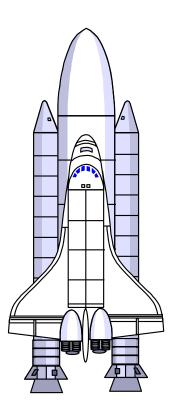


USING PILOTS TO ASSESS THE VALUE AND APPROACH OF CMMI IMPLEMENTATION

Goddard Space Flight Center (GSFC)

Sally Godfrey, James Andary, Linda Rosenberg


Slide 1

Agenda

- > Background
 - NASA Improvement Initiatives
 - GSFC Improvement Plan
 - GSFC/Phase 1
 - Phase 1 Goals
 - Choice of Pilot Areas
- > CMMI Pre-Appraisals
 - Goals/Scope
 - Pre-Appraisals
- > Evaluation of Phase 1
 - Advantages/Disadvantages of Pre-Appraisal Approach
 - Lessons Learned

The NASA Software & Systems Engineering Initiatives

Software Initiative Goal: Advance software engineering practices (development, assurance, and management) to effectively meet the scientific and technological objectives of NASA.

- 4 Strategies:
- -Process and Product Improvement
- -Safety, Reliability, and Quality
- -Infuse Research
- -Skill of Workforce

Systems Engineering Initiative: "Define and pilot a methodology for assessment of the systems engineering capability, which addresses knowledge and skill of the workforce, processes, and tools and methodology."..... NASA Chief Engineer

GSFC Software Development Process Improvement Plan

Developed Software Plan to **improve the processes and practices in use at GSFC** using the Capability Maturity Model Integrated (CMMI) as a measure of progress

- -Focuses on Mission Critical Software
- -Signed by GSFC Director

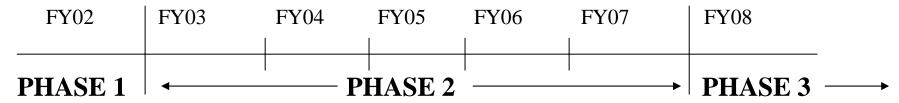
Are working with Systems Engineering to help them pilot CMMI

Software Long Term Goals

- -Increase percentage of projects that are on-time and within cost by at least 10%
- -Increase productivity by at least 5%
- -Decrease cycle time by 10-20%
- -Reduce error rate after delivery by at least 20%

Implementation Phases in GSFC's Improvement Plan

Phase 1: Pilot Phase (FY02)


- Benchmark several representative GSFC areas
- Estimate effort, cost to improve identified gaps
- Evaluate implementation approach

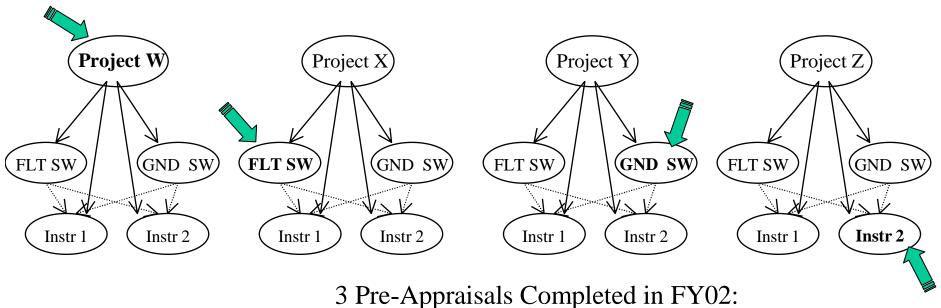
Phase 2: Implementation Phase (FY03-FY07)

- Implementation of PI on all critical projects
- Begin by working with new projects to field improvements
- Eventual target ...CMMI Level 3

Phase 3: Maintain Level and Continue Improvement

Include other less critical areas? (e.g. science processing)

