# Software Reviews Since Acquisition Reform – The Artifact Perspective

Dr. Peter Hantos Senior Engineering Specialist Software Acquisition and Process Office

Acquisition of Software Intensive Systems Conference 2004



### Acknowledgements

- This work would not have been possible without assistance from the following:
  - Reviewers
    - Richard J. Adams, Software Acquisition and Process Office
    - Suellen Eslinger, Software Acquisition and Process Office
    - Karen L.Owens, Software Acquisition and Process Office
    - Mary A. Rich, Principal Director, Software Engineering Subdivision
  - Sponsor
    - Michael Zambrana, USAF Space and Missile Systems Center, Directorate of Systems Engineering
  - Funding source
    - Mission-Oriented Investigation and Experimentation (MOIE) Research Program (Software Acquisition Task)



# **Background of Problem**

#### • Pre-1994:

- MIL-STD-1521B (Technical Reviews)
  - Formal milestone reviews
  - Date of last version is June 4, 1985 (!)
- DoD-STD-2167A (Defense System Software Development)
  - Single pass Waterfall Life Cycle Model bias

#### • **1994**:

- MIL-STD-498 (Software Development & Documentation)
  - Although all other MIL standards are cancelled by the DoD,
     MIL-STD-498 was approved as an interim standard for 2 years
  - Eliminated any Waterfall bias
  - Joint reviews: Schedule and content proposed by contractor



### The Problems with Reviews

#### • Now:

- No official development or review standards of record
- Neither the government nor the contractor has clear concept of what reviews should contain and when they should occur
- Interpretation of major contractual technical reviews (e.g., System PDR, System CDR) is left to individuals to decide
- Quality and content of reviews is widely different both within and across programs
- Quick, last-minute, before-review efforts to revive and customize MIL-STD-1521B proved to be ineffective



#### **Perspectives on Review Issues**

#### The Life Cycle Perspective ("When?")\*

- Pre-acquisition reform assumptions:
  - Acquisition and development are exclusively Waterfall
  - Reviews (SSR, PDR, CDR, etc.) are clearly positioned
- Now:
  - Evolutionary Acquisition
  - Iterative/Incremental and Spiral Development
  - Emerging agile methods
  - Asynchronous, in-process, interim reviews

#### The Artifact Perspective ("What?")

This is the subject of the presentation

\* For more details see my upcoming presentation at the 2004 Software Technology Conference in Salt Lake City, Utah: Hantos, P., "Software Reviews Since Acquisition Reform – The Life Cycle Perspective"



#### **Presentation Objectives**

- Identify modern software development trends within key areas of interest
- Compare pre-acquisition reform software development practices with the state-of-the-practice (With minor references to the state-of-the-art...)
- Highlight new work products and related, new review artifacts

Slide 6



# **Key Areas of Interest**

| Architecture                                     | Unit Designation and Nomenclature                |
|--------------------------------------------------|--------------------------------------------------|
|                                                  | Architecture Focus                               |
|                                                  | Software Reuse and COTS                          |
|                                                  | Frameworks                                       |
|                                                  | Open Systems                                     |
|                                                  | Distributed Systems                              |
| Product-Oriented Software Engineering Activities | Analysis/Design                                  |
|                                                  | Programming Languages                            |
|                                                  | Programming                                      |
|                                                  | Integration                                      |
|                                                  | Test                                             |
| Engineering Management Process                   | The Software Concept                             |
|                                                  | Quantitative Management, use of Software Metrics |
|                                                  | Organizational and Management Models             |
|                                                  | Systems Engineering                              |
| Integral Software Engineering Activities         | Process Maturity and Quality Frameworks          |
|                                                  | Quality                                          |
|                                                  | Risk Management                                  |
| Hardware-Software Technology                     | Design Paradigms                                 |
|                                                  | Host Processor                                   |
|                                                  | Communications                                   |
|                                                  | Database Management                              |
|                                                  | Tools                                            |
|                                                  | Documentation                                    |
| Security                                         | Security                                         |

