product Lines.

Addressing Agile – Example PA Notes

A note added in the RD Intro Notes:

In Agile environments, requirements are communicated and tracked through

mechanisms such as product backlogs, story cards, and screen mock-ups.

[snip] Traceability and consistency across requirements and work products is

addressed through the mechanisms already mentioned as well as during

start-of-iteration or end-of-iteration activities such as “retrospectives” and

“demo days.”

A note added in the TS Intro Notes:

39
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

A note added in the TS Intro Notes:

In Agile environments, the focus is on early solution exploration. By making

the selection and tradeoff decisions more explicit, the Technical Solution

process area helps improve the quality of those decisions, both individually

and over time. [snip] When someone other than the team will be working on

the product in the future, release information, maintenance logs, and other

data are typically included with the installed product. To support future

product updates, rationale (for trade-offs, interfaces, and purchased parts) is

captured so that why the product exists can be better understood. [snip]

Addressing Product Lines – Example Notes

An example of a note added in the RD Intro Notes:

For product lines, engineering processes (including requirements

development) may be applied to at least two levels in the organization. At an

organizational or product line level, a “commonality and variation analysis” is

performed to help elicit, analyze, and establish core assets for use by projects

within the product line. At the project level, these core assets are then used

as per the product line production plan as part of the project’s engineering

activities.

40
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

activities.

An example of a note added in the TS Intro Notes:

For product lines, these practices apply to both core asset development (i.e.,

building for reuse) and product development (i.e., building with reuse). Core

asset development additionally requires product line variation management

(the selection and implementation of product line variation mechanisms) and

product line production planning (the development of processes and other

work products that define how products will be built to make best use of these

core assets).

Presentation Outline

CMMI V1.3 – Overview and Context for Modern Engineering
Practices Changes

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

41
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Conclusion

The quality and longevity of a software-intensive system is
largely determined by its architecture.

Early identification of architectural risks saves money and time.

There are proven practices to help ensure that suppliers and
acquirers can develop and acquire systems that have
appropriate architectures.

Summary & Conclusions

42
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

CMMI V1.3 has a new emphasis on architecture.

The efficacy of the architecture has a direct impact on
program or mission success, and customer satisfaction.

References - 1

Software Architecture in Practice, Second Edition
Bass, L.; Clements, P.; & Kazman, R. Reading, MA:
Addison-Wesley, 2003.

Evaluating Software Architectures: Methods and Case
Studies
Clements, P.; Kazman, R.; & Klein, M. Reading, MA:
Addison- Wesley, 2002.

43
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Documenting Software Architectures: Views and Beyond,
Second Edition
Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.;
Little, R.; Nord, R.; & Stafford, J. Reading, MA:
Addison-Wesley, 2011.

Software Product Lines: Practices and Patterns

Clements, P.; Northrop, L. Reading, MA: Addison-Wesley,

2001.

References - 2

You can find a moderated list of references on the “Software
Architecture Essential Bookshelf”

http://www.sei.cmu.edu/architecture/start/publications/bookshelf.cfm

Grady Booch: Handbook of Software Architecture (currently
only an on-line reference):

http://www.handbookofsoftwarearchitecture.com/index.jsp?page=Main

44
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

http://www.handbookofsoftwarearchitecture.com/index.jsp?page=Main

CMMI for Development, Version 1.3

http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm

(also available as a book from the SEI Series on Software

Engineering)

Chrissis, Mary Beth; Konrad, Mike; & Shrum, Sandy. CMMI:

Guidelines for Process Integration and Product Improvement,

3rd Edition. Boston: Addison-Wesley, 2011.

Six Courses

Software Architecture

Principles and Practices*

Documenting
Software Architectures

Software
Architecture
Professional

ATAM
Evaluator

ATAM
Leader

Three Certificate Programs

����

����

����

����

����

The SEI Software Architecture Curriculum

45
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Software Architectures

Software Architecture
Design and Analysis

Software Product Lines

ATAM Evaluator Training

ATAM Leader Training

ATAM Observation

����

����

����

����

����

����

����
����: required to

receive certificate

����

����

����
*: available through

e-learning

CMMI Roadmap for Professionals

Introduction to
CMMI for

Development
v1.3

CMMI-DEV Practitioner Track

CMMI-DEV
Level 3 for

Practitioners

Intermediate
Concepts of

CMMI for
Development

Instructor Training for
CMMI for Development

Entry Examination

CMMI-DEV Instructor Track

CMMI-DEV
Instructor

Qualification Steps

Instructor
Training for CMMI
for Development

Observation

Intermediate
Concepts of CMMI
for Development

Examination

CMMI-DEV
Level 2 for

Practitioners

Understanding
CMMI High

Maturity Practices

46
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

SCAMPI Lead
Appraiser Certification

Examination

CMMI-DEV
Instructor

SCAMPI Lead
Appraiser

Qualification Steps

SCAMPI Lead Appraiser Track

Observation SCAMPI Lead
Appraiser

SCAMPI High Maturity
Lead Appraiser

Qualification Steps

SCAMPI High Maturity
Lead Appraiser Certification

Examination

SCAMPI High Maturity
Lead Appraiser

Contact Information

U.S. Mail:

Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh, PA 15213-3890

World Wide Web:

http://www.sei.cmu.edu/productlines

Mike Konrad

SEPM

Larry Jones

Research, Technology, and Systems

Solutions Program

Telephone: 719-481-8672

Email: lgj@sei.cmu.edu

47
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

http://www.sei.cmu.edu/productlines

SEI Fax: 412-268-5758Telephone: 412-268-5813

Email: mdk@sei.cmu.edu

Questions

48
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY

MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO

ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM

USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,

TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the

rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely

49
CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

This Presentation may be reproduced in its entirety, without modification, and freely

distributed in written or electronic form without requesting formal permission. Permission

is required for any other use. Requests for permission should be directed to the Software

Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number

FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software

Engineering Institute, a federally funded research and development center. The

Government of the United States has a royalty-free government-purpose license to use,

duplicate, or disclose the work, in whole or in part and in any manner, and to have or

permit others to do so, for government purposes pursuant to the copyright license under

the clause at 252.227-7013.