Phase 1 -FY02 Goals



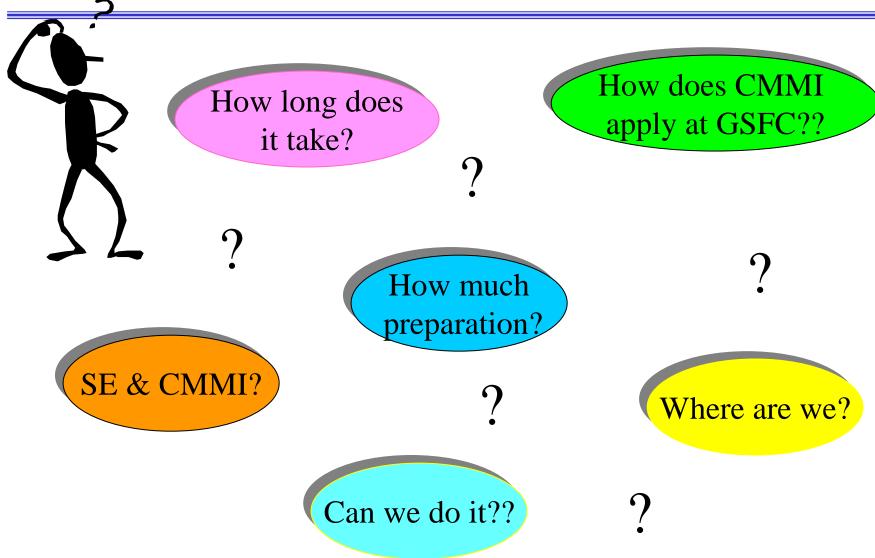
- Benchmark several areas against the CMMI model (Where are we?)
- Learn what is involved in using CMMI as a model for improvement (How hard is it? Does it make sense?)
- Get a basis for estimating the cost of a process improvement program that achieves CMMI Level 3 (How expensive is it?)
- Assess our planned implementation approach (Are we doing this the right way?)

Pre-Appraisal Areas Selected for Phase 1

- 1. Flight Software (11/01)
- 2. Project Level-Focus on Systems Engineering & Acquisition (4/02)
- 3. Ground Software (9/02)

Note: The Instrument area appraisal was not done due to lack of available projects and time constraints

Slide 7 SEPG 2003 2/03



CMMI Pre-Appraisals During Phase 1

Goals of the Pre-Appraisals

Key Points for Pre-Appraisals

- EPG tried to minimize time required from project participants
- Pre-appraisals were conducted less formally than SCAMPI
 - More reliance on interviews
 - Less verification of information and document review
 - No maturity ratings determined
- Pre-appraisal methodology evolved during course of year
- Findings were the result of team consensus, supported by multiple data points from multiple sessions.
- Results pre-appraisals were reported as findings of strengths and improvement opportunities in the CMMI Process Areas.

Phase 1 Pre-Appraisals

• Pre-Appraisal #1: Flight Software -2 projects

- Both projects in-house, integrated contractor/civil servant teams
- One project complete with all documentation in place
- Other project at PDR point -Development started under ISO system

• Pre-Appraisal #2: Flight Projects -3 projects

- Project 1: Start 2000, In Formulation, Large budget, International with multiple spacecraft, Core spacecraft will be in-house developed
- Project 2: Start '91, In Implementation, (CDR in '99), L-'04, Large budget,
 ~30 Civil Servants , Multiple contractors
- Project 3: Part of program with 3 project series, Several launches complete, (turn-key), Spacecraft budget about 1/2 of other two, mostly contractors, few Civil Servants

• Pre-Appraisal #3: Ground Software -2 projects

- Both projects in-house, integrated contractor/civil servant teams
- One project complete with all documentation in place
- Other project in testing -Development started under ISO system

Differences in the Pre-Appraisals

	#1	#2	#3
Level of Focus	Subsystem	Code 400 Project	Subsystem
Emphasis	Software	Systems Engineering	Software
	Development	Acquisition	Development
Mode	Discovery	Discovery	Verification
	-1/2 Doc. Review	-Heavy emphasis	-Few interviews
	-1/2 Interviews	on interviews	-Doc. Review
Use of PIIDs?	No	No	Yes
Draft Findings	No	Yes	Yes
Briefing Held?			
Days Spent	6 Days	9 Days	13 Days
Interviewee	Minimal	Gave sample	Minimal
Preparation		questions	
Interviewed	No	Yes	No
Support Orgs.			