Acquisition of Software Intensive Systems 2004 – Peter Hantos

Slide 7



### Architecture

|                                      | OLD                                                                                                                                                                                                                                                                 | NEW                                                                                                                                                                                                                                                                                      |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit Designation<br>and Nomenclature | <ul> <li>CSCI – HWCIs with high granularity:</li> <li>Homogeneous, static view of<br/>CSCIs assuming unchanging<br/>configuration entities:<br/>Design -&gt; Source Code -&gt;<br/>-&gt; Developmental executables -&gt;<br/>-&gt; Delivered executables</li> </ul> | O-O concepts and nomenclature:<br>Objects – with flexible granularity<br>Packages – for higher order, logical<br>object structure<br>Component diagrams – for<br>components and interfaces<br>Deployment – distribution of<br>components on nodes<br>Source code vs. executable releases |
| Architecture<br>Focus                | <ul> <li>Weak:</li> <li>High-level Design = Architecture</li> <li>Monolithic architectural patterns:</li> <li>Mainframe</li> <li>Process control-type instruments</li> </ul>                                                                                        | Strong:<br>Multiple,stakeholder views<br>Variety of architectural patterns:<br>Client-Server<br>Distributed/networked<br>Application-services                                                                                                                                            |
| Software Reuse<br>and COTS           | <ul> <li>Sporadic, opportunistic reuse</li> <li>Limited, low-level libraries only</li> <li>No sensitivity to COTS software:</li> <li>No impact on life cycle models</li> <li>No acknowledgement of risks due to COTS volatility</li> </ul>                          | Systematic, application-domain reuse<br>Increased use of system libraries<br>High emphasis on using COTS:<br>Acknowledging life cycle impact<br>High sensitivity to COTS volatility<br>Coexistence with legacy code,<br>"wrappers"                                                       |

Acquisition of Software Intensive Systems 2004 – Peter Hantos



# Architecture (Cont.)

|                        | OLD                                                                                                                             | NEW                                                                                                                                             |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Frameworks             | Middleware concept didn't exist                                                                                                 | Wide use of frameworks:<br>COM, .NET, CORBA, etc.<br>Distributed objects<br>Domain-specific, reusable assets                                    |
| Open Systems           | <ul> <li>Concept didn't exist</li> <li>Most solutions were proprietary</li> <li>Limited acceptance of best practices</li> </ul> | Rapidly emerging concept<br>Push for commercial solutions<br>Open to wide array of best practices<br>Emerging, Open UML-based<br>standards      |
| Distributed<br>Systems | <ul> <li>Primitive networks only</li> <li>No WWW (World-Wide Web)</li> </ul>                                                    | Large, high bandwidth networks<br>100 Gbit/sec<br>Rapidly growing WWW<br>Intranets/Extranets<br>Remote network management<br>Remote diagnostics |



# **Product-Oriented SW Engineering Activities**

|                          | OLD                                                                                                                                                | NEW                                                                                                                                                             |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analysis/Design          | <ul> <li>Structured/Hierarchical:</li> <li>Functional decomposition of requirements</li> <li>No or little coding until design completed</li> </ul> | Object-Oriented/UML-based:<br>Iterative/Incremental<br>Use Case driven<br>Exploratory coding, prototyping<br>Might follow test-driven design<br>process         |
| Programming<br>Languages | Primarily procedural<br>Textual only                                                                                                               | Dominant Object-Oriented<br>Visual languages                                                                                                                    |
| Programming              | Manual only<br>Code metrics:<br>• McCabe complexity                                                                                                | Visual programming<br>Automated code generators:<br>Executable models<br>Round-trip engineering<br>Code metrics for O-O programs:<br>New metrics replace McCabe |
| Integration              | <ul><li><b>"Big-bang":</b></li><li>Single, major event at the end</li></ul>                                                                        | Incremental integration:<br>Multiple, frequent releases                                                                                                         |
| Test                     | Manual only                                                                                                                                        | Increased automated testing<br>Load testing of networks                                                                                                         |





# **Engineering Management Processes**

|                                                  | OLD                                                                                                                                                                                   | NEW                                                                                                                                                                              |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Software<br>Concept                          | <ul> <li>"Software is software"</li> <li>"One size fits all":</li> <li>Scaling assumed to be simple<br/>and transparent</li> </ul>                                                    | Acknowledges the differences between:<br>Information Management (IM)<br>Decision-making systems<br>Real-time applications<br>Web-services<br>Etc.<br>High sensitivity to scaling |
| Quantitative<br>Management, use<br>of SW Metrics | Weak management exploitation of<br>metrics<br>Sporadic choice and use of metrics                                                                                                      | Systematic use of software metrics<br>Strong emphasis on moving to statistical<br>software process control:<br>CMMI <sup>®</sup> Level 4-5<br>Six Sigma                          |
| Organizational and<br>Management Models          | <ul> <li>Functional organization structure</li> <li>Matches the hierarchically<br/>decomposed product architecture</li> <li>No sensitivity to multi-contractor</li> </ul>             | Organization structured around IPTs<br>(Integrated Product Teams)<br>Acknowledges highly diverse and                                                                             |
|                                                  | <ul> <li>environments</li> <li>Weak, nominal software</li> <li>representation and awareness:</li> <li>Software always the bottleneck</li> <li>Disjointed hardware-software</li> </ul> | complex contractor structure<br>Stronger awareness of software<br>processes and dependencies:<br>Integrated hardware-software planning<br>Concurrent Engineering                 |
| Acquisition of Software Intensive Sy             | stems 2001 CeBeter Hantos Slide 11                                                                                                                                                    | CORPORATION                                                                                                                                                                      |

# Integral Software Engineering Activities

|                                               | OLD                                                                                                                                                                                                                     | NEW                                                                                                                                                                                                                                                          |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process Maturity<br>and Quality<br>Frameworks | Did not exist                                                                                                                                                                                                           | CMM/CMMI <sup>®</sup> :<br>Organizational process capability and<br>maturity concepts<br>Clearly defined process areas with<br>detailed practices<br>ISO 9000 series of quality standards                                                                    |
| Quality                                       | Software Quality = QA + QC = Test<br>Emphasis on system test<br>• Equivalent of QC<br>Focus on product quality only                                                                                                     | <b>"New" Software Quality Assurance:</b><br>Spread over the life cycle<br>Peer Review of all requirements,<br>design, coding, and test artifacts<br>Emphasis is on defect prevention<br>Scope now includes process audit<br>and process improvement coaching |
| Risk Management                               | <ul> <li>Hardware-focused:</li> <li>Little sensitivity to and awareness of software risks</li> <li>Assumes hardware-like reliability models for software</li> <li>Hardware-software risks handled separately</li> </ul> | Integral activity of Spiral Development:<br>Hardware-software risk mitigation<br>related trade-offs must be done<br>together                                                                                                                                 |



# Hardware-Software Technology

|                                  | OLD                                                                                                            | NEW                                                                                                              |
|----------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Design Paradigms                 | Single, basic software paradigm                                                                                | New, emerging paradigms:<br>Object-Oriented<br>Agents<br>Genetic Programming<br>Neural Networks                  |
| Host Processor                   | Single processor                                                                                               | Multi-processor:<br>Multi-threaded applications<br>Networks of processors (Grid computing)                       |
| Communications                   | <ul> <li>Low bandwidth:</li> <li>No significant compression</li> <li>Limited wireless communication</li> </ul> | High bandwidth:<br>Sophisticated compression technologies<br>High-speed wireless communication                   |
| Database<br>Management           | <ul> <li>Mainframe oriented:</li> <li>Large</li> <li>Text only</li> <li>At most relational schema</li> </ul>   | <b>On any Host:</b><br>Fully scalable<br>Distributed<br>O-O for any objects (image, voice, video)                |
| Tools                            | Basic, independent tools<br>No COTS software perspective                                                       | Rich toolset, integrated with life cycle process<br>High tools vendor/product volatility sensitivity             |
| Documentation                    | All documentation static<br>Delivered on paper<br>Text format primarily ASCII                                  | Dynamic, interactive, searchable<br>Executable models for design<br>New media (CD, DVD, or on-line server-based) |
| Acquisition of Software Intensiv | Noselectronic page formatting 13                                                                               | New formats (PDLs, XML)                                                                                          |

# Security

|          | OLD                                                                                                                                 | NEW                                                                                                                                                                                                                                                    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Security | <ul> <li>No sensitivity to software specifics:</li> <li>Satisfied with password level</li> <li>System security view only</li> </ul> | High Security Consciousness:<br>Kernel level security<br>Malicious penetration and virus issues<br>Firewalls, honeypots<br>Denial of Service attacks<br>Trusted computer platforms<br>Sophisticated encryption algorithms<br>Digital Rights management |

### Conclusions

- In-process software technical reviews are replacing rigid milestone reviews
- The understanding of software development trends is essential for determining review artifacts and their expected performance and maturity according to their position in the system life cycle
- Key Areas of Interest:
  - Architecture
  - Product-Oriented Software Engineering Activities
  - Engineering Management Processes
  - Integral Software Engineering Activities
  - New Hardware-Software Technologies
  - Security



#### **Acronyms and Abbreviations**

| ASCII | American Standard Code for Information Interchange |
|-------|----------------------------------------------------|
| CD    | Compact Disc                                       |
| CDR   | Critical Design Review                             |
| CMMI  | Capability Maturity Model Integration              |
| СОМ   | Component Object Model                             |
| CORBA | Common Object Request Broker Architecture          |
| COTS  | Commercial Off-the-Shelf                           |
| CSCI  | Computer Software Configuration Item               |
| DVD   | Digital Video Disc                                 |
| HWCI  | Hardware Configuration Item                        |
| IPT   | Integrated Product Team                            |
| ISO   | International Organization for Standards           |
| .NET  | Microsoft's Web-services Framework                 |
| 0-0   | Object-Oriented                                    |
| PDL   | Page Definition Language                           |
| PDR   | Preliminary Design Review                          |
| QA    | Quality Assurance                                  |
| QC    | Quality Control                                    |
| SSR   | System Specification Review                        |
| UML   | Unified Modeling Language                          |
| USAF  | US Air Force                                       |
| WWW   | World Wide Web                                     |
| XML   | Extensible Markup Language                         |
|       |                                                    |



#### **Contact Information**

**Peter Hantos** 

The Aerospace Corporation P.O. Box 92957-M1/112 Los Angeles, CA 90009-2957 <u>Phone</u>: (310) 336-1802 <u>Email:</u> peter.hantos@aero.org