PIIDs (Process Implementation Indicator Documents)

RM	Direct Artifact	Indirect Artifact	Affirmation	Char.
RM SP 1.1-1	Requirements Doc	Req. Q & A	PM-affirms	FI
RM SP 1.2-1	Signatures on Req.	Presentation Mat.		FI
RM SP 1.3-1	Req. Change History	Slide 11 of CDR	PM affirms	FI
RM SP 1.4-1	Test Matrix (partial)		PM affirms	LI
RM SP1.5-1		Slide 14 of CDR	Done sometimes	PI
GP 1.1	Req. Doc., DB's		PM affirms	FI
GP1.2			No org. policy	NI
			Key:	
			FI: Fully Implemented	
			LI: Largely Implemented	
			PI: Partially Implemented NI: Not Implemented	

Appraisal Participants (Interviewees)

X		
	X	
	X	
X	X	X
X	X	X
X		X
X		X
X	X	
X	X	X
	X	
	X	
	X	
X	X	
	X X X X X	X X X X X X X X X X X X X X X X X X X

Appraisal Teams

Appraisal Team	#1	#2	#3
SEI-Authorized Lead Appraisers	3	3	3
GSFC Appraisal Team Members (Total)	3	3	4

GSFC Appraisal Team Characteristics:	#1	#2	#3
Experience: All were EPG Members			
Took Introduction to CMMI		3	4
Took Intermediate CMMI		1	4
Background:			
Software Development		1	4
Systems Engineering		1	
Quality Assurance		1	

Process Flow of Pre-Appraisal #1

-	_		~ :	4
Pre		n-	SI	te

Day 1

Day 2 - 3

Day 4

Conduct

Day 5

Post On-Site

Analyze **Requirements** **Lead Assessor Opening Briefing**

Conduct

Interviews

Conduct **Interviews**

Conduct

Interviews

Conduct interviews and **Review Documents**

Interviews and Review **Documents**

Work to reach

consensus

Prepare Final Findings

Deliver Final Findings

Produce Reports and Support Follow-on **Activities**

Develop Appraisal Plan

Select and **Prepare Team**

Obtain **Organizational** Information

Select and **Prepare Participants**

Prepare for Data Collection

Review **Documents**

> Consolidate **Information**

Key Points:

-Little advance preparation

-Discovery mode with half

interviews, half doc review

-No draft findings

Slide 16 SEPG 2003 2/03

Process Flow of Pre-Appraisal #2

_	_		_
Pre	$()_1$	n-S	ite

Day 1

Day 2 - 3

Day 4

Day 5

Post On-Site

Produce Reports

Analyze **Requirements**

Overview **Training**

CMMI

Conduct **Interviews**

Documents

Review

Conduct Interviews and Review **Documents**

Findings

Findings

Deliver Final

Prepare Final

and Support Follow-on **Activities**

Develop Appraisal Plan

GSFC, SE Overview **Presentations**

Conduct

Interviews

Consolidate

Information

Consolidate Information

Consolidate

Information

Deliver Draft Findings

Select and **Prepare Team**

Obtain **Organizational** Information

Select and **Prepare Participants**

Prepare for Data Collection

Key Points:

- -More advance preparation
- -Discovery mode-heavy reliance on interviews
- -Draft findings

Slide 17 SEPG 2003 2/03

Information/Docs

Process Flow of Pre-Appraisal #3

Pre On-Site	Pre-On-Site	Day 1	Day 2-3	Day 4	Day 5
Analyze Requirements	Review Documentation	Discussion of Projects for Appraisers	Conduct Interviews	Review Documents and Complete PIIDs	Prepare Final Findings
Develop Appraisal Plan	Fill in PIIDs Obtain	Document Review Fill in PIIDs	Add interview Info to PIIDs Consolidate Information-Begin	Del	Deliver Final Findings
Select Team	Additional Docs			Deliver Draft	
Conduct Team Training		Identify Missing	Assessing Gaps	Findings	
Obtain Organizational		Information			

Key Points:

- -Heavy advance preparation
- -Verification mode-interviewsused to verify & complete PIIDS-Draft findings

Post On-Site

Produce Reports and Support Follow-on Activities

Evaluation of Phase 1

What did we learn?
Would we choose the same approach again?

Advantages of CMMI Pre-Appraisal Approach

- CMMI Pre-Appraisals provided fairly accurate benchmark of state of all three areas evaluated
- Pre-appraisal was a "quick-look" -Provided a wealth of information in a short period of time (1 week)
- Involvement of external appraisers helps facilitate cooperation from projects; Provides credibility for Senior Managers
- Pre-appraisal was excellent training for internal appraisers involved
- Future pre-appraisals and bench-marking could now be done by internal appraisers (Have experience base)

Slide 20

Disadvantages of CMMI Pre-Appraisal Approach

- Whole pre-appraisal approach was very time-consuming
 - Majority of our resources expended on convincing projects to participate, appraisal preparation, appraisals
 - Little time left to actually support improvement activities with projects
- More difficult to estimate costs of addressing weaknesses (doing actual improvements) than anticipated
- Difficult to show Senior Management that projects were "better" because we were doing pre-appraisals, not process improvement (*Early wins are important!*)

Lessons Learned on Pre-Appraisals

- It takes time to prepare
 - Scheduling interviews hard- allow lots of time
 - Assign internal appraisers process areas
 - Gather documents, fill out PIIDS
 - Prepare interviewees
 - Set expectations for pre-appraisal team
 - Brief pre-appraisal team
- Choose projects in various phases
 - Early phase: more opportunity to change
 - Mid-stream: probably typical of current processes
 - Late or done: all documentation in place

Lessons Learned

- Choose interviewees to cover all process areas
- Use of PIIDs captured more information on strengths & weaknesses by *Specific Practice* for later improvement work
 - Need a process for completing PIIDS
 - Too time intensive for Projects to fill out, but some EPG/Project interaction necessary
 - Projects didn't have CMMI knowledge to complete
- Conduct a draft findings briefing
- Knowledge of org. process structure more important than CMMI knowledge

Next Steps

- Prioritize improvement opportunities based on the Goddard business direction.
 - Use Continuous Model of CMMI
 - Focus on improving smaller part of s/w organization
 - Expand using assets developed as resources
- Continue working with the NASA Systems Engineering Working Group on the use of CMMI for evaluating systems engineering capability.
 - Start small pilot in systems engineering area
- Cost estimates for next year will be based on WBS developed to address gaps identified in appraisals

Contact Information

Sara (Sally) Godfrey

Goddard Space Flight Center

Code 583

Greenbelt, MD. 20771

301-286-5706

Sara.H.Godfrey.1@gsfc.nasa.gov

James Andary

Goddard Space Flight Center

Code 530

Greenbelt, MD 20771

301-286-2269

James.F.Andary.1@gsfc.nasa.gov

Dr. Linda Rosenberg

Goddard Space Flight Center

Code 100

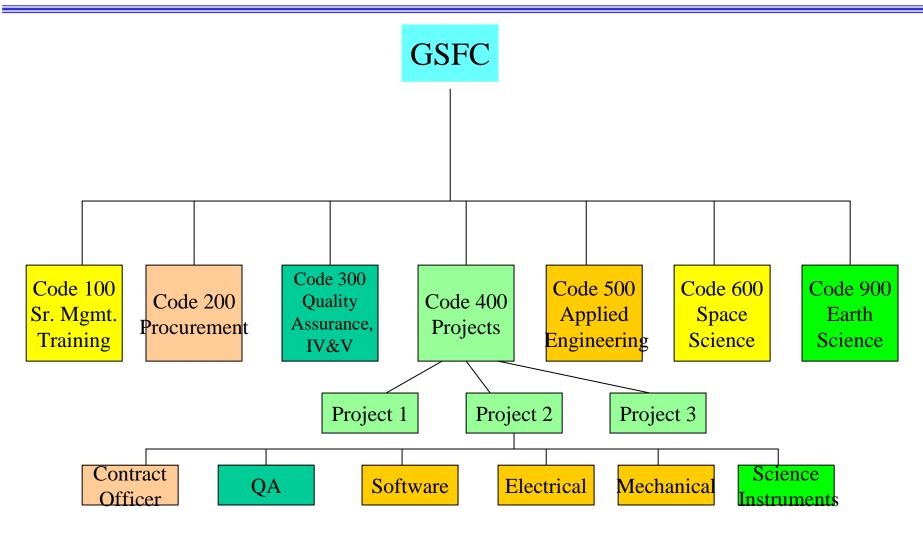
Greenbelt, MD 20771

301-286-5710

Linda.H.Rosenberg.1@gsfc.nasa.gov

Back-up Slides

The NASA Software Engineering Initiative


Goal: Advance software engineering practices (development, assurance, and management) to effectively meet the scientific and technological objectives of NASA.

- Strategy 1. Implement a continuous software <u>process and product</u> <u>improvement</u> program across NASA and its contract community.
- Strategy 2. Improve safety, reliability, and <u>quality of software</u> through the integration of sound software engineering <u>principles and standards</u>.
- Strategy 3. Improve NASA's software engineering practices through research.
- Strategy 4. Improve software engineers' knowledge and skills, and attract and retain software engineers.

Goddard's Matrix Structure

Example Process Area: Requirements Management

SG 1: Manage Requirements

SP 1.1: Obtain an Understanding of the Requirements

SP1.2: Obtain Commitment to the Requirements

SP1.3: Manage Requirements Changes

SP1.4: Maintain Bi-directional Traceability of Requirements

SP1.5: Identify Inconsistencies between Project Work & Reqmts

GG 2: Institutionalize a Managed Process

GP 2.1: Establish an Organizational Policy

GP 2.2: Plan the Process

GP 2.3: Provide Resources

GP 2.4: Assign Responsibility

Example Process Area: Requirements Management

GG 2: Institutionalize a Managed Process

GP 2.5: Train People

GP 2.6: Manage Configurations

GP 2.7: Identify & Involve Relevant Stakeholders

GP 2.8: Monitor and Control the Process

GP 2.9: Objectively Evaluate Adherence

GP 2.10: Review Status with Higher Level Management

GG 3: Define a Managed Process

GP 3.1:Establish a Defined Process

GP 3.2:Collect Improvement Information

Pre-Assessment Scope

- CMMI[®] Components Reviewed:
 - Maturity Levels 2 and 3 Process Areas
 - Specific Goals
 - Specific practices are evaluated to determine specific goal coverage based on evidence of weaknesses, improvement activities, strengths and alternative practices.
- CMMI[®] Components **NOT** Reviewed: (Generic Goals)
 - Actual documented "process" being used on projects
 - Activities, process inputs & outputs, deliverables, roles & responsibilities, measurements, work instructions, templates, tailoring, why & when, etc.
 - Training for use of process
 - Use of process and adherence to process
 - Planning and monitoring of process
 - Providing resources for process

Appraisal Goals for Systems Engineering Pre-Assessment

- Determine the applicability of the CMMI Model for evaluating systems engineering and acquisition activities at Goddard
- Baseline the systems engineering organization against the requirements in the model
- Gain experience in the use of the model as a baselining tool

Slide 32

Level 2 Process Areas

Requirements Management

Project Planning

Project Monitoring & Control

Supplier Agreement Management

Measurement & Analysis

Process & Product Quality Assurance

Configuration Management

General Process Requirements for Each Process Area at Level 2

Document project level processes so that all projects have a starting point for these activities.

Plan and manage these process activities, including:

Institute an organizational policy

Plan the process

Provide resources

Assign responsibility

Train people

Manage configurations

Identify & involve relevant stakeholders

Monitor & control the process

Objectively evaluate adherence

Review status with higher level management

Level 3 Process Areas

Requirements Development

Technical Solution

Product Integration

Verification

Validation

Organizational Process Focus

Organizational Process Definition

Organizational Training

Integrated Project Management

Risk Management

Integrated Teaming (not assessed)

Integrated Supplier Management

Decision Analysis and Resolution

Organizational Environment for Integration (not assessed)

General Process Requirements for Each Process Area at Level 3

Document organization level processes (and tailoring guidelines) so that all projects have a starting point for all process activities.

Plan and manage these process activities, including:

Institute an organizational policy

Plan the process

Provide resources

Assign responsibility

Train people

Manage configurations

Identify & involve relevant stakeholders

Monitor & control the process

Objectively evaluate adherence

Review status with higher level management

Collect information for process improvement

Authority

Directed by NASA Chief Engineer:

"...the SEWG is expected to...define and pilot a methodology for assessment of the systems engineering capability, which addresses knowledge and skill of the workforce, processes, and tools and methodology."

Deputy Chief Engineer for Systems Engineering (Nov. 1, 2000)

Promoted by the agency Software Working Group (SWG)

- Software Initiative being implemented across agency
- CMM and CMMI-SW programs at all Centers

Studied by the agency Systems Engineering Working Group (SEWG)

 Assessment data from GSFC will be evaluated by the SEWG to determine if CMMI is appropriate for Systems Engineering implementation agencywide.

Infrastructure

MOG

- ➤ Provide oversight and direction to the EPG and AMG and assist in establishing priorities
- ➤ Work with the EPG in communicating process issues and industry practices to GSFC senior management
- Represent their constituent organizations in reaching consensus on GSFC institutional software policies and standards for both inhouse and contractor-supplied software
- Review and concur on all GSFC software and system policies and guidelines prior to final publication

EPG

For the pilots and during the rollout to other GSFC entities the EPG will:

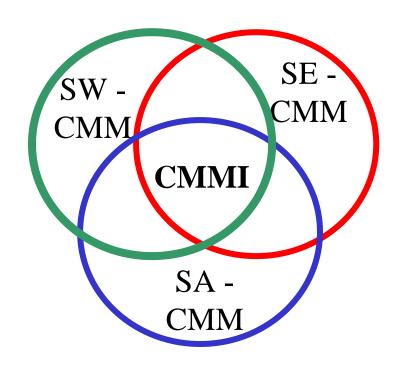
- ✓ Lead the continuous definition, maintenance and improvement of software process policies procedures and best practices including the development and maintenance of the GSFC software development process improvement plan
- ✓ Facilitate software process assessments
- ✓ Arrange for and support training and continuing education related to process improvements for engineers, line managers, project management, and GSFC senior management
- ✓ Define and maintain metrics to track, monitor, and assess the status of focused improvement efforts and pilot studies
- ✓ Provide status information and evaluations of the improvement activities to all levels of management
- ✓ Lead the institutional response, where appropriate, to software/systems-related Nonconformance Reports
- ✓ Maintain a collaborative working relationship with practicing software/systems engineers to obtain, plan, and install new practices and technologies
- ✓ Provide software engineering consultation to development projects and management SEPG 2003 2/03

Slide 40

AMG

- ❖ Develop and maintain the GSFC "Develop Software and Systems Products" web site which includes the software development process improvement library,
- ❖ Develop and maintain a database of GSFC software process and product metrics,
- ❖ Act as the clearinghouse for software metrics reported to NASA HQ,
- ❖ Develop insights into the metrics sources that will enhance the consistency and effectiveness of interpretation,
- ❖ Maintain a database of GSFC software product characteristics in order to understand process metrics, encourage software reuse, and assist in identifying special expertise, and
- ❖ Establish and manage a service that provides software engineering tools to projects in cases where a single GSFC vendor interface and institutional supplier is appropriate.

CMMI and **ISO**



- ISO is a standard, CMMI is a model
- ISO is broad- focusing on more aspects of the business. Initially for manufacturing
- CMMI is "deep"- provides more in-depth guidance in more focused areas (Software/Systems Engineering/Software Acquisition-SW/SE/SA)
- Both tell you "what" to do, but not "how" to do it
- But CMMI tells you what "expected" practices are for a capable, mature organization
- CMMI provides much more detail for guidance than ISO by including an extensive set of "best practices", developed in collaboration with industry/gov/SEI
 - -CMMI provides much better measure of quality of processes; ISO focuses more on having processes
 - -CMMI puts more emphasis on continuous improvement
 - -CMMI allows you to focus on one or a few process areas for improvement (It's a model, not a standard, like ISO) --Can rate just one area in CMMI
 - -CMMI and ISO are not in conflict: ISO helps satisfy CMMI capabilities; CMMI more rigorous

Slide 42

Capability Maturity Model Integrated (CMMI)-Staged

Level	Process Areas
5 Optimizing	Organization innovation and deployment Causal analysis and resolution
4 Quantitatively Managed	Organizational process performance Quantitative project management
3 Defined	Requirements development Technical solution Product integration Verification Validation Organizational process focus Organizational process definition Organizational training Integrated project management Risk management Decision analysis and resolution Integrated Supplier Management Integrated Teaming
2 Managed	Requirements management Project planning Project monitoring and control Configuration Management Supplier agreement management Measurement and analysis Product & Process Quality Assurance
1 Initial	